1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IBM PowerPC Virtual I/O Infrastructure Support. 4 * 5 * Copyright (c) 2003,2008 IBM Corp. 6 * Dave Engebretsen engebret@us.ibm.com 7 * Santiago Leon santil@us.ibm.com 8 * Hollis Blanchard <hollisb@us.ibm.com> 9 * Stephen Rothwell 10 * Robert Jennings <rcjenn@us.ibm.com> 11 */ 12 13 #include <linux/cpu.h> 14 #include <linux/types.h> 15 #include <linux/delay.h> 16 #include <linux/stat.h> 17 #include <linux/device.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/console.h> 21 #include <linux/export.h> 22 #include <linux/mm.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/kobject.h> 25 26 #include <asm/iommu.h> 27 #include <asm/dma.h> 28 #include <asm/vio.h> 29 #include <asm/prom.h> 30 #include <asm/firmware.h> 31 #include <asm/tce.h> 32 #include <asm/page.h> 33 #include <asm/hvcall.h> 34 35 static struct vio_dev vio_bus_device = { /* fake "parent" device */ 36 .name = "vio", 37 .type = "", 38 .dev.init_name = "vio", 39 .dev.bus = &vio_bus_type, 40 }; 41 42 #ifdef CONFIG_PPC_SMLPAR 43 /** 44 * vio_cmo_pool - A pool of IO memory for CMO use 45 * 46 * @size: The size of the pool in bytes 47 * @free: The amount of free memory in the pool 48 */ 49 struct vio_cmo_pool { 50 size_t size; 51 size_t free; 52 }; 53 54 /* How many ms to delay queued balance work */ 55 #define VIO_CMO_BALANCE_DELAY 100 56 57 /* Portion out IO memory to CMO devices by this chunk size */ 58 #define VIO_CMO_BALANCE_CHUNK 131072 59 60 /** 61 * vio_cmo_dev_entry - A device that is CMO-enabled and requires entitlement 62 * 63 * @vio_dev: struct vio_dev pointer 64 * @list: pointer to other devices on bus that are being tracked 65 */ 66 struct vio_cmo_dev_entry { 67 struct vio_dev *viodev; 68 struct list_head list; 69 }; 70 71 /** 72 * vio_cmo - VIO bus accounting structure for CMO entitlement 73 * 74 * @lock: spinlock for entire structure 75 * @balance_q: work queue for balancing system entitlement 76 * @device_list: list of CMO-enabled devices requiring entitlement 77 * @entitled: total system entitlement in bytes 78 * @reserve: pool of memory from which devices reserve entitlement, incl. spare 79 * @excess: pool of excess entitlement not needed for device reserves or spare 80 * @spare: IO memory for device hotplug functionality 81 * @min: minimum necessary for system operation 82 * @desired: desired memory for system operation 83 * @curr: bytes currently allocated 84 * @high: high water mark for IO data usage 85 */ 86 static struct vio_cmo { 87 spinlock_t lock; 88 struct delayed_work balance_q; 89 struct list_head device_list; 90 size_t entitled; 91 struct vio_cmo_pool reserve; 92 struct vio_cmo_pool excess; 93 size_t spare; 94 size_t min; 95 size_t desired; 96 size_t curr; 97 size_t high; 98 } vio_cmo; 99 100 /** 101 * vio_cmo_OF_devices - Count the number of OF devices that have DMA windows 102 */ 103 static int vio_cmo_num_OF_devs(void) 104 { 105 struct device_node *node_vroot; 106 int count = 0; 107 108 /* 109 * Count the number of vdevice entries with an 110 * ibm,my-dma-window OF property 111 */ 112 node_vroot = of_find_node_by_name(NULL, "vdevice"); 113 if (node_vroot) { 114 struct device_node *of_node; 115 struct property *prop; 116 117 for_each_child_of_node(node_vroot, of_node) { 118 prop = of_find_property(of_node, "ibm,my-dma-window", 119 NULL); 120 if (prop) 121 count++; 122 } 123 } 124 of_node_put(node_vroot); 125 return count; 126 } 127 128 /** 129 * vio_cmo_alloc - allocate IO memory for CMO-enable devices 130 * 131 * @viodev: VIO device requesting IO memory 132 * @size: size of allocation requested 133 * 134 * Allocations come from memory reserved for the devices and any excess 135 * IO memory available to all devices. The spare pool used to service 136 * hotplug must be equal to %VIO_CMO_MIN_ENT for the excess pool to be 137 * made available. 138 * 139 * Return codes: 140 * 0 for successful allocation and -ENOMEM for a failure 141 */ 142 static inline int vio_cmo_alloc(struct vio_dev *viodev, size_t size) 143 { 144 unsigned long flags; 145 size_t reserve_free = 0; 146 size_t excess_free = 0; 147 int ret = -ENOMEM; 148 149 spin_lock_irqsave(&vio_cmo.lock, flags); 150 151 /* Determine the amount of free entitlement available in reserve */ 152 if (viodev->cmo.entitled > viodev->cmo.allocated) 153 reserve_free = viodev->cmo.entitled - viodev->cmo.allocated; 154 155 /* If spare is not fulfilled, the excess pool can not be used. */ 156 if (vio_cmo.spare >= VIO_CMO_MIN_ENT) 157 excess_free = vio_cmo.excess.free; 158 159 /* The request can be satisfied */ 160 if ((reserve_free + excess_free) >= size) { 161 vio_cmo.curr += size; 162 if (vio_cmo.curr > vio_cmo.high) 163 vio_cmo.high = vio_cmo.curr; 164 viodev->cmo.allocated += size; 165 size -= min(reserve_free, size); 166 vio_cmo.excess.free -= size; 167 ret = 0; 168 } 169 170 spin_unlock_irqrestore(&vio_cmo.lock, flags); 171 return ret; 172 } 173 174 /** 175 * vio_cmo_dealloc - deallocate IO memory from CMO-enable devices 176 * @viodev: VIO device freeing IO memory 177 * @size: size of deallocation 178 * 179 * IO memory is freed by the device back to the correct memory pools. 180 * The spare pool is replenished first from either memory pool, then 181 * the reserve pool is used to reduce device entitlement, the excess 182 * pool is used to increase the reserve pool toward the desired entitlement 183 * target, and then the remaining memory is returned to the pools. 184 * 185 */ 186 static inline void vio_cmo_dealloc(struct vio_dev *viodev, size_t size) 187 { 188 unsigned long flags; 189 size_t spare_needed = 0; 190 size_t excess_freed = 0; 191 size_t reserve_freed = size; 192 size_t tmp; 193 int balance = 0; 194 195 spin_lock_irqsave(&vio_cmo.lock, flags); 196 vio_cmo.curr -= size; 197 198 /* Amount of memory freed from the excess pool */ 199 if (viodev->cmo.allocated > viodev->cmo.entitled) { 200 excess_freed = min(reserve_freed, (viodev->cmo.allocated - 201 viodev->cmo.entitled)); 202 reserve_freed -= excess_freed; 203 } 204 205 /* Remove allocation from device */ 206 viodev->cmo.allocated -= (reserve_freed + excess_freed); 207 208 /* Spare is a subset of the reserve pool, replenish it first. */ 209 spare_needed = VIO_CMO_MIN_ENT - vio_cmo.spare; 210 211 /* 212 * Replenish the spare in the reserve pool from the excess pool. 213 * This moves entitlement into the reserve pool. 214 */ 215 if (spare_needed && excess_freed) { 216 tmp = min(excess_freed, spare_needed); 217 vio_cmo.excess.size -= tmp; 218 vio_cmo.reserve.size += tmp; 219 vio_cmo.spare += tmp; 220 excess_freed -= tmp; 221 spare_needed -= tmp; 222 balance = 1; 223 } 224 225 /* 226 * Replenish the spare in the reserve pool from the reserve pool. 227 * This removes entitlement from the device down to VIO_CMO_MIN_ENT, 228 * if needed, and gives it to the spare pool. The amount of used 229 * memory in this pool does not change. 230 */ 231 if (spare_needed && reserve_freed) { 232 tmp = min3(spare_needed, reserve_freed, (viodev->cmo.entitled - VIO_CMO_MIN_ENT)); 233 234 vio_cmo.spare += tmp; 235 viodev->cmo.entitled -= tmp; 236 reserve_freed -= tmp; 237 spare_needed -= tmp; 238 balance = 1; 239 } 240 241 /* 242 * Increase the reserve pool until the desired allocation is met. 243 * Move an allocation freed from the excess pool into the reserve 244 * pool and schedule a balance operation. 245 */ 246 if (excess_freed && (vio_cmo.desired > vio_cmo.reserve.size)) { 247 tmp = min(excess_freed, (vio_cmo.desired - vio_cmo.reserve.size)); 248 249 vio_cmo.excess.size -= tmp; 250 vio_cmo.reserve.size += tmp; 251 excess_freed -= tmp; 252 balance = 1; 253 } 254 255 /* Return memory from the excess pool to that pool */ 256 if (excess_freed) 257 vio_cmo.excess.free += excess_freed; 258 259 if (balance) 260 schedule_delayed_work(&vio_cmo.balance_q, VIO_CMO_BALANCE_DELAY); 261 spin_unlock_irqrestore(&vio_cmo.lock, flags); 262 } 263 264 /** 265 * vio_cmo_entitlement_update - Manage system entitlement changes 266 * 267 * @new_entitlement: new system entitlement to attempt to accommodate 268 * 269 * Increases in entitlement will be used to fulfill the spare entitlement 270 * and the rest is given to the excess pool. Decreases, if they are 271 * possible, come from the excess pool and from unused device entitlement 272 * 273 * Returns: 0 on success, -ENOMEM when change can not be made 274 */ 275 int vio_cmo_entitlement_update(size_t new_entitlement) 276 { 277 struct vio_dev *viodev; 278 struct vio_cmo_dev_entry *dev_ent; 279 unsigned long flags; 280 size_t avail, delta, tmp; 281 282 spin_lock_irqsave(&vio_cmo.lock, flags); 283 284 /* Entitlement increases */ 285 if (new_entitlement > vio_cmo.entitled) { 286 delta = new_entitlement - vio_cmo.entitled; 287 288 /* Fulfill spare allocation */ 289 if (vio_cmo.spare < VIO_CMO_MIN_ENT) { 290 tmp = min(delta, (VIO_CMO_MIN_ENT - vio_cmo.spare)); 291 vio_cmo.spare += tmp; 292 vio_cmo.reserve.size += tmp; 293 delta -= tmp; 294 } 295 296 /* Remaining new allocation goes to the excess pool */ 297 vio_cmo.entitled += delta; 298 vio_cmo.excess.size += delta; 299 vio_cmo.excess.free += delta; 300 301 goto out; 302 } 303 304 /* Entitlement decreases */ 305 delta = vio_cmo.entitled - new_entitlement; 306 avail = vio_cmo.excess.free; 307 308 /* 309 * Need to check how much unused entitlement each device can 310 * sacrifice to fulfill entitlement change. 311 */ 312 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 313 if (avail >= delta) 314 break; 315 316 viodev = dev_ent->viodev; 317 if ((viodev->cmo.entitled > viodev->cmo.allocated) && 318 (viodev->cmo.entitled > VIO_CMO_MIN_ENT)) 319 avail += viodev->cmo.entitled - 320 max_t(size_t, viodev->cmo.allocated, 321 VIO_CMO_MIN_ENT); 322 } 323 324 if (delta <= avail) { 325 vio_cmo.entitled -= delta; 326 327 /* Take entitlement from the excess pool first */ 328 tmp = min(vio_cmo.excess.free, delta); 329 vio_cmo.excess.size -= tmp; 330 vio_cmo.excess.free -= tmp; 331 delta -= tmp; 332 333 /* 334 * Remove all but VIO_CMO_MIN_ENT bytes from devices 335 * until entitlement change is served 336 */ 337 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 338 if (!delta) 339 break; 340 341 viodev = dev_ent->viodev; 342 tmp = 0; 343 if ((viodev->cmo.entitled > viodev->cmo.allocated) && 344 (viodev->cmo.entitled > VIO_CMO_MIN_ENT)) 345 tmp = viodev->cmo.entitled - 346 max_t(size_t, viodev->cmo.allocated, 347 VIO_CMO_MIN_ENT); 348 viodev->cmo.entitled -= min(tmp, delta); 349 delta -= min(tmp, delta); 350 } 351 } else { 352 spin_unlock_irqrestore(&vio_cmo.lock, flags); 353 return -ENOMEM; 354 } 355 356 out: 357 schedule_delayed_work(&vio_cmo.balance_q, 0); 358 spin_unlock_irqrestore(&vio_cmo.lock, flags); 359 return 0; 360 } 361 362 /** 363 * vio_cmo_balance - Balance entitlement among devices 364 * 365 * @work: work queue structure for this operation 366 * 367 * Any system entitlement above the minimum needed for devices, or 368 * already allocated to devices, can be distributed to the devices. 369 * The list of devices is iterated through to recalculate the desired 370 * entitlement level and to determine how much entitlement above the 371 * minimum entitlement is allocated to devices. 372 * 373 * Small chunks of the available entitlement are given to devices until 374 * their requirements are fulfilled or there is no entitlement left to give. 375 * Upon completion sizes of the reserve and excess pools are calculated. 376 * 377 * The system minimum entitlement level is also recalculated here. 378 * Entitlement will be reserved for devices even after vio_bus_remove to 379 * accommodate reloading the driver. The OF tree is walked to count the 380 * number of devices present and this will remove entitlement for devices 381 * that have actually left the system after having vio_bus_remove called. 382 */ 383 static void vio_cmo_balance(struct work_struct *work) 384 { 385 struct vio_cmo *cmo; 386 struct vio_dev *viodev; 387 struct vio_cmo_dev_entry *dev_ent; 388 unsigned long flags; 389 size_t avail = 0, level, chunk, need; 390 int devcount = 0, fulfilled; 391 392 cmo = container_of(work, struct vio_cmo, balance_q.work); 393 394 spin_lock_irqsave(&vio_cmo.lock, flags); 395 396 /* Calculate minimum entitlement and fulfill spare */ 397 cmo->min = vio_cmo_num_OF_devs() * VIO_CMO_MIN_ENT; 398 BUG_ON(cmo->min > cmo->entitled); 399 cmo->spare = min_t(size_t, VIO_CMO_MIN_ENT, (cmo->entitled - cmo->min)); 400 cmo->min += cmo->spare; 401 cmo->desired = cmo->min; 402 403 /* 404 * Determine how much entitlement is available and reset device 405 * entitlements 406 */ 407 avail = cmo->entitled - cmo->spare; 408 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 409 viodev = dev_ent->viodev; 410 devcount++; 411 viodev->cmo.entitled = VIO_CMO_MIN_ENT; 412 cmo->desired += (viodev->cmo.desired - VIO_CMO_MIN_ENT); 413 avail -= max_t(size_t, viodev->cmo.allocated, VIO_CMO_MIN_ENT); 414 } 415 416 /* 417 * Having provided each device with the minimum entitlement, loop 418 * over the devices portioning out the remaining entitlement 419 * until there is nothing left. 420 */ 421 level = VIO_CMO_MIN_ENT; 422 while (avail) { 423 fulfilled = 0; 424 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 425 viodev = dev_ent->viodev; 426 427 if (viodev->cmo.desired <= level) { 428 fulfilled++; 429 continue; 430 } 431 432 /* 433 * Give the device up to VIO_CMO_BALANCE_CHUNK 434 * bytes of entitlement, but do not exceed the 435 * desired level of entitlement for the device. 436 */ 437 chunk = min_t(size_t, avail, VIO_CMO_BALANCE_CHUNK); 438 chunk = min(chunk, (viodev->cmo.desired - 439 viodev->cmo.entitled)); 440 viodev->cmo.entitled += chunk; 441 442 /* 443 * If the memory for this entitlement increase was 444 * already allocated to the device it does not come 445 * from the available pool being portioned out. 446 */ 447 need = max(viodev->cmo.allocated, viodev->cmo.entitled)- 448 max(viodev->cmo.allocated, level); 449 avail -= need; 450 451 } 452 if (fulfilled == devcount) 453 break; 454 level += VIO_CMO_BALANCE_CHUNK; 455 } 456 457 /* Calculate new reserve and excess pool sizes */ 458 cmo->reserve.size = cmo->min; 459 cmo->excess.free = 0; 460 cmo->excess.size = 0; 461 need = 0; 462 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) { 463 viodev = dev_ent->viodev; 464 /* Calculated reserve size above the minimum entitlement */ 465 if (viodev->cmo.entitled) 466 cmo->reserve.size += (viodev->cmo.entitled - 467 VIO_CMO_MIN_ENT); 468 /* Calculated used excess entitlement */ 469 if (viodev->cmo.allocated > viodev->cmo.entitled) 470 need += viodev->cmo.allocated - viodev->cmo.entitled; 471 } 472 cmo->excess.size = cmo->entitled - cmo->reserve.size; 473 cmo->excess.free = cmo->excess.size - need; 474 475 cancel_delayed_work(to_delayed_work(work)); 476 spin_unlock_irqrestore(&vio_cmo.lock, flags); 477 } 478 479 static void *vio_dma_iommu_alloc_coherent(struct device *dev, size_t size, 480 dma_addr_t *dma_handle, gfp_t flag, 481 unsigned long attrs) 482 { 483 struct vio_dev *viodev = to_vio_dev(dev); 484 void *ret; 485 486 if (vio_cmo_alloc(viodev, roundup(size, PAGE_SIZE))) { 487 atomic_inc(&viodev->cmo.allocs_failed); 488 return NULL; 489 } 490 491 ret = iommu_alloc_coherent(dev, get_iommu_table_base(dev), size, 492 dma_handle, dev->coherent_dma_mask, flag, 493 dev_to_node(dev)); 494 if (unlikely(ret == NULL)) { 495 vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE)); 496 atomic_inc(&viodev->cmo.allocs_failed); 497 } 498 499 return ret; 500 } 501 502 static void vio_dma_iommu_free_coherent(struct device *dev, size_t size, 503 void *vaddr, dma_addr_t dma_handle, 504 unsigned long attrs) 505 { 506 struct vio_dev *viodev = to_vio_dev(dev); 507 508 iommu_free_coherent(get_iommu_table_base(dev), size, vaddr, dma_handle); 509 vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE)); 510 } 511 512 static dma_addr_t vio_dma_iommu_map_page(struct device *dev, struct page *page, 513 unsigned long offset, size_t size, 514 enum dma_data_direction direction, 515 unsigned long attrs) 516 { 517 struct vio_dev *viodev = to_vio_dev(dev); 518 struct iommu_table *tbl = get_iommu_table_base(dev); 519 dma_addr_t ret = DMA_MAPPING_ERROR; 520 521 if (vio_cmo_alloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl)))) 522 goto out_fail; 523 ret = iommu_map_page(dev, tbl, page, offset, size, dma_get_mask(dev), 524 direction, attrs); 525 if (unlikely(ret == DMA_MAPPING_ERROR)) 526 goto out_deallocate; 527 return ret; 528 529 out_deallocate: 530 vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl))); 531 out_fail: 532 atomic_inc(&viodev->cmo.allocs_failed); 533 return DMA_MAPPING_ERROR; 534 } 535 536 static void vio_dma_iommu_unmap_page(struct device *dev, dma_addr_t dma_handle, 537 size_t size, 538 enum dma_data_direction direction, 539 unsigned long attrs) 540 { 541 struct vio_dev *viodev = to_vio_dev(dev); 542 struct iommu_table *tbl = get_iommu_table_base(dev); 543 544 iommu_unmap_page(tbl, dma_handle, size, direction, attrs); 545 vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl))); 546 } 547 548 static int vio_dma_iommu_map_sg(struct device *dev, struct scatterlist *sglist, 549 int nelems, enum dma_data_direction direction, 550 unsigned long attrs) 551 { 552 struct vio_dev *viodev = to_vio_dev(dev); 553 struct iommu_table *tbl = get_iommu_table_base(dev); 554 struct scatterlist *sgl; 555 int ret, count; 556 size_t alloc_size = 0; 557 558 for_each_sg(sglist, sgl, nelems, count) 559 alloc_size += roundup(sgl->length, IOMMU_PAGE_SIZE(tbl)); 560 561 if (vio_cmo_alloc(viodev, alloc_size)) 562 goto out_fail; 563 ret = ppc_iommu_map_sg(dev, tbl, sglist, nelems, dma_get_mask(dev), 564 direction, attrs); 565 if (unlikely(!ret)) 566 goto out_deallocate; 567 568 for_each_sg(sglist, sgl, ret, count) 569 alloc_size -= roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl)); 570 if (alloc_size) 571 vio_cmo_dealloc(viodev, alloc_size); 572 return ret; 573 574 out_deallocate: 575 vio_cmo_dealloc(viodev, alloc_size); 576 out_fail: 577 atomic_inc(&viodev->cmo.allocs_failed); 578 return 0; 579 } 580 581 static void vio_dma_iommu_unmap_sg(struct device *dev, 582 struct scatterlist *sglist, int nelems, 583 enum dma_data_direction direction, 584 unsigned long attrs) 585 { 586 struct vio_dev *viodev = to_vio_dev(dev); 587 struct iommu_table *tbl = get_iommu_table_base(dev); 588 struct scatterlist *sgl; 589 size_t alloc_size = 0; 590 int count; 591 592 for_each_sg(sglist, sgl, nelems, count) 593 alloc_size += roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl)); 594 595 ppc_iommu_unmap_sg(tbl, sglist, nelems, direction, attrs); 596 vio_cmo_dealloc(viodev, alloc_size); 597 } 598 599 static const struct dma_map_ops vio_dma_mapping_ops = { 600 .alloc = vio_dma_iommu_alloc_coherent, 601 .free = vio_dma_iommu_free_coherent, 602 .map_sg = vio_dma_iommu_map_sg, 603 .unmap_sg = vio_dma_iommu_unmap_sg, 604 .map_page = vio_dma_iommu_map_page, 605 .unmap_page = vio_dma_iommu_unmap_page, 606 .dma_supported = dma_iommu_dma_supported, 607 .get_required_mask = dma_iommu_get_required_mask, 608 }; 609 610 /** 611 * vio_cmo_set_dev_desired - Set desired entitlement for a device 612 * 613 * @viodev: struct vio_dev for device to alter 614 * @desired: new desired entitlement level in bytes 615 * 616 * For use by devices to request a change to their entitlement at runtime or 617 * through sysfs. The desired entitlement level is changed and a balancing 618 * of system resources is scheduled to run in the future. 619 */ 620 void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired) 621 { 622 unsigned long flags; 623 struct vio_cmo_dev_entry *dev_ent; 624 int found = 0; 625 626 if (!firmware_has_feature(FW_FEATURE_CMO)) 627 return; 628 629 spin_lock_irqsave(&vio_cmo.lock, flags); 630 if (desired < VIO_CMO_MIN_ENT) 631 desired = VIO_CMO_MIN_ENT; 632 633 /* 634 * Changes will not be made for devices not in the device list. 635 * If it is not in the device list, then no driver is loaded 636 * for the device and it can not receive entitlement. 637 */ 638 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) 639 if (viodev == dev_ent->viodev) { 640 found = 1; 641 break; 642 } 643 if (!found) { 644 spin_unlock_irqrestore(&vio_cmo.lock, flags); 645 return; 646 } 647 648 /* Increase/decrease in desired device entitlement */ 649 if (desired >= viodev->cmo.desired) { 650 /* Just bump the bus and device values prior to a balance*/ 651 vio_cmo.desired += desired - viodev->cmo.desired; 652 viodev->cmo.desired = desired; 653 } else { 654 /* Decrease bus and device values for desired entitlement */ 655 vio_cmo.desired -= viodev->cmo.desired - desired; 656 viodev->cmo.desired = desired; 657 /* 658 * If less entitlement is desired than current entitlement, move 659 * any reserve memory in the change region to the excess pool. 660 */ 661 if (viodev->cmo.entitled > desired) { 662 vio_cmo.reserve.size -= viodev->cmo.entitled - desired; 663 vio_cmo.excess.size += viodev->cmo.entitled - desired; 664 /* 665 * If entitlement moving from the reserve pool to the 666 * excess pool is currently unused, add to the excess 667 * free counter. 668 */ 669 if (viodev->cmo.allocated < viodev->cmo.entitled) 670 vio_cmo.excess.free += viodev->cmo.entitled - 671 max(viodev->cmo.allocated, desired); 672 viodev->cmo.entitled = desired; 673 } 674 } 675 schedule_delayed_work(&vio_cmo.balance_q, 0); 676 spin_unlock_irqrestore(&vio_cmo.lock, flags); 677 } 678 679 /** 680 * vio_cmo_bus_probe - Handle CMO specific bus probe activities 681 * 682 * @viodev - Pointer to struct vio_dev for device 683 * 684 * Determine the devices IO memory entitlement needs, attempting 685 * to satisfy the system minimum entitlement at first and scheduling 686 * a balance operation to take care of the rest at a later time. 687 * 688 * Returns: 0 on success, -EINVAL when device doesn't support CMO, and 689 * -ENOMEM when entitlement is not available for device or 690 * device entry. 691 * 692 */ 693 static int vio_cmo_bus_probe(struct vio_dev *viodev) 694 { 695 struct vio_cmo_dev_entry *dev_ent; 696 struct device *dev = &viodev->dev; 697 struct iommu_table *tbl; 698 struct vio_driver *viodrv = to_vio_driver(dev->driver); 699 unsigned long flags; 700 size_t size; 701 bool dma_capable = false; 702 703 tbl = get_iommu_table_base(dev); 704 705 /* A device requires entitlement if it has a DMA window property */ 706 switch (viodev->family) { 707 case VDEVICE: 708 if (of_get_property(viodev->dev.of_node, 709 "ibm,my-dma-window", NULL)) 710 dma_capable = true; 711 break; 712 case PFO: 713 dma_capable = false; 714 break; 715 default: 716 dev_warn(dev, "unknown device family: %d\n", viodev->family); 717 BUG(); 718 break; 719 } 720 721 /* Configure entitlement for the device. */ 722 if (dma_capable) { 723 /* Check that the driver is CMO enabled and get desired DMA */ 724 if (!viodrv->get_desired_dma) { 725 dev_err(dev, "%s: device driver does not support CMO\n", 726 __func__); 727 return -EINVAL; 728 } 729 730 viodev->cmo.desired = 731 IOMMU_PAGE_ALIGN(viodrv->get_desired_dma(viodev), tbl); 732 if (viodev->cmo.desired < VIO_CMO_MIN_ENT) 733 viodev->cmo.desired = VIO_CMO_MIN_ENT; 734 size = VIO_CMO_MIN_ENT; 735 736 dev_ent = kmalloc(sizeof(struct vio_cmo_dev_entry), 737 GFP_KERNEL); 738 if (!dev_ent) 739 return -ENOMEM; 740 741 dev_ent->viodev = viodev; 742 spin_lock_irqsave(&vio_cmo.lock, flags); 743 list_add(&dev_ent->list, &vio_cmo.device_list); 744 } else { 745 viodev->cmo.desired = 0; 746 size = 0; 747 spin_lock_irqsave(&vio_cmo.lock, flags); 748 } 749 750 /* 751 * If the needs for vio_cmo.min have not changed since they 752 * were last set, the number of devices in the OF tree has 753 * been constant and the IO memory for this is already in 754 * the reserve pool. 755 */ 756 if (vio_cmo.min == ((vio_cmo_num_OF_devs() + 1) * 757 VIO_CMO_MIN_ENT)) { 758 /* Updated desired entitlement if device requires it */ 759 if (size) 760 vio_cmo.desired += (viodev->cmo.desired - 761 VIO_CMO_MIN_ENT); 762 } else { 763 size_t tmp; 764 765 tmp = vio_cmo.spare + vio_cmo.excess.free; 766 if (tmp < size) { 767 dev_err(dev, "%s: insufficient free " 768 "entitlement to add device. " 769 "Need %lu, have %lu\n", __func__, 770 size, (vio_cmo.spare + tmp)); 771 spin_unlock_irqrestore(&vio_cmo.lock, flags); 772 return -ENOMEM; 773 } 774 775 /* Use excess pool first to fulfill request */ 776 tmp = min(size, vio_cmo.excess.free); 777 vio_cmo.excess.free -= tmp; 778 vio_cmo.excess.size -= tmp; 779 vio_cmo.reserve.size += tmp; 780 781 /* Use spare if excess pool was insufficient */ 782 vio_cmo.spare -= size - tmp; 783 784 /* Update bus accounting */ 785 vio_cmo.min += size; 786 vio_cmo.desired += viodev->cmo.desired; 787 } 788 spin_unlock_irqrestore(&vio_cmo.lock, flags); 789 return 0; 790 } 791 792 /** 793 * vio_cmo_bus_remove - Handle CMO specific bus removal activities 794 * 795 * @viodev - Pointer to struct vio_dev for device 796 * 797 * Remove the device from the cmo device list. The minimum entitlement 798 * will be reserved for the device as long as it is in the system. The 799 * rest of the entitlement the device had been allocated will be returned 800 * to the system. 801 */ 802 static void vio_cmo_bus_remove(struct vio_dev *viodev) 803 { 804 struct vio_cmo_dev_entry *dev_ent; 805 unsigned long flags; 806 size_t tmp; 807 808 spin_lock_irqsave(&vio_cmo.lock, flags); 809 if (viodev->cmo.allocated) { 810 dev_err(&viodev->dev, "%s: device had %lu bytes of IO " 811 "allocated after remove operation.\n", 812 __func__, viodev->cmo.allocated); 813 BUG(); 814 } 815 816 /* 817 * Remove the device from the device list being maintained for 818 * CMO enabled devices. 819 */ 820 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) 821 if (viodev == dev_ent->viodev) { 822 list_del(&dev_ent->list); 823 kfree(dev_ent); 824 break; 825 } 826 827 /* 828 * Devices may not require any entitlement and they do not need 829 * to be processed. Otherwise, return the device's entitlement 830 * back to the pools. 831 */ 832 if (viodev->cmo.entitled) { 833 /* 834 * This device has not yet left the OF tree, it's 835 * minimum entitlement remains in vio_cmo.min and 836 * vio_cmo.desired 837 */ 838 vio_cmo.desired -= (viodev->cmo.desired - VIO_CMO_MIN_ENT); 839 840 /* 841 * Save min allocation for device in reserve as long 842 * as it exists in OF tree as determined by later 843 * balance operation 844 */ 845 viodev->cmo.entitled -= VIO_CMO_MIN_ENT; 846 847 /* Replenish spare from freed reserve pool */ 848 if (viodev->cmo.entitled && (vio_cmo.spare < VIO_CMO_MIN_ENT)) { 849 tmp = min(viodev->cmo.entitled, (VIO_CMO_MIN_ENT - 850 vio_cmo.spare)); 851 vio_cmo.spare += tmp; 852 viodev->cmo.entitled -= tmp; 853 } 854 855 /* Remaining reserve goes to excess pool */ 856 vio_cmo.excess.size += viodev->cmo.entitled; 857 vio_cmo.excess.free += viodev->cmo.entitled; 858 vio_cmo.reserve.size -= viodev->cmo.entitled; 859 860 /* 861 * Until the device is removed it will keep a 862 * minimum entitlement; this will guarantee that 863 * a module unload/load will result in a success. 864 */ 865 viodev->cmo.entitled = VIO_CMO_MIN_ENT; 866 viodev->cmo.desired = VIO_CMO_MIN_ENT; 867 atomic_set(&viodev->cmo.allocs_failed, 0); 868 } 869 870 spin_unlock_irqrestore(&vio_cmo.lock, flags); 871 } 872 873 static void vio_cmo_set_dma_ops(struct vio_dev *viodev) 874 { 875 set_dma_ops(&viodev->dev, &vio_dma_mapping_ops); 876 } 877 878 /** 879 * vio_cmo_bus_init - CMO entitlement initialization at bus init time 880 * 881 * Set up the reserve and excess entitlement pools based on available 882 * system entitlement and the number of devices in the OF tree that 883 * require entitlement in the reserve pool. 884 */ 885 static void vio_cmo_bus_init(void) 886 { 887 struct hvcall_mpp_data mpp_data; 888 int err; 889 890 memset(&vio_cmo, 0, sizeof(struct vio_cmo)); 891 spin_lock_init(&vio_cmo.lock); 892 INIT_LIST_HEAD(&vio_cmo.device_list); 893 INIT_DELAYED_WORK(&vio_cmo.balance_q, vio_cmo_balance); 894 895 /* Get current system entitlement */ 896 err = h_get_mpp(&mpp_data); 897 898 /* 899 * On failure, continue with entitlement set to 0, will panic() 900 * later when spare is reserved. 901 */ 902 if (err != H_SUCCESS) { 903 printk(KERN_ERR "%s: unable to determine system IO "\ 904 "entitlement. (%d)\n", __func__, err); 905 vio_cmo.entitled = 0; 906 } else { 907 vio_cmo.entitled = mpp_data.entitled_mem; 908 } 909 910 /* Set reservation and check against entitlement */ 911 vio_cmo.spare = VIO_CMO_MIN_ENT; 912 vio_cmo.reserve.size = vio_cmo.spare; 913 vio_cmo.reserve.size += (vio_cmo_num_OF_devs() * 914 VIO_CMO_MIN_ENT); 915 if (vio_cmo.reserve.size > vio_cmo.entitled) { 916 printk(KERN_ERR "%s: insufficient system entitlement\n", 917 __func__); 918 panic("%s: Insufficient system entitlement", __func__); 919 } 920 921 /* Set the remaining accounting variables */ 922 vio_cmo.excess.size = vio_cmo.entitled - vio_cmo.reserve.size; 923 vio_cmo.excess.free = vio_cmo.excess.size; 924 vio_cmo.min = vio_cmo.reserve.size; 925 vio_cmo.desired = vio_cmo.reserve.size; 926 } 927 928 /* sysfs device functions and data structures for CMO */ 929 930 #define viodev_cmo_rd_attr(name) \ 931 static ssize_t cmo_##name##_show(struct device *dev, \ 932 struct device_attribute *attr, \ 933 char *buf) \ 934 { \ 935 return sprintf(buf, "%lu\n", to_vio_dev(dev)->cmo.name); \ 936 } 937 938 static ssize_t cmo_allocs_failed_show(struct device *dev, 939 struct device_attribute *attr, char *buf) 940 { 941 struct vio_dev *viodev = to_vio_dev(dev); 942 return sprintf(buf, "%d\n", atomic_read(&viodev->cmo.allocs_failed)); 943 } 944 945 static ssize_t cmo_allocs_failed_store(struct device *dev, 946 struct device_attribute *attr, const char *buf, size_t count) 947 { 948 struct vio_dev *viodev = to_vio_dev(dev); 949 atomic_set(&viodev->cmo.allocs_failed, 0); 950 return count; 951 } 952 953 static ssize_t cmo_desired_store(struct device *dev, 954 struct device_attribute *attr, const char *buf, size_t count) 955 { 956 struct vio_dev *viodev = to_vio_dev(dev); 957 size_t new_desired; 958 int ret; 959 960 ret = kstrtoul(buf, 10, &new_desired); 961 if (ret) 962 return ret; 963 964 vio_cmo_set_dev_desired(viodev, new_desired); 965 return count; 966 } 967 968 viodev_cmo_rd_attr(desired); 969 viodev_cmo_rd_attr(entitled); 970 viodev_cmo_rd_attr(allocated); 971 972 static ssize_t name_show(struct device *, struct device_attribute *, char *); 973 static ssize_t devspec_show(struct device *, struct device_attribute *, char *); 974 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 975 char *buf); 976 977 static struct device_attribute dev_attr_name; 978 static struct device_attribute dev_attr_devspec; 979 static struct device_attribute dev_attr_modalias; 980 981 static DEVICE_ATTR_RO(cmo_entitled); 982 static DEVICE_ATTR_RO(cmo_allocated); 983 static DEVICE_ATTR_RW(cmo_desired); 984 static DEVICE_ATTR_RW(cmo_allocs_failed); 985 986 static struct attribute *vio_cmo_dev_attrs[] = { 987 &dev_attr_name.attr, 988 &dev_attr_devspec.attr, 989 &dev_attr_modalias.attr, 990 &dev_attr_cmo_entitled.attr, 991 &dev_attr_cmo_allocated.attr, 992 &dev_attr_cmo_desired.attr, 993 &dev_attr_cmo_allocs_failed.attr, 994 NULL, 995 }; 996 ATTRIBUTE_GROUPS(vio_cmo_dev); 997 998 /* sysfs bus functions and data structures for CMO */ 999 1000 #define viobus_cmo_rd_attr(name) \ 1001 static ssize_t cmo_bus_##name##_show(struct bus_type *bt, char *buf) \ 1002 { \ 1003 return sprintf(buf, "%lu\n", vio_cmo.name); \ 1004 } \ 1005 static struct bus_attribute bus_attr_cmo_bus_##name = \ 1006 __ATTR(cmo_##name, S_IRUGO, cmo_bus_##name##_show, NULL) 1007 1008 #define viobus_cmo_pool_rd_attr(name, var) \ 1009 static ssize_t \ 1010 cmo_##name##_##var##_show(struct bus_type *bt, char *buf) \ 1011 { \ 1012 return sprintf(buf, "%lu\n", vio_cmo.name.var); \ 1013 } \ 1014 static BUS_ATTR_RO(cmo_##name##_##var) 1015 1016 viobus_cmo_rd_attr(entitled); 1017 viobus_cmo_rd_attr(spare); 1018 viobus_cmo_rd_attr(min); 1019 viobus_cmo_rd_attr(desired); 1020 viobus_cmo_rd_attr(curr); 1021 viobus_cmo_pool_rd_attr(reserve, size); 1022 viobus_cmo_pool_rd_attr(excess, size); 1023 viobus_cmo_pool_rd_attr(excess, free); 1024 1025 static ssize_t cmo_high_show(struct bus_type *bt, char *buf) 1026 { 1027 return sprintf(buf, "%lu\n", vio_cmo.high); 1028 } 1029 1030 static ssize_t cmo_high_store(struct bus_type *bt, const char *buf, 1031 size_t count) 1032 { 1033 unsigned long flags; 1034 1035 spin_lock_irqsave(&vio_cmo.lock, flags); 1036 vio_cmo.high = vio_cmo.curr; 1037 spin_unlock_irqrestore(&vio_cmo.lock, flags); 1038 1039 return count; 1040 } 1041 static BUS_ATTR_RW(cmo_high); 1042 1043 static struct attribute *vio_bus_attrs[] = { 1044 &bus_attr_cmo_bus_entitled.attr, 1045 &bus_attr_cmo_bus_spare.attr, 1046 &bus_attr_cmo_bus_min.attr, 1047 &bus_attr_cmo_bus_desired.attr, 1048 &bus_attr_cmo_bus_curr.attr, 1049 &bus_attr_cmo_high.attr, 1050 &bus_attr_cmo_reserve_size.attr, 1051 &bus_attr_cmo_excess_size.attr, 1052 &bus_attr_cmo_excess_free.attr, 1053 NULL, 1054 }; 1055 ATTRIBUTE_GROUPS(vio_bus); 1056 1057 static void vio_cmo_sysfs_init(void) 1058 { 1059 vio_bus_type.dev_groups = vio_cmo_dev_groups; 1060 vio_bus_type.bus_groups = vio_bus_groups; 1061 } 1062 #else /* CONFIG_PPC_SMLPAR */ 1063 int vio_cmo_entitlement_update(size_t new_entitlement) { return 0; } 1064 void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired) {} 1065 static int vio_cmo_bus_probe(struct vio_dev *viodev) { return 0; } 1066 static void vio_cmo_bus_remove(struct vio_dev *viodev) {} 1067 static void vio_cmo_set_dma_ops(struct vio_dev *viodev) {} 1068 static void vio_cmo_bus_init(void) {} 1069 static void vio_cmo_sysfs_init(void) { } 1070 #endif /* CONFIG_PPC_SMLPAR */ 1071 EXPORT_SYMBOL(vio_cmo_entitlement_update); 1072 EXPORT_SYMBOL(vio_cmo_set_dev_desired); 1073 1074 1075 /* 1076 * Platform Facilities Option (PFO) support 1077 */ 1078 1079 /** 1080 * vio_h_cop_sync - Perform a synchronous PFO co-processor operation 1081 * 1082 * @vdev - Pointer to a struct vio_dev for device 1083 * @op - Pointer to a struct vio_pfo_op for the operation parameters 1084 * 1085 * Calls the hypervisor to synchronously perform the PFO operation 1086 * described in @op. In the case of a busy response from the hypervisor, 1087 * the operation will be re-submitted indefinitely unless a non-zero timeout 1088 * is specified or an error occurs. The timeout places a limit on when to 1089 * stop re-submitting a operation, the total time can be exceeded if an 1090 * operation is in progress. 1091 * 1092 * If op->hcall_ret is not NULL, this will be set to the return from the 1093 * last h_cop_op call or it will be 0 if an error not involving the h_call 1094 * was encountered. 1095 * 1096 * Returns: 1097 * 0 on success, 1098 * -EINVAL if the h_call fails due to an invalid parameter, 1099 * -E2BIG if the h_call can not be performed synchronously, 1100 * -EBUSY if a timeout is specified and has elapsed, 1101 * -EACCES if the memory area for data/status has been rescinded, or 1102 * -EPERM if a hardware fault has been indicated 1103 */ 1104 int vio_h_cop_sync(struct vio_dev *vdev, struct vio_pfo_op *op) 1105 { 1106 struct device *dev = &vdev->dev; 1107 unsigned long deadline = 0; 1108 long hret = 0; 1109 int ret = 0; 1110 1111 if (op->timeout) 1112 deadline = jiffies + msecs_to_jiffies(op->timeout); 1113 1114 while (true) { 1115 hret = plpar_hcall_norets(H_COP, op->flags, 1116 vdev->resource_id, 1117 op->in, op->inlen, op->out, 1118 op->outlen, op->csbcpb); 1119 1120 if (hret == H_SUCCESS || 1121 (hret != H_NOT_ENOUGH_RESOURCES && 1122 hret != H_BUSY && hret != H_RESOURCE) || 1123 (op->timeout && time_after(deadline, jiffies))) 1124 break; 1125 1126 dev_dbg(dev, "%s: hcall ret(%ld), retrying.\n", __func__, hret); 1127 } 1128 1129 switch (hret) { 1130 case H_SUCCESS: 1131 ret = 0; 1132 break; 1133 case H_OP_MODE: 1134 case H_TOO_BIG: 1135 ret = -E2BIG; 1136 break; 1137 case H_RESCINDED: 1138 ret = -EACCES; 1139 break; 1140 case H_HARDWARE: 1141 ret = -EPERM; 1142 break; 1143 case H_NOT_ENOUGH_RESOURCES: 1144 case H_RESOURCE: 1145 case H_BUSY: 1146 ret = -EBUSY; 1147 break; 1148 default: 1149 ret = -EINVAL; 1150 break; 1151 } 1152 1153 if (ret) 1154 dev_dbg(dev, "%s: Sync h_cop_op failure (ret:%d) (hret:%ld)\n", 1155 __func__, ret, hret); 1156 1157 op->hcall_err = hret; 1158 return ret; 1159 } 1160 EXPORT_SYMBOL(vio_h_cop_sync); 1161 1162 static struct iommu_table *vio_build_iommu_table(struct vio_dev *dev) 1163 { 1164 const __be32 *dma_window; 1165 struct iommu_table *tbl; 1166 unsigned long offset, size; 1167 1168 dma_window = of_get_property(dev->dev.of_node, 1169 "ibm,my-dma-window", NULL); 1170 if (!dma_window) 1171 return NULL; 1172 1173 tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); 1174 if (tbl == NULL) 1175 return NULL; 1176 1177 of_parse_dma_window(dev->dev.of_node, dma_window, 1178 &tbl->it_index, &offset, &size); 1179 1180 /* TCE table size - measured in tce entries */ 1181 tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K; 1182 tbl->it_size = size >> tbl->it_page_shift; 1183 /* offset for VIO should always be 0 */ 1184 tbl->it_offset = offset >> tbl->it_page_shift; 1185 tbl->it_busno = 0; 1186 tbl->it_type = TCE_VB; 1187 tbl->it_blocksize = 16; 1188 1189 if (firmware_has_feature(FW_FEATURE_LPAR)) 1190 tbl->it_ops = &iommu_table_lpar_multi_ops; 1191 else 1192 tbl->it_ops = &iommu_table_pseries_ops; 1193 1194 return iommu_init_table(tbl, -1); 1195 } 1196 1197 /** 1198 * vio_match_device: - Tell if a VIO device has a matching 1199 * VIO device id structure. 1200 * @ids: array of VIO device id structures to search in 1201 * @dev: the VIO device structure to match against 1202 * 1203 * Used by a driver to check whether a VIO device present in the 1204 * system is in its list of supported devices. Returns the matching 1205 * vio_device_id structure or NULL if there is no match. 1206 */ 1207 static const struct vio_device_id *vio_match_device( 1208 const struct vio_device_id *ids, const struct vio_dev *dev) 1209 { 1210 while (ids->type[0] != '\0') { 1211 if ((strncmp(dev->type, ids->type, strlen(ids->type)) == 0) && 1212 of_device_is_compatible(dev->dev.of_node, 1213 ids->compat)) 1214 return ids; 1215 ids++; 1216 } 1217 return NULL; 1218 } 1219 1220 /* 1221 * Convert from struct device to struct vio_dev and pass to driver. 1222 * dev->driver has already been set by generic code because vio_bus_match 1223 * succeeded. 1224 */ 1225 static int vio_bus_probe(struct device *dev) 1226 { 1227 struct vio_dev *viodev = to_vio_dev(dev); 1228 struct vio_driver *viodrv = to_vio_driver(dev->driver); 1229 const struct vio_device_id *id; 1230 int error = -ENODEV; 1231 1232 if (!viodrv->probe) 1233 return error; 1234 1235 id = vio_match_device(viodrv->id_table, viodev); 1236 if (id) { 1237 memset(&viodev->cmo, 0, sizeof(viodev->cmo)); 1238 if (firmware_has_feature(FW_FEATURE_CMO)) { 1239 error = vio_cmo_bus_probe(viodev); 1240 if (error) 1241 return error; 1242 } 1243 error = viodrv->probe(viodev, id); 1244 if (error && firmware_has_feature(FW_FEATURE_CMO)) 1245 vio_cmo_bus_remove(viodev); 1246 } 1247 1248 return error; 1249 } 1250 1251 /* convert from struct device to struct vio_dev and pass to driver. */ 1252 static int vio_bus_remove(struct device *dev) 1253 { 1254 struct vio_dev *viodev = to_vio_dev(dev); 1255 struct vio_driver *viodrv = to_vio_driver(dev->driver); 1256 struct device *devptr; 1257 int ret = 1; 1258 1259 /* 1260 * Hold a reference to the device after the remove function is called 1261 * to allow for CMO accounting cleanup for the device. 1262 */ 1263 devptr = get_device(dev); 1264 1265 if (viodrv->remove) 1266 ret = viodrv->remove(viodev); 1267 1268 if (!ret && firmware_has_feature(FW_FEATURE_CMO)) 1269 vio_cmo_bus_remove(viodev); 1270 1271 put_device(devptr); 1272 return ret; 1273 } 1274 1275 /** 1276 * vio_register_driver: - Register a new vio driver 1277 * @viodrv: The vio_driver structure to be registered. 1278 */ 1279 int __vio_register_driver(struct vio_driver *viodrv, struct module *owner, 1280 const char *mod_name) 1281 { 1282 pr_debug("%s: driver %s registering\n", __func__, viodrv->name); 1283 1284 /* fill in 'struct driver' fields */ 1285 viodrv->driver.name = viodrv->name; 1286 viodrv->driver.pm = viodrv->pm; 1287 viodrv->driver.bus = &vio_bus_type; 1288 viodrv->driver.owner = owner; 1289 viodrv->driver.mod_name = mod_name; 1290 1291 return driver_register(&viodrv->driver); 1292 } 1293 EXPORT_SYMBOL(__vio_register_driver); 1294 1295 /** 1296 * vio_unregister_driver - Remove registration of vio driver. 1297 * @viodrv: The vio_driver struct to be removed form registration 1298 */ 1299 void vio_unregister_driver(struct vio_driver *viodrv) 1300 { 1301 driver_unregister(&viodrv->driver); 1302 } 1303 EXPORT_SYMBOL(vio_unregister_driver); 1304 1305 /* vio_dev refcount hit 0 */ 1306 static void vio_dev_release(struct device *dev) 1307 { 1308 struct iommu_table *tbl = get_iommu_table_base(dev); 1309 1310 if (tbl) 1311 iommu_tce_table_put(tbl); 1312 of_node_put(dev->of_node); 1313 kfree(to_vio_dev(dev)); 1314 } 1315 1316 /** 1317 * vio_register_device_node: - Register a new vio device. 1318 * @of_node: The OF node for this device. 1319 * 1320 * Creates and initializes a vio_dev structure from the data in 1321 * of_node and adds it to the list of virtual devices. 1322 * Returns a pointer to the created vio_dev or NULL if node has 1323 * NULL device_type or compatible fields. 1324 */ 1325 struct vio_dev *vio_register_device_node(struct device_node *of_node) 1326 { 1327 struct vio_dev *viodev; 1328 struct device_node *parent_node; 1329 const __be32 *prop; 1330 enum vio_dev_family family; 1331 1332 /* 1333 * Determine if this node is a under the /vdevice node or under the 1334 * /ibm,platform-facilities node. This decides the device's family. 1335 */ 1336 parent_node = of_get_parent(of_node); 1337 if (parent_node) { 1338 if (of_node_is_type(parent_node, "ibm,platform-facilities")) 1339 family = PFO; 1340 else if (of_node_is_type(parent_node, "vdevice")) 1341 family = VDEVICE; 1342 else { 1343 pr_warn("%s: parent(%pOF) of %pOFn not recognized.\n", 1344 __func__, 1345 parent_node, 1346 of_node); 1347 of_node_put(parent_node); 1348 return NULL; 1349 } 1350 of_node_put(parent_node); 1351 } else { 1352 pr_warn("%s: could not determine the parent of node %pOFn.\n", 1353 __func__, of_node); 1354 return NULL; 1355 } 1356 1357 if (family == PFO) { 1358 if (of_get_property(of_node, "interrupt-controller", NULL)) { 1359 pr_debug("%s: Skipping the interrupt controller %pOFn.\n", 1360 __func__, of_node); 1361 return NULL; 1362 } 1363 } 1364 1365 /* allocate a vio_dev for this node */ 1366 viodev = kzalloc(sizeof(struct vio_dev), GFP_KERNEL); 1367 if (viodev == NULL) { 1368 pr_warn("%s: allocation failure for VIO device.\n", __func__); 1369 return NULL; 1370 } 1371 1372 /* we need the 'device_type' property, in order to match with drivers */ 1373 viodev->family = family; 1374 if (viodev->family == VDEVICE) { 1375 unsigned int unit_address; 1376 1377 viodev->type = of_node_get_device_type(of_node); 1378 if (!viodev->type) { 1379 pr_warn("%s: node %pOFn is missing the 'device_type' " 1380 "property.\n", __func__, of_node); 1381 goto out; 1382 } 1383 1384 prop = of_get_property(of_node, "reg", NULL); 1385 if (prop == NULL) { 1386 pr_warn("%s: node %pOFn missing 'reg'\n", 1387 __func__, of_node); 1388 goto out; 1389 } 1390 unit_address = of_read_number(prop, 1); 1391 dev_set_name(&viodev->dev, "%x", unit_address); 1392 viodev->irq = irq_of_parse_and_map(of_node, 0); 1393 viodev->unit_address = unit_address; 1394 } else { 1395 /* PFO devices need their resource_id for submitting COP_OPs 1396 * This is an optional field for devices, but is required when 1397 * performing synchronous ops */ 1398 prop = of_get_property(of_node, "ibm,resource-id", NULL); 1399 if (prop != NULL) 1400 viodev->resource_id = of_read_number(prop, 1); 1401 1402 dev_set_name(&viodev->dev, "%pOFn", of_node); 1403 viodev->type = dev_name(&viodev->dev); 1404 viodev->irq = 0; 1405 } 1406 1407 viodev->name = of_node->name; 1408 viodev->dev.of_node = of_node_get(of_node); 1409 1410 set_dev_node(&viodev->dev, of_node_to_nid(of_node)); 1411 1412 /* init generic 'struct device' fields: */ 1413 viodev->dev.parent = &vio_bus_device.dev; 1414 viodev->dev.bus = &vio_bus_type; 1415 viodev->dev.release = vio_dev_release; 1416 1417 if (of_get_property(viodev->dev.of_node, "ibm,my-dma-window", NULL)) { 1418 if (firmware_has_feature(FW_FEATURE_CMO)) 1419 vio_cmo_set_dma_ops(viodev); 1420 else 1421 set_dma_ops(&viodev->dev, &dma_iommu_ops); 1422 1423 set_iommu_table_base(&viodev->dev, 1424 vio_build_iommu_table(viodev)); 1425 1426 /* needed to ensure proper operation of coherent allocations 1427 * later, in case driver doesn't set it explicitly */ 1428 viodev->dev.coherent_dma_mask = DMA_BIT_MASK(64); 1429 viodev->dev.dma_mask = &viodev->dev.coherent_dma_mask; 1430 } 1431 1432 /* register with generic device framework */ 1433 if (device_register(&viodev->dev)) { 1434 printk(KERN_ERR "%s: failed to register device %s\n", 1435 __func__, dev_name(&viodev->dev)); 1436 put_device(&viodev->dev); 1437 return NULL; 1438 } 1439 1440 return viodev; 1441 1442 out: /* Use this exit point for any return prior to device_register */ 1443 kfree(viodev); 1444 1445 return NULL; 1446 } 1447 EXPORT_SYMBOL(vio_register_device_node); 1448 1449 /* 1450 * vio_bus_scan_for_devices - Scan OF and register each child device 1451 * @root_name - OF node name for the root of the subtree to search. 1452 * This must be non-NULL 1453 * 1454 * Starting from the root node provide, register the device node for 1455 * each child beneath the root. 1456 */ 1457 static void vio_bus_scan_register_devices(char *root_name) 1458 { 1459 struct device_node *node_root, *node_child; 1460 1461 if (!root_name) 1462 return; 1463 1464 node_root = of_find_node_by_name(NULL, root_name); 1465 if (node_root) { 1466 1467 /* 1468 * Create struct vio_devices for each virtual device in 1469 * the device tree. Drivers will associate with them later. 1470 */ 1471 node_child = of_get_next_child(node_root, NULL); 1472 while (node_child) { 1473 vio_register_device_node(node_child); 1474 node_child = of_get_next_child(node_root, node_child); 1475 } 1476 of_node_put(node_root); 1477 } 1478 } 1479 1480 /** 1481 * vio_bus_init: - Initialize the virtual IO bus 1482 */ 1483 static int __init vio_bus_init(void) 1484 { 1485 int err; 1486 1487 if (firmware_has_feature(FW_FEATURE_CMO)) 1488 vio_cmo_sysfs_init(); 1489 1490 err = bus_register(&vio_bus_type); 1491 if (err) { 1492 printk(KERN_ERR "failed to register VIO bus\n"); 1493 return err; 1494 } 1495 1496 /* 1497 * The fake parent of all vio devices, just to give us 1498 * a nice directory 1499 */ 1500 err = device_register(&vio_bus_device.dev); 1501 if (err) { 1502 printk(KERN_WARNING "%s: device_register returned %i\n", 1503 __func__, err); 1504 return err; 1505 } 1506 1507 if (firmware_has_feature(FW_FEATURE_CMO)) 1508 vio_cmo_bus_init(); 1509 1510 return 0; 1511 } 1512 postcore_initcall(vio_bus_init); 1513 1514 static int __init vio_device_init(void) 1515 { 1516 vio_bus_scan_register_devices("vdevice"); 1517 vio_bus_scan_register_devices("ibm,platform-facilities"); 1518 1519 return 0; 1520 } 1521 device_initcall(vio_device_init); 1522 1523 static ssize_t name_show(struct device *dev, 1524 struct device_attribute *attr, char *buf) 1525 { 1526 return sprintf(buf, "%s\n", to_vio_dev(dev)->name); 1527 } 1528 static DEVICE_ATTR_RO(name); 1529 1530 static ssize_t devspec_show(struct device *dev, 1531 struct device_attribute *attr, char *buf) 1532 { 1533 struct device_node *of_node = dev->of_node; 1534 1535 return sprintf(buf, "%pOF\n", of_node); 1536 } 1537 static DEVICE_ATTR_RO(devspec); 1538 1539 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 1540 char *buf) 1541 { 1542 const struct vio_dev *vio_dev = to_vio_dev(dev); 1543 struct device_node *dn; 1544 const char *cp; 1545 1546 dn = dev->of_node; 1547 if (!dn) { 1548 strcpy(buf, "\n"); 1549 return strlen(buf); 1550 } 1551 cp = of_get_property(dn, "compatible", NULL); 1552 if (!cp) { 1553 strcpy(buf, "\n"); 1554 return strlen(buf); 1555 } 1556 1557 return sprintf(buf, "vio:T%sS%s\n", vio_dev->type, cp); 1558 } 1559 static DEVICE_ATTR_RO(modalias); 1560 1561 static struct attribute *vio_dev_attrs[] = { 1562 &dev_attr_name.attr, 1563 &dev_attr_devspec.attr, 1564 &dev_attr_modalias.attr, 1565 NULL, 1566 }; 1567 ATTRIBUTE_GROUPS(vio_dev); 1568 1569 void vio_unregister_device(struct vio_dev *viodev) 1570 { 1571 device_unregister(&viodev->dev); 1572 if (viodev->family == VDEVICE) 1573 irq_dispose_mapping(viodev->irq); 1574 } 1575 EXPORT_SYMBOL(vio_unregister_device); 1576 1577 static int vio_bus_match(struct device *dev, struct device_driver *drv) 1578 { 1579 const struct vio_dev *vio_dev = to_vio_dev(dev); 1580 struct vio_driver *vio_drv = to_vio_driver(drv); 1581 const struct vio_device_id *ids = vio_drv->id_table; 1582 1583 return (ids != NULL) && (vio_match_device(ids, vio_dev) != NULL); 1584 } 1585 1586 static int vio_hotplug(struct device *dev, struct kobj_uevent_env *env) 1587 { 1588 const struct vio_dev *vio_dev = to_vio_dev(dev); 1589 struct device_node *dn; 1590 const char *cp; 1591 1592 dn = dev->of_node; 1593 if (!dn) 1594 return -ENODEV; 1595 cp = of_get_property(dn, "compatible", NULL); 1596 if (!cp) 1597 return -ENODEV; 1598 1599 add_uevent_var(env, "MODALIAS=vio:T%sS%s", vio_dev->type, cp); 1600 return 0; 1601 } 1602 1603 struct bus_type vio_bus_type = { 1604 .name = "vio", 1605 .dev_groups = vio_dev_groups, 1606 .uevent = vio_hotplug, 1607 .match = vio_bus_match, 1608 .probe = vio_bus_probe, 1609 .remove = vio_bus_remove, 1610 }; 1611 1612 /** 1613 * vio_get_attribute: - get attribute for virtual device 1614 * @vdev: The vio device to get property. 1615 * @which: The property/attribute to be extracted. 1616 * @length: Pointer to length of returned data size (unused if NULL). 1617 * 1618 * Calls prom.c's of_get_property() to return the value of the 1619 * attribute specified by @which 1620 */ 1621 const void *vio_get_attribute(struct vio_dev *vdev, char *which, int *length) 1622 { 1623 return of_get_property(vdev->dev.of_node, which, length); 1624 } 1625 EXPORT_SYMBOL(vio_get_attribute); 1626 1627 #ifdef CONFIG_PPC_PSERIES 1628 /* vio_find_name() - internal because only vio.c knows how we formatted the 1629 * kobject name 1630 */ 1631 static struct vio_dev *vio_find_name(const char *name) 1632 { 1633 struct device *found; 1634 1635 found = bus_find_device_by_name(&vio_bus_type, NULL, name); 1636 if (!found) 1637 return NULL; 1638 1639 return to_vio_dev(found); 1640 } 1641 1642 /** 1643 * vio_find_node - find an already-registered vio_dev 1644 * @vnode: device_node of the virtual device we're looking for 1645 * 1646 * Takes a reference to the embedded struct device which needs to be dropped 1647 * after use. 1648 */ 1649 struct vio_dev *vio_find_node(struct device_node *vnode) 1650 { 1651 char kobj_name[20]; 1652 struct device_node *vnode_parent; 1653 1654 vnode_parent = of_get_parent(vnode); 1655 if (!vnode_parent) 1656 return NULL; 1657 1658 /* construct the kobject name from the device node */ 1659 if (of_node_is_type(vnode_parent, "vdevice")) { 1660 const __be32 *prop; 1661 1662 prop = of_get_property(vnode, "reg", NULL); 1663 if (!prop) 1664 goto out; 1665 snprintf(kobj_name, sizeof(kobj_name), "%x", 1666 (uint32_t)of_read_number(prop, 1)); 1667 } else if (of_node_is_type(vnode_parent, "ibm,platform-facilities")) 1668 snprintf(kobj_name, sizeof(kobj_name), "%pOFn", vnode); 1669 else 1670 goto out; 1671 1672 of_node_put(vnode_parent); 1673 return vio_find_name(kobj_name); 1674 out: 1675 of_node_put(vnode_parent); 1676 return NULL; 1677 } 1678 EXPORT_SYMBOL(vio_find_node); 1679 1680 int vio_enable_interrupts(struct vio_dev *dev) 1681 { 1682 int rc = h_vio_signal(dev->unit_address, VIO_IRQ_ENABLE); 1683 if (rc != H_SUCCESS) 1684 printk(KERN_ERR "vio: Error 0x%x enabling interrupts\n", rc); 1685 return rc; 1686 } 1687 EXPORT_SYMBOL(vio_enable_interrupts); 1688 1689 int vio_disable_interrupts(struct vio_dev *dev) 1690 { 1691 int rc = h_vio_signal(dev->unit_address, VIO_IRQ_DISABLE); 1692 if (rc != H_SUCCESS) 1693 printk(KERN_ERR "vio: Error 0x%x disabling interrupts\n", rc); 1694 return rc; 1695 } 1696 EXPORT_SYMBOL(vio_disable_interrupts); 1697 #endif /* CONFIG_PPC_PSERIES */ 1698 1699 static int __init vio_init(void) 1700 { 1701 dma_debug_add_bus(&vio_bus_type); 1702 return 0; 1703 } 1704 fs_initcall(vio_init); 1705