1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 64-bit pSeries and RS/6000 setup code. 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Adapted from 'alpha' version by Gary Thomas 7 * Modified by Cort Dougan (cort@cs.nmt.edu) 8 * Modified by PPC64 Team, IBM Corp 9 */ 10 11 /* 12 * bootup setup stuff.. 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/errno.h> 17 #include <linux/sched.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/stddef.h> 21 #include <linux/unistd.h> 22 #include <linux/user.h> 23 #include <linux/tty.h> 24 #include <linux/major.h> 25 #include <linux/interrupt.h> 26 #include <linux/reboot.h> 27 #include <linux/init.h> 28 #include <linux/ioport.h> 29 #include <linux/console.h> 30 #include <linux/pci.h> 31 #include <linux/utsname.h> 32 #include <linux/adb.h> 33 #include <linux/export.h> 34 #include <linux/delay.h> 35 #include <linux/irq.h> 36 #include <linux/seq_file.h> 37 #include <linux/root_dev.h> 38 #include <linux/of.h> 39 #include <linux/of_pci.h> 40 #include <linux/memblock.h> 41 #include <linux/swiotlb.h> 42 43 #include <asm/mmu.h> 44 #include <asm/processor.h> 45 #include <asm/io.h> 46 #include <asm/prom.h> 47 #include <asm/rtas.h> 48 #include <asm/pci-bridge.h> 49 #include <asm/iommu.h> 50 #include <asm/dma.h> 51 #include <asm/machdep.h> 52 #include <asm/irq.h> 53 #include <asm/time.h> 54 #include <asm/nvram.h> 55 #include <asm/pmc.h> 56 #include <asm/xics.h> 57 #include <asm/xive.h> 58 #include <asm/ppc-pci.h> 59 #include <asm/i8259.h> 60 #include <asm/udbg.h> 61 #include <asm/smp.h> 62 #include <asm/firmware.h> 63 #include <asm/eeh.h> 64 #include <asm/reg.h> 65 #include <asm/plpar_wrappers.h> 66 #include <asm/kexec.h> 67 #include <asm/isa-bridge.h> 68 #include <asm/security_features.h> 69 #include <asm/asm-const.h> 70 #include <asm/idle.h> 71 #include <asm/swiotlb.h> 72 #include <asm/svm.h> 73 #include <asm/dtl.h> 74 #include <asm/hvconsole.h> 75 76 #include "pseries.h" 77 #include "../../../../drivers/pci/pci.h" 78 79 DEFINE_STATIC_KEY_FALSE(shared_processor); 80 EXPORT_SYMBOL_GPL(shared_processor); 81 82 int CMO_PrPSP = -1; 83 int CMO_SecPSP = -1; 84 unsigned long CMO_PageSize = (ASM_CONST(1) << IOMMU_PAGE_SHIFT_4K); 85 EXPORT_SYMBOL(CMO_PageSize); 86 87 int fwnmi_active; /* TRUE if an FWNMI handler is present */ 88 int ibm_nmi_interlock_token; 89 u32 pseries_security_flavor; 90 91 static void pSeries_show_cpuinfo(struct seq_file *m) 92 { 93 struct device_node *root; 94 const char *model = ""; 95 96 root = of_find_node_by_path("/"); 97 if (root) 98 model = of_get_property(root, "model", NULL); 99 seq_printf(m, "machine\t\t: CHRP %s\n", model); 100 of_node_put(root); 101 if (radix_enabled()) 102 seq_printf(m, "MMU\t\t: Radix\n"); 103 else 104 seq_printf(m, "MMU\t\t: Hash\n"); 105 } 106 107 /* Initialize firmware assisted non-maskable interrupts if 108 * the firmware supports this feature. 109 */ 110 static void __init fwnmi_init(void) 111 { 112 unsigned long system_reset_addr, machine_check_addr; 113 u8 *mce_data_buf; 114 unsigned int i; 115 int nr_cpus = num_possible_cpus(); 116 #ifdef CONFIG_PPC_BOOK3S_64 117 struct slb_entry *slb_ptr; 118 size_t size; 119 #endif 120 int ibm_nmi_register_token; 121 122 ibm_nmi_register_token = rtas_token("ibm,nmi-register"); 123 if (ibm_nmi_register_token == RTAS_UNKNOWN_SERVICE) 124 return; 125 126 ibm_nmi_interlock_token = rtas_token("ibm,nmi-interlock"); 127 if (WARN_ON(ibm_nmi_interlock_token == RTAS_UNKNOWN_SERVICE)) 128 return; 129 130 /* If the kernel's not linked at zero we point the firmware at low 131 * addresses anyway, and use a trampoline to get to the real code. */ 132 system_reset_addr = __pa(system_reset_fwnmi) - PHYSICAL_START; 133 machine_check_addr = __pa(machine_check_fwnmi) - PHYSICAL_START; 134 135 if (0 == rtas_call(ibm_nmi_register_token, 2, 1, NULL, 136 system_reset_addr, machine_check_addr)) 137 fwnmi_active = 1; 138 139 /* 140 * Allocate a chunk for per cpu buffer to hold rtas errorlog. 141 * It will be used in real mode mce handler, hence it needs to be 142 * below RMA. 143 */ 144 mce_data_buf = memblock_alloc_try_nid_raw(RTAS_ERROR_LOG_MAX * nr_cpus, 145 RTAS_ERROR_LOG_MAX, MEMBLOCK_LOW_LIMIT, 146 ppc64_rma_size, NUMA_NO_NODE); 147 if (!mce_data_buf) 148 panic("Failed to allocate %d bytes below %pa for MCE buffer\n", 149 RTAS_ERROR_LOG_MAX * nr_cpus, &ppc64_rma_size); 150 151 for_each_possible_cpu(i) { 152 paca_ptrs[i]->mce_data_buf = mce_data_buf + 153 (RTAS_ERROR_LOG_MAX * i); 154 } 155 156 #ifdef CONFIG_PPC_BOOK3S_64 157 if (!radix_enabled()) { 158 /* Allocate per cpu area to save old slb contents during MCE */ 159 size = sizeof(struct slb_entry) * mmu_slb_size * nr_cpus; 160 slb_ptr = memblock_alloc_try_nid_raw(size, 161 sizeof(struct slb_entry), MEMBLOCK_LOW_LIMIT, 162 ppc64_rma_size, NUMA_NO_NODE); 163 if (!slb_ptr) 164 panic("Failed to allocate %zu bytes below %pa for slb area\n", 165 size, &ppc64_rma_size); 166 167 for_each_possible_cpu(i) 168 paca_ptrs[i]->mce_faulty_slbs = slb_ptr + (mmu_slb_size * i); 169 } 170 #endif 171 } 172 173 static void pseries_8259_cascade(struct irq_desc *desc) 174 { 175 struct irq_chip *chip = irq_desc_get_chip(desc); 176 unsigned int cascade_irq = i8259_irq(); 177 178 if (cascade_irq) 179 generic_handle_irq(cascade_irq); 180 181 chip->irq_eoi(&desc->irq_data); 182 } 183 184 static void __init pseries_setup_i8259_cascade(void) 185 { 186 struct device_node *np, *old, *found = NULL; 187 unsigned int cascade; 188 const u32 *addrp; 189 unsigned long intack = 0; 190 int naddr; 191 192 for_each_node_by_type(np, "interrupt-controller") { 193 if (of_device_is_compatible(np, "chrp,iic")) { 194 found = np; 195 break; 196 } 197 } 198 199 if (found == NULL) { 200 printk(KERN_DEBUG "pic: no ISA interrupt controller\n"); 201 return; 202 } 203 204 cascade = irq_of_parse_and_map(found, 0); 205 if (!cascade) { 206 printk(KERN_ERR "pic: failed to map cascade interrupt"); 207 return; 208 } 209 pr_debug("pic: cascade mapped to irq %d\n", cascade); 210 211 for (old = of_node_get(found); old != NULL ; old = np) { 212 np = of_get_parent(old); 213 of_node_put(old); 214 if (np == NULL) 215 break; 216 if (!of_node_name_eq(np, "pci")) 217 continue; 218 addrp = of_get_property(np, "8259-interrupt-acknowledge", NULL); 219 if (addrp == NULL) 220 continue; 221 naddr = of_n_addr_cells(np); 222 intack = addrp[naddr-1]; 223 if (naddr > 1) 224 intack |= ((unsigned long)addrp[naddr-2]) << 32; 225 } 226 if (intack) 227 printk(KERN_DEBUG "pic: PCI 8259 intack at 0x%016lx\n", intack); 228 i8259_init(found, intack); 229 of_node_put(found); 230 irq_set_chained_handler(cascade, pseries_8259_cascade); 231 } 232 233 static void __init pseries_init_irq(void) 234 { 235 /* Try using a XIVE if available, otherwise use a XICS */ 236 if (!xive_spapr_init()) { 237 xics_init(); 238 pseries_setup_i8259_cascade(); 239 } 240 } 241 242 static void pseries_lpar_enable_pmcs(void) 243 { 244 unsigned long set, reset; 245 246 set = 1UL << 63; 247 reset = 0; 248 plpar_hcall_norets(H_PERFMON, set, reset); 249 } 250 251 static int pci_dn_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *data) 252 { 253 struct of_reconfig_data *rd = data; 254 struct device_node *parent, *np = rd->dn; 255 struct pci_dn *pdn; 256 int err = NOTIFY_OK; 257 258 switch (action) { 259 case OF_RECONFIG_ATTACH_NODE: 260 parent = of_get_parent(np); 261 pdn = parent ? PCI_DN(parent) : NULL; 262 if (pdn) 263 pci_add_device_node_info(pdn->phb, np); 264 265 of_node_put(parent); 266 break; 267 case OF_RECONFIG_DETACH_NODE: 268 pdn = PCI_DN(np); 269 if (pdn) 270 list_del(&pdn->list); 271 break; 272 default: 273 err = NOTIFY_DONE; 274 break; 275 } 276 return err; 277 } 278 279 static struct notifier_block pci_dn_reconfig_nb = { 280 .notifier_call = pci_dn_reconfig_notifier, 281 }; 282 283 struct kmem_cache *dtl_cache; 284 285 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 286 /* 287 * Allocate space for the dispatch trace log for all possible cpus 288 * and register the buffers with the hypervisor. This is used for 289 * computing time stolen by the hypervisor. 290 */ 291 static int alloc_dispatch_logs(void) 292 { 293 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 294 return 0; 295 296 if (!dtl_cache) 297 return 0; 298 299 alloc_dtl_buffers(0); 300 301 /* Register the DTL for the current (boot) cpu */ 302 register_dtl_buffer(smp_processor_id()); 303 304 return 0; 305 } 306 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 307 static inline int alloc_dispatch_logs(void) 308 { 309 return 0; 310 } 311 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 312 313 static int alloc_dispatch_log_kmem_cache(void) 314 { 315 void (*ctor)(void *) = get_dtl_cache_ctor(); 316 317 dtl_cache = kmem_cache_create("dtl", DISPATCH_LOG_BYTES, 318 DISPATCH_LOG_BYTES, 0, ctor); 319 if (!dtl_cache) { 320 pr_warn("Failed to create dispatch trace log buffer cache\n"); 321 pr_warn("Stolen time statistics will be unreliable\n"); 322 return 0; 323 } 324 325 return alloc_dispatch_logs(); 326 } 327 machine_early_initcall(pseries, alloc_dispatch_log_kmem_cache); 328 329 DEFINE_PER_CPU(u64, idle_spurr_cycles); 330 DEFINE_PER_CPU(u64, idle_entry_purr_snap); 331 DEFINE_PER_CPU(u64, idle_entry_spurr_snap); 332 static void pseries_lpar_idle(void) 333 { 334 /* 335 * Default handler to go into low thread priority and possibly 336 * low power mode by ceding processor to hypervisor 337 */ 338 339 if (!prep_irq_for_idle()) 340 return; 341 342 /* Indicate to hypervisor that we are idle. */ 343 pseries_idle_prolog(); 344 345 /* 346 * Yield the processor to the hypervisor. We return if 347 * an external interrupt occurs (which are driven prior 348 * to returning here) or if a prod occurs from another 349 * processor. When returning here, external interrupts 350 * are enabled. 351 */ 352 cede_processor(); 353 354 pseries_idle_epilog(); 355 } 356 357 /* 358 * Enable relocation on during exceptions. This has partition wide scope and 359 * may take a while to complete, if it takes longer than one second we will 360 * just give up rather than wasting any more time on this - if that turns out 361 * to ever be a problem in practice we can move this into a kernel thread to 362 * finish off the process later in boot. 363 */ 364 bool pseries_enable_reloc_on_exc(void) 365 { 366 long rc; 367 unsigned int delay, total_delay = 0; 368 369 while (1) { 370 rc = enable_reloc_on_exceptions(); 371 if (!H_IS_LONG_BUSY(rc)) { 372 if (rc == H_P2) { 373 pr_info("Relocation on exceptions not" 374 " supported\n"); 375 return false; 376 } else if (rc != H_SUCCESS) { 377 pr_warn("Unable to enable relocation" 378 " on exceptions: %ld\n", rc); 379 return false; 380 } 381 return true; 382 } 383 384 delay = get_longbusy_msecs(rc); 385 total_delay += delay; 386 if (total_delay > 1000) { 387 pr_warn("Warning: Giving up waiting to enable " 388 "relocation on exceptions (%u msec)!\n", 389 total_delay); 390 return false; 391 } 392 393 mdelay(delay); 394 } 395 } 396 EXPORT_SYMBOL(pseries_enable_reloc_on_exc); 397 398 void pseries_disable_reloc_on_exc(void) 399 { 400 long rc; 401 402 while (1) { 403 rc = disable_reloc_on_exceptions(); 404 if (!H_IS_LONG_BUSY(rc)) 405 break; 406 mdelay(get_longbusy_msecs(rc)); 407 } 408 if (rc != H_SUCCESS) 409 pr_warn("Warning: Failed to disable relocation on exceptions: %ld\n", 410 rc); 411 } 412 EXPORT_SYMBOL(pseries_disable_reloc_on_exc); 413 414 #ifdef CONFIG_KEXEC_CORE 415 static void pSeries_machine_kexec(struct kimage *image) 416 { 417 if (firmware_has_feature(FW_FEATURE_SET_MODE)) 418 pseries_disable_reloc_on_exc(); 419 420 default_machine_kexec(image); 421 } 422 #endif 423 424 #ifdef __LITTLE_ENDIAN__ 425 void pseries_big_endian_exceptions(void) 426 { 427 long rc; 428 429 while (1) { 430 rc = enable_big_endian_exceptions(); 431 if (!H_IS_LONG_BUSY(rc)) 432 break; 433 mdelay(get_longbusy_msecs(rc)); 434 } 435 436 /* 437 * At this point it is unlikely panic() will get anything 438 * out to the user, since this is called very late in kexec 439 * but at least this will stop us from continuing on further 440 * and creating an even more difficult to debug situation. 441 * 442 * There is a known problem when kdump'ing, if cpus are offline 443 * the above call will fail. Rather than panicking again, keep 444 * going and hope the kdump kernel is also little endian, which 445 * it usually is. 446 */ 447 if (rc && !kdump_in_progress()) 448 panic("Could not enable big endian exceptions"); 449 } 450 451 void pseries_little_endian_exceptions(void) 452 { 453 long rc; 454 455 while (1) { 456 rc = enable_little_endian_exceptions(); 457 if (!H_IS_LONG_BUSY(rc)) 458 break; 459 mdelay(get_longbusy_msecs(rc)); 460 } 461 if (rc) { 462 ppc_md.progress("H_SET_MODE LE exception fail", 0); 463 panic("Could not enable little endian exceptions"); 464 } 465 } 466 #endif 467 468 static void __init pSeries_discover_phbs(void) 469 { 470 struct device_node *node; 471 struct pci_controller *phb; 472 struct device_node *root = of_find_node_by_path("/"); 473 474 for_each_child_of_node(root, node) { 475 if (!of_node_is_type(node, "pci") && 476 !of_node_is_type(node, "pciex")) 477 continue; 478 479 phb = pcibios_alloc_controller(node); 480 if (!phb) 481 continue; 482 rtas_setup_phb(phb); 483 pci_process_bridge_OF_ranges(phb, node, 0); 484 isa_bridge_find_early(phb); 485 phb->controller_ops = pseries_pci_controller_ops; 486 487 /* create pci_dn's for DT nodes under this PHB */ 488 pci_devs_phb_init_dynamic(phb); 489 } 490 491 of_node_put(root); 492 493 /* 494 * PCI_PROBE_ONLY and PCI_REASSIGN_ALL_BUS can be set via properties 495 * in chosen. 496 */ 497 of_pci_check_probe_only(); 498 } 499 500 static void init_cpu_char_feature_flags(struct h_cpu_char_result *result) 501 { 502 /* 503 * The features below are disabled by default, so we instead look to see 504 * if firmware has *enabled* them, and set them if so. 505 */ 506 if (result->character & H_CPU_CHAR_SPEC_BAR_ORI31) 507 security_ftr_set(SEC_FTR_SPEC_BAR_ORI31); 508 509 if (result->character & H_CPU_CHAR_BCCTRL_SERIALISED) 510 security_ftr_set(SEC_FTR_BCCTRL_SERIALISED); 511 512 if (result->character & H_CPU_CHAR_L1D_FLUSH_ORI30) 513 security_ftr_set(SEC_FTR_L1D_FLUSH_ORI30); 514 515 if (result->character & H_CPU_CHAR_L1D_FLUSH_TRIG2) 516 security_ftr_set(SEC_FTR_L1D_FLUSH_TRIG2); 517 518 if (result->character & H_CPU_CHAR_L1D_THREAD_PRIV) 519 security_ftr_set(SEC_FTR_L1D_THREAD_PRIV); 520 521 if (result->character & H_CPU_CHAR_COUNT_CACHE_DISABLED) 522 security_ftr_set(SEC_FTR_COUNT_CACHE_DISABLED); 523 524 if (result->character & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) 525 security_ftr_set(SEC_FTR_BCCTR_FLUSH_ASSIST); 526 527 if (result->character & H_CPU_CHAR_BCCTR_LINK_FLUSH_ASSIST) 528 security_ftr_set(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST); 529 530 if (result->behaviour & H_CPU_BEHAV_FLUSH_COUNT_CACHE) 531 security_ftr_set(SEC_FTR_FLUSH_COUNT_CACHE); 532 533 if (result->behaviour & H_CPU_BEHAV_FLUSH_LINK_STACK) 534 security_ftr_set(SEC_FTR_FLUSH_LINK_STACK); 535 536 /* 537 * The features below are enabled by default, so we instead look to see 538 * if firmware has *disabled* them, and clear them if so. 539 * H_CPU_BEHAV_FAVOUR_SECURITY_H could be set only if 540 * H_CPU_BEHAV_FAVOUR_SECURITY is. 541 */ 542 if (!(result->behaviour & H_CPU_BEHAV_FAVOUR_SECURITY)) 543 security_ftr_clear(SEC_FTR_FAVOUR_SECURITY); 544 else if (result->behaviour & H_CPU_BEHAV_FAVOUR_SECURITY_H) 545 pseries_security_flavor = 1; 546 else 547 pseries_security_flavor = 2; 548 549 if (!(result->behaviour & H_CPU_BEHAV_L1D_FLUSH_PR)) 550 security_ftr_clear(SEC_FTR_L1D_FLUSH_PR); 551 552 if (!(result->behaviour & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR)) 553 security_ftr_clear(SEC_FTR_BNDS_CHK_SPEC_BAR); 554 } 555 556 void pseries_setup_security_mitigations(void) 557 { 558 struct h_cpu_char_result result; 559 enum l1d_flush_type types; 560 bool enable; 561 long rc; 562 563 /* 564 * Set features to the defaults assumed by init_cpu_char_feature_flags() 565 * so it can set/clear again any features that might have changed after 566 * migration, and in case the hypercall fails and it is not even called. 567 */ 568 powerpc_security_features = SEC_FTR_DEFAULT; 569 570 rc = plpar_get_cpu_characteristics(&result); 571 if (rc == H_SUCCESS) 572 init_cpu_char_feature_flags(&result); 573 574 /* 575 * We're the guest so this doesn't apply to us, clear it to simplify 576 * handling of it elsewhere. 577 */ 578 security_ftr_clear(SEC_FTR_L1D_FLUSH_HV); 579 580 types = L1D_FLUSH_FALLBACK; 581 582 if (security_ftr_enabled(SEC_FTR_L1D_FLUSH_TRIG2)) 583 types |= L1D_FLUSH_MTTRIG; 584 585 if (security_ftr_enabled(SEC_FTR_L1D_FLUSH_ORI30)) 586 types |= L1D_FLUSH_ORI; 587 588 enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) && \ 589 security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR); 590 591 setup_rfi_flush(types, enable); 592 setup_count_cache_flush(); 593 594 enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) && 595 security_ftr_enabled(SEC_FTR_L1D_FLUSH_ENTRY); 596 setup_entry_flush(enable); 597 598 enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) && 599 security_ftr_enabled(SEC_FTR_L1D_FLUSH_UACCESS); 600 setup_uaccess_flush(enable); 601 602 setup_stf_barrier(); 603 } 604 605 #ifdef CONFIG_PCI_IOV 606 enum rtas_iov_fw_value_map { 607 NUM_RES_PROPERTY = 0, /* Number of Resources */ 608 LOW_INT = 1, /* Lowest 32 bits of Address */ 609 START_OF_ENTRIES = 2, /* Always start of entry */ 610 APERTURE_PROPERTY = 2, /* Start of entry+ to Aperture Size */ 611 WDW_SIZE_PROPERTY = 4, /* Start of entry+ to Window Size */ 612 NEXT_ENTRY = 7 /* Go to next entry on array */ 613 }; 614 615 enum get_iov_fw_value_index { 616 BAR_ADDRS = 1, /* Get Bar Address */ 617 APERTURE_SIZE = 2, /* Get Aperture Size */ 618 WDW_SIZE = 3 /* Get Window Size */ 619 }; 620 621 static resource_size_t pseries_get_iov_fw_value(struct pci_dev *dev, int resno, 622 enum get_iov_fw_value_index value) 623 { 624 const int *indexes; 625 struct device_node *dn = pci_device_to_OF_node(dev); 626 int i, num_res, ret = 0; 627 628 indexes = of_get_property(dn, "ibm,open-sriov-vf-bar-info", NULL); 629 if (!indexes) 630 return 0; 631 632 /* 633 * First element in the array is the number of Bars 634 * returned. Search through the list to find the matching 635 * bar 636 */ 637 num_res = of_read_number(&indexes[NUM_RES_PROPERTY], 1); 638 if (resno >= num_res) 639 return 0; /* or an errror */ 640 641 i = START_OF_ENTRIES + NEXT_ENTRY * resno; 642 switch (value) { 643 case BAR_ADDRS: 644 ret = of_read_number(&indexes[i], 2); 645 break; 646 case APERTURE_SIZE: 647 ret = of_read_number(&indexes[i + APERTURE_PROPERTY], 2); 648 break; 649 case WDW_SIZE: 650 ret = of_read_number(&indexes[i + WDW_SIZE_PROPERTY], 2); 651 break; 652 } 653 654 return ret; 655 } 656 657 static void of_pci_set_vf_bar_size(struct pci_dev *dev, const int *indexes) 658 { 659 struct resource *res; 660 resource_size_t base, size; 661 int i, r, num_res; 662 663 num_res = of_read_number(&indexes[NUM_RES_PROPERTY], 1); 664 num_res = min_t(int, num_res, PCI_SRIOV_NUM_BARS); 665 for (i = START_OF_ENTRIES, r = 0; r < num_res && r < PCI_SRIOV_NUM_BARS; 666 i += NEXT_ENTRY, r++) { 667 res = &dev->resource[r + PCI_IOV_RESOURCES]; 668 base = of_read_number(&indexes[i], 2); 669 size = of_read_number(&indexes[i + APERTURE_PROPERTY], 2); 670 res->flags = pci_parse_of_flags(of_read_number 671 (&indexes[i + LOW_INT], 1), 0); 672 res->flags |= (IORESOURCE_MEM_64 | IORESOURCE_PCI_FIXED); 673 res->name = pci_name(dev); 674 res->start = base; 675 res->end = base + size - 1; 676 } 677 } 678 679 static void of_pci_parse_iov_addrs(struct pci_dev *dev, const int *indexes) 680 { 681 struct resource *res, *root, *conflict; 682 resource_size_t base, size; 683 int i, r, num_res; 684 685 /* 686 * First element in the array is the number of Bars 687 * returned. Search through the list to find the matching 688 * bars assign them from firmware into resources structure. 689 */ 690 num_res = of_read_number(&indexes[NUM_RES_PROPERTY], 1); 691 for (i = START_OF_ENTRIES, r = 0; r < num_res && r < PCI_SRIOV_NUM_BARS; 692 i += NEXT_ENTRY, r++) { 693 res = &dev->resource[r + PCI_IOV_RESOURCES]; 694 base = of_read_number(&indexes[i], 2); 695 size = of_read_number(&indexes[i + WDW_SIZE_PROPERTY], 2); 696 res->name = pci_name(dev); 697 res->start = base; 698 res->end = base + size - 1; 699 root = &iomem_resource; 700 dev_dbg(&dev->dev, 701 "pSeries IOV BAR %d: trying firmware assignment %pR\n", 702 r + PCI_IOV_RESOURCES, res); 703 conflict = request_resource_conflict(root, res); 704 if (conflict) { 705 dev_info(&dev->dev, 706 "BAR %d: %pR conflicts with %s %pR\n", 707 r + PCI_IOV_RESOURCES, res, 708 conflict->name, conflict); 709 res->flags |= IORESOURCE_UNSET; 710 } 711 } 712 } 713 714 static void pseries_disable_sriov_resources(struct pci_dev *pdev) 715 { 716 int i; 717 718 pci_warn(pdev, "No hypervisor support for SR-IOV on this device, IOV BARs disabled.\n"); 719 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 720 pdev->resource[i + PCI_IOV_RESOURCES].flags = 0; 721 } 722 723 static void pseries_pci_fixup_resources(struct pci_dev *pdev) 724 { 725 const int *indexes; 726 struct device_node *dn = pci_device_to_OF_node(pdev); 727 728 /*Firmware must support open sriov otherwise dont configure*/ 729 indexes = of_get_property(dn, "ibm,open-sriov-vf-bar-info", NULL); 730 if (indexes) 731 of_pci_set_vf_bar_size(pdev, indexes); 732 else 733 pseries_disable_sriov_resources(pdev); 734 } 735 736 static void pseries_pci_fixup_iov_resources(struct pci_dev *pdev) 737 { 738 const int *indexes; 739 struct device_node *dn = pci_device_to_OF_node(pdev); 740 741 if (!pdev->is_physfn || pci_dev_is_added(pdev)) 742 return; 743 /*Firmware must support open sriov otherwise dont configure*/ 744 indexes = of_get_property(dn, "ibm,open-sriov-vf-bar-info", NULL); 745 if (indexes) 746 of_pci_parse_iov_addrs(pdev, indexes); 747 else 748 pseries_disable_sriov_resources(pdev); 749 } 750 751 static resource_size_t pseries_pci_iov_resource_alignment(struct pci_dev *pdev, 752 int resno) 753 { 754 const __be32 *reg; 755 struct device_node *dn = pci_device_to_OF_node(pdev); 756 757 /*Firmware must support open sriov otherwise report regular alignment*/ 758 reg = of_get_property(dn, "ibm,is-open-sriov-pf", NULL); 759 if (!reg) 760 return pci_iov_resource_size(pdev, resno); 761 762 if (!pdev->is_physfn) 763 return 0; 764 return pseries_get_iov_fw_value(pdev, 765 resno - PCI_IOV_RESOURCES, 766 APERTURE_SIZE); 767 } 768 #endif 769 770 static void __init pSeries_setup_arch(void) 771 { 772 set_arch_panic_timeout(10, ARCH_PANIC_TIMEOUT); 773 774 /* Discover PIC type and setup ppc_md accordingly */ 775 smp_init_pseries(); 776 777 778 if (radix_enabled() && !mmu_has_feature(MMU_FTR_GTSE)) 779 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 780 panic("BUG: Radix support requires either GTSE or RPT_INVALIDATE\n"); 781 782 783 /* openpic global configuration register (64-bit format). */ 784 /* openpic Interrupt Source Unit pointer (64-bit format). */ 785 /* python0 facility area (mmio) (64-bit format) REAL address. */ 786 787 /* init to some ~sane value until calibrate_delay() runs */ 788 loops_per_jiffy = 50000000; 789 790 fwnmi_init(); 791 792 pseries_setup_security_mitigations(); 793 pseries_lpar_read_hblkrm_characteristics(); 794 795 /* By default, only probe PCI (can be overridden by rtas_pci) */ 796 pci_add_flags(PCI_PROBE_ONLY); 797 798 /* Find and initialize PCI host bridges */ 799 init_pci_config_tokens(); 800 of_reconfig_notifier_register(&pci_dn_reconfig_nb); 801 802 pSeries_nvram_init(); 803 804 if (firmware_has_feature(FW_FEATURE_LPAR)) { 805 vpa_init(boot_cpuid); 806 807 if (lppaca_shared_proc(get_lppaca())) { 808 static_branch_enable(&shared_processor); 809 pv_spinlocks_init(); 810 } 811 812 ppc_md.power_save = pseries_lpar_idle; 813 ppc_md.enable_pmcs = pseries_lpar_enable_pmcs; 814 #ifdef CONFIG_PCI_IOV 815 ppc_md.pcibios_fixup_resources = 816 pseries_pci_fixup_resources; 817 ppc_md.pcibios_fixup_sriov = 818 pseries_pci_fixup_iov_resources; 819 ppc_md.pcibios_iov_resource_alignment = 820 pseries_pci_iov_resource_alignment; 821 #endif 822 } else { 823 /* No special idle routine */ 824 ppc_md.enable_pmcs = power4_enable_pmcs; 825 } 826 827 ppc_md.pcibios_root_bridge_prepare = pseries_root_bridge_prepare; 828 829 if (swiotlb_force == SWIOTLB_FORCE) 830 ppc_swiotlb_enable = 1; 831 } 832 833 static void pseries_panic(char *str) 834 { 835 panic_flush_kmsg_end(); 836 rtas_os_term(str); 837 } 838 839 static int __init pSeries_init_panel(void) 840 { 841 /* Manually leave the kernel version on the panel. */ 842 #ifdef __BIG_ENDIAN__ 843 ppc_md.progress("Linux ppc64\n", 0); 844 #else 845 ppc_md.progress("Linux ppc64le\n", 0); 846 #endif 847 ppc_md.progress(init_utsname()->version, 0); 848 849 return 0; 850 } 851 machine_arch_initcall(pseries, pSeries_init_panel); 852 853 static int pseries_set_dabr(unsigned long dabr, unsigned long dabrx) 854 { 855 return plpar_hcall_norets(H_SET_DABR, dabr); 856 } 857 858 static int pseries_set_xdabr(unsigned long dabr, unsigned long dabrx) 859 { 860 /* Have to set at least one bit in the DABRX according to PAPR */ 861 if (dabrx == 0 && dabr == 0) 862 dabrx = DABRX_USER; 863 /* PAPR says we can only set kernel and user bits */ 864 dabrx &= DABRX_KERNEL | DABRX_USER; 865 866 return plpar_hcall_norets(H_SET_XDABR, dabr, dabrx); 867 } 868 869 static int pseries_set_dawr(int nr, unsigned long dawr, unsigned long dawrx) 870 { 871 /* PAPR says we can't set HYP */ 872 dawrx &= ~DAWRX_HYP; 873 874 if (nr == 0) 875 return plpar_set_watchpoint0(dawr, dawrx); 876 else 877 return plpar_set_watchpoint1(dawr, dawrx); 878 } 879 880 #define CMO_CHARACTERISTICS_TOKEN 44 881 #define CMO_MAXLENGTH 1026 882 883 void pSeries_coalesce_init(void) 884 { 885 struct hvcall_mpp_x_data mpp_x_data; 886 887 if (firmware_has_feature(FW_FEATURE_CMO) && !h_get_mpp_x(&mpp_x_data)) 888 powerpc_firmware_features |= FW_FEATURE_XCMO; 889 else 890 powerpc_firmware_features &= ~FW_FEATURE_XCMO; 891 } 892 893 /** 894 * fw_cmo_feature_init - FW_FEATURE_CMO is not stored in ibm,hypertas-functions, 895 * handle that here. (Stolen from parse_system_parameter_string) 896 */ 897 static void pSeries_cmo_feature_init(void) 898 { 899 char *ptr, *key, *value, *end; 900 int call_status; 901 int page_order = IOMMU_PAGE_SHIFT_4K; 902 903 pr_debug(" -> fw_cmo_feature_init()\n"); 904 spin_lock(&rtas_data_buf_lock); 905 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 906 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 907 NULL, 908 CMO_CHARACTERISTICS_TOKEN, 909 __pa(rtas_data_buf), 910 RTAS_DATA_BUF_SIZE); 911 912 if (call_status != 0) { 913 spin_unlock(&rtas_data_buf_lock); 914 pr_debug("CMO not available\n"); 915 pr_debug(" <- fw_cmo_feature_init()\n"); 916 return; 917 } 918 919 end = rtas_data_buf + CMO_MAXLENGTH - 2; 920 ptr = rtas_data_buf + 2; /* step over strlen value */ 921 key = value = ptr; 922 923 while (*ptr && (ptr <= end)) { 924 /* Separate the key and value by replacing '=' with '\0' and 925 * point the value at the string after the '=' 926 */ 927 if (ptr[0] == '=') { 928 ptr[0] = '\0'; 929 value = ptr + 1; 930 } else if (ptr[0] == '\0' || ptr[0] == ',') { 931 /* Terminate the string containing the key/value pair */ 932 ptr[0] = '\0'; 933 934 if (key == value) { 935 pr_debug("Malformed key/value pair\n"); 936 /* Never found a '=', end processing */ 937 break; 938 } 939 940 if (0 == strcmp(key, "CMOPageSize")) 941 page_order = simple_strtol(value, NULL, 10); 942 else if (0 == strcmp(key, "PrPSP")) 943 CMO_PrPSP = simple_strtol(value, NULL, 10); 944 else if (0 == strcmp(key, "SecPSP")) 945 CMO_SecPSP = simple_strtol(value, NULL, 10); 946 value = key = ptr + 1; 947 } 948 ptr++; 949 } 950 951 /* Page size is returned as the power of 2 of the page size, 952 * convert to the page size in bytes before returning 953 */ 954 CMO_PageSize = 1 << page_order; 955 pr_debug("CMO_PageSize = %lu\n", CMO_PageSize); 956 957 if (CMO_PrPSP != -1 || CMO_SecPSP != -1) { 958 pr_info("CMO enabled\n"); 959 pr_debug("CMO enabled, PrPSP=%d, SecPSP=%d\n", CMO_PrPSP, 960 CMO_SecPSP); 961 powerpc_firmware_features |= FW_FEATURE_CMO; 962 pSeries_coalesce_init(); 963 } else 964 pr_debug("CMO not enabled, PrPSP=%d, SecPSP=%d\n", CMO_PrPSP, 965 CMO_SecPSP); 966 spin_unlock(&rtas_data_buf_lock); 967 pr_debug(" <- fw_cmo_feature_init()\n"); 968 } 969 970 /* 971 * Early initialization. Relocation is on but do not reference unbolted pages 972 */ 973 static void __init pseries_init(void) 974 { 975 pr_debug(" -> pseries_init()\n"); 976 977 #ifdef CONFIG_HVC_CONSOLE 978 if (firmware_has_feature(FW_FEATURE_LPAR)) 979 hvc_vio_init_early(); 980 #endif 981 if (firmware_has_feature(FW_FEATURE_XDABR)) 982 ppc_md.set_dabr = pseries_set_xdabr; 983 else if (firmware_has_feature(FW_FEATURE_DABR)) 984 ppc_md.set_dabr = pseries_set_dabr; 985 986 if (firmware_has_feature(FW_FEATURE_SET_MODE)) 987 ppc_md.set_dawr = pseries_set_dawr; 988 989 pSeries_cmo_feature_init(); 990 iommu_init_early_pSeries(); 991 992 pr_debug(" <- pseries_init()\n"); 993 } 994 995 /** 996 * pseries_power_off - tell firmware about how to power off the system. 997 * 998 * This function calls either the power-off rtas token in normal cases 999 * or the ibm,power-off-ups token (if present & requested) in case of 1000 * a power failure. If power-off token is used, power on will only be 1001 * possible with power button press. If ibm,power-off-ups token is used 1002 * it will allow auto poweron after power is restored. 1003 */ 1004 static void pseries_power_off(void) 1005 { 1006 int rc; 1007 int rtas_poweroff_ups_token = rtas_token("ibm,power-off-ups"); 1008 1009 if (rtas_flash_term_hook) 1010 rtas_flash_term_hook(SYS_POWER_OFF); 1011 1012 if (rtas_poweron_auto == 0 || 1013 rtas_poweroff_ups_token == RTAS_UNKNOWN_SERVICE) { 1014 rc = rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1); 1015 printk(KERN_INFO "RTAS power-off returned %d\n", rc); 1016 } else { 1017 rc = rtas_call(rtas_poweroff_ups_token, 0, 1, NULL); 1018 printk(KERN_INFO "RTAS ibm,power-off-ups returned %d\n", rc); 1019 } 1020 for (;;); 1021 } 1022 1023 static int __init pSeries_probe(void) 1024 { 1025 if (!of_node_is_type(of_root, "chrp")) 1026 return 0; 1027 1028 /* Cell blades firmware claims to be chrp while it's not. Until this 1029 * is fixed, we need to avoid those here. 1030 */ 1031 if (of_machine_is_compatible("IBM,CPBW-1.0") || 1032 of_machine_is_compatible("IBM,CBEA")) 1033 return 0; 1034 1035 pm_power_off = pseries_power_off; 1036 1037 pr_debug("Machine is%s LPAR !\n", 1038 (powerpc_firmware_features & FW_FEATURE_LPAR) ? "" : " not"); 1039 1040 pseries_init(); 1041 1042 return 1; 1043 } 1044 1045 static int pSeries_pci_probe_mode(struct pci_bus *bus) 1046 { 1047 if (firmware_has_feature(FW_FEATURE_LPAR)) 1048 return PCI_PROBE_DEVTREE; 1049 return PCI_PROBE_NORMAL; 1050 } 1051 1052 struct pci_controller_ops pseries_pci_controller_ops = { 1053 .probe_mode = pSeries_pci_probe_mode, 1054 }; 1055 1056 define_machine(pseries) { 1057 .name = "pSeries", 1058 .probe = pSeries_probe, 1059 .setup_arch = pSeries_setup_arch, 1060 .init_IRQ = pseries_init_irq, 1061 .show_cpuinfo = pSeries_show_cpuinfo, 1062 .log_error = pSeries_log_error, 1063 .discover_phbs = pSeries_discover_phbs, 1064 .pcibios_fixup = pSeries_final_fixup, 1065 .restart = rtas_restart, 1066 .halt = rtas_halt, 1067 .panic = pseries_panic, 1068 .get_boot_time = rtas_get_boot_time, 1069 .get_rtc_time = rtas_get_rtc_time, 1070 .set_rtc_time = rtas_set_rtc_time, 1071 .calibrate_decr = generic_calibrate_decr, 1072 .progress = rtas_progress, 1073 .system_reset_exception = pSeries_system_reset_exception, 1074 .machine_check_early = pseries_machine_check_realmode, 1075 .machine_check_exception = pSeries_machine_check_exception, 1076 #ifdef CONFIG_KEXEC_CORE 1077 .machine_kexec = pSeries_machine_kexec, 1078 .kexec_cpu_down = pseries_kexec_cpu_down, 1079 #endif 1080 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 1081 .memory_block_size = pseries_memory_block_size, 1082 #endif 1083 }; 1084