xref: /openbmc/linux/arch/powerpc/platforms/pseries/ras.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/of.h>
10 #include <linux/fs.h>
11 #include <linux/reboot.h>
12 #include <linux/irq_work.h>
13 
14 #include <asm/machdep.h>
15 #include <asm/rtas.h>
16 #include <asm/firmware.h>
17 #include <asm/mce.h>
18 
19 #include "pseries.h"
20 
21 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
22 static DEFINE_SPINLOCK(ras_log_buf_lock);
23 
24 static int ras_check_exception_token;
25 
26 static void mce_process_errlog_event(struct irq_work *work);
27 static struct irq_work mce_errlog_process_work = {
28 	.func = mce_process_errlog_event,
29 };
30 
31 #define EPOW_SENSOR_TOKEN	9
32 #define EPOW_SENSOR_INDEX	0
33 
34 /* EPOW events counter variable */
35 static int num_epow_events;
36 
37 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
38 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
39 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
40 
41 /* RTAS pseries MCE errorlog section. */
42 struct pseries_mc_errorlog {
43 	__be32	fru_id;
44 	__be32	proc_id;
45 	u8	error_type;
46 	/*
47 	 * sub_err_type (1 byte). Bit fields depends on error_type
48 	 *
49 	 *   MSB0
50 	 *   |
51 	 *   V
52 	 *   01234567
53 	 *   XXXXXXXX
54 	 *
55 	 * For error_type == MC_ERROR_TYPE_UE
56 	 *   XXXXXXXX
57 	 *   X		1: Permanent or Transient UE.
58 	 *    X		1: Effective address provided.
59 	 *     X	1: Logical address provided.
60 	 *      XX	2: Reserved.
61 	 *        XXX	3: Type of UE error.
62 	 *
63 	 * For error_type != MC_ERROR_TYPE_UE
64 	 *   XXXXXXXX
65 	 *   X		1: Effective address provided.
66 	 *    XXXXX	5: Reserved.
67 	 *         XX	2: Type of SLB/ERAT/TLB error.
68 	 */
69 	u8	sub_err_type;
70 	u8	reserved_1[6];
71 	__be64	effective_address;
72 	__be64	logical_address;
73 } __packed;
74 
75 /* RTAS pseries MCE error types */
76 #define MC_ERROR_TYPE_UE		0x00
77 #define MC_ERROR_TYPE_SLB		0x01
78 #define MC_ERROR_TYPE_ERAT		0x02
79 #define MC_ERROR_TYPE_UNKNOWN		0x03
80 #define MC_ERROR_TYPE_TLB		0x04
81 #define MC_ERROR_TYPE_D_CACHE		0x05
82 #define MC_ERROR_TYPE_I_CACHE		0x07
83 
84 /* RTAS pseries MCE error sub types */
85 #define MC_ERROR_UE_INDETERMINATE		0
86 #define MC_ERROR_UE_IFETCH			1
87 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH	2
88 #define MC_ERROR_UE_LOAD_STORE			3
89 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE	4
90 
91 #define UE_EFFECTIVE_ADDR_PROVIDED		0x40
92 #define UE_LOGICAL_ADDR_PROVIDED		0x20
93 
94 #define MC_ERROR_SLB_PARITY		0
95 #define MC_ERROR_SLB_MULTIHIT		1
96 #define MC_ERROR_SLB_INDETERMINATE	2
97 
98 #define MC_ERROR_ERAT_PARITY		1
99 #define MC_ERROR_ERAT_MULTIHIT		2
100 #define MC_ERROR_ERAT_INDETERMINATE	3
101 
102 #define MC_ERROR_TLB_PARITY		1
103 #define MC_ERROR_TLB_MULTIHIT		2
104 #define MC_ERROR_TLB_INDETERMINATE	3
105 
106 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
107 {
108 	switch (mlog->error_type) {
109 	case	MC_ERROR_TYPE_UE:
110 		return (mlog->sub_err_type & 0x07);
111 	case	MC_ERROR_TYPE_SLB:
112 	case	MC_ERROR_TYPE_ERAT:
113 	case	MC_ERROR_TYPE_TLB:
114 		return (mlog->sub_err_type & 0x03);
115 	default:
116 		return 0;
117 	}
118 }
119 
120 /*
121  * Enable the hotplug interrupt late because processing them may touch other
122  * devices or systems (e.g. hugepages) that have not been initialized at the
123  * subsys stage.
124  */
125 static int __init init_ras_hotplug_IRQ(void)
126 {
127 	struct device_node *np;
128 
129 	/* Hotplug Events */
130 	np = of_find_node_by_path("/event-sources/hot-plug-events");
131 	if (np != NULL) {
132 		if (dlpar_workqueue_init() == 0)
133 			request_event_sources_irqs(np, ras_hotplug_interrupt,
134 						   "RAS_HOTPLUG");
135 		of_node_put(np);
136 	}
137 
138 	return 0;
139 }
140 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
141 
142 /*
143  * Initialize handlers for the set of interrupts caused by hardware errors
144  * and power system events.
145  */
146 static int __init init_ras_IRQ(void)
147 {
148 	struct device_node *np;
149 
150 	ras_check_exception_token = rtas_token("check-exception");
151 
152 	/* Internal Errors */
153 	np = of_find_node_by_path("/event-sources/internal-errors");
154 	if (np != NULL) {
155 		request_event_sources_irqs(np, ras_error_interrupt,
156 					   "RAS_ERROR");
157 		of_node_put(np);
158 	}
159 
160 	/* EPOW Events */
161 	np = of_find_node_by_path("/event-sources/epow-events");
162 	if (np != NULL) {
163 		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
164 		of_node_put(np);
165 	}
166 
167 	return 0;
168 }
169 machine_subsys_initcall(pseries, init_ras_IRQ);
170 
171 #define EPOW_SHUTDOWN_NORMAL				1
172 #define EPOW_SHUTDOWN_ON_UPS				2
173 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS	3
174 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH	4
175 
176 static void handle_system_shutdown(char event_modifier)
177 {
178 	switch (event_modifier) {
179 	case EPOW_SHUTDOWN_NORMAL:
180 		pr_emerg("Power off requested\n");
181 		orderly_poweroff(true);
182 		break;
183 
184 	case EPOW_SHUTDOWN_ON_UPS:
185 		pr_emerg("Loss of system power detected. System is running on"
186 			 " UPS/battery. Check RTAS error log for details\n");
187 		break;
188 
189 	case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
190 		pr_emerg("Loss of system critical functions detected. Check"
191 			 " RTAS error log for details\n");
192 		orderly_poweroff(true);
193 		break;
194 
195 	case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
196 		pr_emerg("High ambient temperature detected. Check RTAS"
197 			 " error log for details\n");
198 		orderly_poweroff(true);
199 		break;
200 
201 	default:
202 		pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
203 			event_modifier);
204 	}
205 }
206 
207 struct epow_errorlog {
208 	unsigned char sensor_value;
209 	unsigned char event_modifier;
210 	unsigned char extended_modifier;
211 	unsigned char reserved;
212 	unsigned char platform_reason;
213 };
214 
215 #define EPOW_RESET			0
216 #define EPOW_WARN_COOLING		1
217 #define EPOW_WARN_POWER			2
218 #define EPOW_SYSTEM_SHUTDOWN		3
219 #define EPOW_SYSTEM_HALT		4
220 #define EPOW_MAIN_ENCLOSURE		5
221 #define EPOW_POWER_OFF			7
222 
223 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
224 {
225 	struct pseries_errorlog *pseries_log;
226 	struct epow_errorlog *epow_log;
227 	char action_code;
228 	char modifier;
229 
230 	pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
231 	if (pseries_log == NULL)
232 		return;
233 
234 	epow_log = (struct epow_errorlog *)pseries_log->data;
235 	action_code = epow_log->sensor_value & 0xF;	/* bottom 4 bits */
236 	modifier = epow_log->event_modifier & 0xF;	/* bottom 4 bits */
237 
238 	switch (action_code) {
239 	case EPOW_RESET:
240 		if (num_epow_events) {
241 			pr_info("Non critical power/cooling issue cleared\n");
242 			num_epow_events--;
243 		}
244 		break;
245 
246 	case EPOW_WARN_COOLING:
247 		pr_info("Non-critical cooling issue detected. Check RTAS error"
248 			" log for details\n");
249 		break;
250 
251 	case EPOW_WARN_POWER:
252 		pr_info("Non-critical power issue detected. Check RTAS error"
253 			" log for details\n");
254 		break;
255 
256 	case EPOW_SYSTEM_SHUTDOWN:
257 		handle_system_shutdown(modifier);
258 		break;
259 
260 	case EPOW_SYSTEM_HALT:
261 		pr_emerg("Critical power/cooling issue detected. Check RTAS"
262 			 " error log for details. Powering off.\n");
263 		orderly_poweroff(true);
264 		break;
265 
266 	case EPOW_MAIN_ENCLOSURE:
267 	case EPOW_POWER_OFF:
268 		pr_emerg("System about to lose power. Check RTAS error log "
269 			 " for details. Powering off immediately.\n");
270 		emergency_sync();
271 		kernel_power_off();
272 		break;
273 
274 	default:
275 		pr_err("Unknown power/cooling event (action code  = %d)\n",
276 			action_code);
277 	}
278 
279 	/* Increment epow events counter variable */
280 	if (action_code != EPOW_RESET)
281 		num_epow_events++;
282 }
283 
284 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
285 {
286 	struct pseries_errorlog *pseries_log;
287 	struct pseries_hp_errorlog *hp_elog;
288 
289 	spin_lock(&ras_log_buf_lock);
290 
291 	rtas_call(ras_check_exception_token, 6, 1, NULL,
292 		  RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
293 		  RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
294 		  rtas_get_error_log_max());
295 
296 	pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
297 					   PSERIES_ELOG_SECT_ID_HOTPLUG);
298 	hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
299 
300 	/*
301 	 * Since PCI hotplug is not currently supported on pseries, put PCI
302 	 * hotplug events on the ras_log_buf to be handled by rtas_errd.
303 	 */
304 	if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
305 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
306 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
307 		queue_hotplug_event(hp_elog);
308 	else
309 		log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
310 
311 	spin_unlock(&ras_log_buf_lock);
312 	return IRQ_HANDLED;
313 }
314 
315 /* Handle environmental and power warning (EPOW) interrupts. */
316 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
317 {
318 	int state;
319 	int critical;
320 
321 	rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
322 
323 	if (state > 3)
324 		critical = 1;		/* Time Critical */
325 	else
326 		critical = 0;
327 
328 	spin_lock(&ras_log_buf_lock);
329 
330 	rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT,
331 		  virq_to_hw(irq), RTAS_EPOW_WARNING, critical, __pa(&ras_log_buf),
332 		  rtas_get_error_log_max());
333 
334 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
335 
336 	rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
337 
338 	spin_unlock(&ras_log_buf_lock);
339 	return IRQ_HANDLED;
340 }
341 
342 /*
343  * Handle hardware error interrupts.
344  *
345  * RTAS check-exception is called to collect data on the exception.  If
346  * the error is deemed recoverable, we log a warning and return.
347  * For nonrecoverable errors, an error is logged and we stop all processing
348  * as quickly as possible in order to prevent propagation of the failure.
349  */
350 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
351 {
352 	struct rtas_error_log *rtas_elog;
353 	int status;
354 	int fatal;
355 
356 	spin_lock(&ras_log_buf_lock);
357 
358 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
359 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
360 			   virq_to_hw(irq),
361 			   RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
362 			   __pa(&ras_log_buf),
363 				rtas_get_error_log_max());
364 
365 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
366 
367 	if (status == 0 &&
368 	    rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
369 		fatal = 1;
370 	else
371 		fatal = 0;
372 
373 	/* format and print the extended information */
374 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
375 
376 	if (fatal) {
377 		pr_emerg("Fatal hardware error detected. Check RTAS error"
378 			 " log for details. Powering off immediately\n");
379 		emergency_sync();
380 		kernel_power_off();
381 	} else {
382 		pr_err("Recoverable hardware error detected\n");
383 	}
384 
385 	spin_unlock(&ras_log_buf_lock);
386 	return IRQ_HANDLED;
387 }
388 
389 /*
390  * Some versions of FWNMI place the buffer inside the 4kB page starting at
391  * 0x7000. Other versions place it inside the rtas buffer. We check both.
392  * Minimum size of the buffer is 16 bytes.
393  */
394 #define VALID_FWNMI_BUFFER(A) \
395 	((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
396 	(((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
397 
398 static inline struct rtas_error_log *fwnmi_get_errlog(void)
399 {
400 	return (struct rtas_error_log *)local_paca->mce_data_buf;
401 }
402 
403 static __be64 *fwnmi_get_savep(struct pt_regs *regs)
404 {
405 	unsigned long savep_ra;
406 
407 	/* Mask top two bits */
408 	savep_ra = regs->gpr[3] & ~(0x3UL << 62);
409 	if (!VALID_FWNMI_BUFFER(savep_ra)) {
410 		printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
411 		return NULL;
412 	}
413 
414 	return __va(savep_ra);
415 }
416 
417 /*
418  * Get the error information for errors coming through the
419  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
420  * the actual r3 if possible, and a ptr to the error log entry
421  * will be returned if found.
422  *
423  * Use one buffer mce_data_buf per cpu to store RTAS error.
424  *
425  * The mce_data_buf does not have any locks or protection around it,
426  * if a second machine check comes in, or a system reset is done
427  * before we have logged the error, then we will get corruption in the
428  * error log.  This is preferable over holding off on calling
429  * ibm,nmi-interlock which would result in us checkstopping if a
430  * second machine check did come in.
431  */
432 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
433 {
434 	struct rtas_error_log *h;
435 	__be64 *savep;
436 
437 	savep = fwnmi_get_savep(regs);
438 	if (!savep)
439 		return NULL;
440 
441 	regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
442 
443 	h = (struct rtas_error_log *)&savep[1];
444 	/* Use the per cpu buffer from paca to store rtas error log */
445 	memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
446 	if (!rtas_error_extended(h)) {
447 		memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
448 	} else {
449 		int len, error_log_length;
450 
451 		error_log_length = 8 + rtas_error_extended_log_length(h);
452 		len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
453 		memcpy(local_paca->mce_data_buf, h, len);
454 	}
455 
456 	return (struct rtas_error_log *)local_paca->mce_data_buf;
457 }
458 
459 /* Call this when done with the data returned by FWNMI_get_errinfo.
460  * It will release the saved data area for other CPUs in the
461  * partition to receive FWNMI errors.
462  */
463 static void fwnmi_release_errinfo(void)
464 {
465 	struct rtas_args rtas_args;
466 	int ret;
467 
468 	/*
469 	 * On pseries, the machine check stack is limited to under 4GB, so
470 	 * args can be on-stack.
471 	 */
472 	rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
473 	ret = be32_to_cpu(rtas_args.rets[0]);
474 	if (ret != 0)
475 		printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
476 }
477 
478 int pSeries_system_reset_exception(struct pt_regs *regs)
479 {
480 #ifdef __LITTLE_ENDIAN__
481 	/*
482 	 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
483 	 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
484 	 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
485 	 * so clear it. It will be missing MSR_RI so we won't try to recover.
486 	 */
487 	if ((be64_to_cpu(regs->msr) &
488 			(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
489 			 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
490 		regs_set_return_ip(regs, be64_to_cpu((__be64)regs->nip));
491 		regs_set_return_msr(regs, 0);
492 	}
493 #endif
494 
495 	if (fwnmi_active) {
496 		__be64 *savep;
497 
498 		/*
499 		 * Firmware (PowerVM and KVM) saves r3 to a save area like
500 		 * machine check, which is not exactly what PAPR (2.9)
501 		 * suggests but there is no way to detect otherwise, so this
502 		 * is the interface now.
503 		 *
504 		 * System resets do not save any error log or require an
505 		 * "ibm,nmi-interlock" rtas call to release.
506 		 */
507 
508 		savep = fwnmi_get_savep(regs);
509 		if (savep)
510 			regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
511 	}
512 
513 	if (smp_handle_nmi_ipi(regs))
514 		return 1;
515 
516 	return 0; /* need to perform reset */
517 }
518 
519 static int mce_handle_err_realmode(int disposition, u8 error_type)
520 {
521 #ifdef CONFIG_PPC_BOOK3S_64
522 	if (disposition == RTAS_DISP_NOT_RECOVERED) {
523 		switch (error_type) {
524 		case	MC_ERROR_TYPE_ERAT:
525 			flush_erat();
526 			disposition = RTAS_DISP_FULLY_RECOVERED;
527 			break;
528 		case	MC_ERROR_TYPE_SLB:
529 			/*
530 			 * Store the old slb content in paca before flushing.
531 			 * Print this when we go to virtual mode.
532 			 * There are chances that we may hit MCE again if there
533 			 * is a parity error on the SLB entry we trying to read
534 			 * for saving. Hence limit the slb saving to single
535 			 * level of recursion.
536 			 */
537 			if (local_paca->in_mce == 1)
538 				slb_save_contents(local_paca->mce_faulty_slbs);
539 			flush_and_reload_slb();
540 			disposition = RTAS_DISP_FULLY_RECOVERED;
541 			break;
542 		default:
543 			break;
544 		}
545 	} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
546 		/* Platform corrected itself but could be degraded */
547 		pr_err("MCE: limited recovery, system may be degraded\n");
548 		disposition = RTAS_DISP_FULLY_RECOVERED;
549 	}
550 #endif
551 	return disposition;
552 }
553 
554 static int mce_handle_err_virtmode(struct pt_regs *regs,
555 				   struct rtas_error_log *errp,
556 				   struct pseries_mc_errorlog *mce_log,
557 				   int disposition)
558 {
559 	struct mce_error_info mce_err = { 0 };
560 	int initiator = rtas_error_initiator(errp);
561 	int severity = rtas_error_severity(errp);
562 	unsigned long eaddr = 0, paddr = 0;
563 	u8 error_type, err_sub_type;
564 
565 	if (!mce_log)
566 		goto out;
567 
568 	error_type = mce_log->error_type;
569 	err_sub_type = rtas_mc_error_sub_type(mce_log);
570 
571 	if (initiator == RTAS_INITIATOR_UNKNOWN)
572 		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
573 	else if (initiator == RTAS_INITIATOR_CPU)
574 		mce_err.initiator = MCE_INITIATOR_CPU;
575 	else if (initiator == RTAS_INITIATOR_PCI)
576 		mce_err.initiator = MCE_INITIATOR_PCI;
577 	else if (initiator == RTAS_INITIATOR_ISA)
578 		mce_err.initiator = MCE_INITIATOR_ISA;
579 	else if (initiator == RTAS_INITIATOR_MEMORY)
580 		mce_err.initiator = MCE_INITIATOR_MEMORY;
581 	else if (initiator == RTAS_INITIATOR_POWERMGM)
582 		mce_err.initiator = MCE_INITIATOR_POWERMGM;
583 	else
584 		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
585 
586 	if (severity == RTAS_SEVERITY_NO_ERROR)
587 		mce_err.severity = MCE_SEV_NO_ERROR;
588 	else if (severity == RTAS_SEVERITY_EVENT)
589 		mce_err.severity = MCE_SEV_WARNING;
590 	else if (severity == RTAS_SEVERITY_WARNING)
591 		mce_err.severity = MCE_SEV_WARNING;
592 	else if (severity == RTAS_SEVERITY_ERROR_SYNC)
593 		mce_err.severity = MCE_SEV_SEVERE;
594 	else if (severity == RTAS_SEVERITY_ERROR)
595 		mce_err.severity = MCE_SEV_SEVERE;
596 	else
597 		mce_err.severity = MCE_SEV_FATAL;
598 
599 	if (severity <= RTAS_SEVERITY_ERROR_SYNC)
600 		mce_err.sync_error = true;
601 	else
602 		mce_err.sync_error = false;
603 
604 	mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
605 	mce_err.error_class = MCE_ECLASS_UNKNOWN;
606 
607 	switch (error_type) {
608 	case MC_ERROR_TYPE_UE:
609 		mce_err.error_type = MCE_ERROR_TYPE_UE;
610 		mce_common_process_ue(regs, &mce_err);
611 		if (mce_err.ignore_event)
612 			disposition = RTAS_DISP_FULLY_RECOVERED;
613 		switch (err_sub_type) {
614 		case MC_ERROR_UE_IFETCH:
615 			mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
616 			break;
617 		case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
618 			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
619 			break;
620 		case MC_ERROR_UE_LOAD_STORE:
621 			mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
622 			break;
623 		case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
624 			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
625 			break;
626 		case MC_ERROR_UE_INDETERMINATE:
627 		default:
628 			mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
629 			break;
630 		}
631 		if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
632 			eaddr = be64_to_cpu(mce_log->effective_address);
633 
634 		if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
635 			paddr = be64_to_cpu(mce_log->logical_address);
636 		} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
637 			unsigned long pfn;
638 
639 			pfn = addr_to_pfn(regs, eaddr);
640 			if (pfn != ULONG_MAX)
641 				paddr = pfn << PAGE_SHIFT;
642 		}
643 
644 		break;
645 	case MC_ERROR_TYPE_SLB:
646 		mce_err.error_type = MCE_ERROR_TYPE_SLB;
647 		switch (err_sub_type) {
648 		case MC_ERROR_SLB_PARITY:
649 			mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
650 			break;
651 		case MC_ERROR_SLB_MULTIHIT:
652 			mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
653 			break;
654 		case MC_ERROR_SLB_INDETERMINATE:
655 		default:
656 			mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
657 			break;
658 		}
659 		if (mce_log->sub_err_type & 0x80)
660 			eaddr = be64_to_cpu(mce_log->effective_address);
661 		break;
662 	case MC_ERROR_TYPE_ERAT:
663 		mce_err.error_type = MCE_ERROR_TYPE_ERAT;
664 		switch (err_sub_type) {
665 		case MC_ERROR_ERAT_PARITY:
666 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
667 			break;
668 		case MC_ERROR_ERAT_MULTIHIT:
669 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
670 			break;
671 		case MC_ERROR_ERAT_INDETERMINATE:
672 		default:
673 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
674 			break;
675 		}
676 		if (mce_log->sub_err_type & 0x80)
677 			eaddr = be64_to_cpu(mce_log->effective_address);
678 		break;
679 	case MC_ERROR_TYPE_TLB:
680 		mce_err.error_type = MCE_ERROR_TYPE_TLB;
681 		switch (err_sub_type) {
682 		case MC_ERROR_TLB_PARITY:
683 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
684 			break;
685 		case MC_ERROR_TLB_MULTIHIT:
686 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
687 			break;
688 		case MC_ERROR_TLB_INDETERMINATE:
689 		default:
690 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
691 			break;
692 		}
693 		if (mce_log->sub_err_type & 0x80)
694 			eaddr = be64_to_cpu(mce_log->effective_address);
695 		break;
696 	case MC_ERROR_TYPE_D_CACHE:
697 		mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
698 		break;
699 	case MC_ERROR_TYPE_I_CACHE:
700 		mce_err.error_type = MCE_ERROR_TYPE_ICACHE;
701 		break;
702 	case MC_ERROR_TYPE_UNKNOWN:
703 	default:
704 		mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
705 		break;
706 	}
707 out:
708 	save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
709 		       &mce_err, regs->nip, eaddr, paddr);
710 	return disposition;
711 }
712 
713 static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
714 {
715 	struct pseries_errorlog *pseries_log;
716 	struct pseries_mc_errorlog *mce_log = NULL;
717 	int disposition = rtas_error_disposition(errp);
718 	unsigned long msr;
719 	u8 error_type;
720 
721 	if (!rtas_error_extended(errp))
722 		goto out;
723 
724 	pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
725 	if (!pseries_log)
726 		goto out;
727 
728 	mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
729 	error_type = mce_log->error_type;
730 
731 	disposition = mce_handle_err_realmode(disposition, error_type);
732 
733 	/*
734 	 * Enable translation as we will be accessing per-cpu variables
735 	 * in save_mce_event() which may fall outside RMO region, also
736 	 * leave it enabled because subsequently we will be queuing work
737 	 * to workqueues where again per-cpu variables accessed, besides
738 	 * fwnmi_release_errinfo() crashes when called in realmode on
739 	 * pseries.
740 	 * Note: All the realmode handling like flushing SLB entries for
741 	 *       SLB multihit is done by now.
742 	 */
743 out:
744 	msr = mfmsr();
745 	mtmsr(msr | MSR_IR | MSR_DR);
746 
747 	disposition = mce_handle_err_virtmode(regs, errp, mce_log,
748 					      disposition);
749 
750 	/*
751 	 * Queue irq work to log this rtas event later.
752 	 * irq_work_queue uses per-cpu variables, so do this in virt
753 	 * mode as well.
754 	 */
755 	irq_work_queue(&mce_errlog_process_work);
756 
757 	mtmsr(msr);
758 
759 	return disposition;
760 }
761 
762 /*
763  * Process MCE rtas errlog event.
764  */
765 static void mce_process_errlog_event(struct irq_work *work)
766 {
767 	struct rtas_error_log *err;
768 
769 	err = fwnmi_get_errlog();
770 	log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
771 }
772 
773 /*
774  * See if we can recover from a machine check exception.
775  * This is only called on power4 (or above) and only via
776  * the Firmware Non-Maskable Interrupts (fwnmi) handler
777  * which provides the error analysis for us.
778  *
779  * Return 1 if corrected (or delivered a signal).
780  * Return 0 if there is nothing we can do.
781  */
782 static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
783 {
784 	int recovered = 0;
785 
786 	if (regs_is_unrecoverable(regs)) {
787 		/* If MSR_RI isn't set, we cannot recover */
788 		pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
789 		recovered = 0;
790 	} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
791 		/* Platform corrected itself */
792 		recovered = 1;
793 	} else if (evt->severity == MCE_SEV_FATAL) {
794 		/* Fatal machine check */
795 		pr_err("Machine check interrupt is fatal\n");
796 		recovered = 0;
797 	}
798 
799 	if (!recovered && evt->sync_error) {
800 		/*
801 		 * Try to kill processes if we get a synchronous machine check
802 		 * (e.g., one caused by execution of this instruction). This
803 		 * will devolve into a panic if we try to kill init or are in
804 		 * an interrupt etc.
805 		 *
806 		 * TODO: Queue up this address for hwpoisioning later.
807 		 * TODO: This is not quite right for d-side machine
808 		 *       checks ->nip is not necessarily the important
809 		 *       address.
810 		 */
811 		if ((user_mode(regs))) {
812 			_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
813 			recovered = 1;
814 		} else if (die_will_crash()) {
815 			/*
816 			 * die() would kill the kernel, so better to go via
817 			 * the platform reboot code that will log the
818 			 * machine check.
819 			 */
820 			recovered = 0;
821 		} else {
822 			die_mce("Machine check", regs, SIGBUS);
823 			recovered = 1;
824 		}
825 	}
826 
827 	return recovered;
828 }
829 
830 /*
831  * Handle a machine check.
832  *
833  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
834  * should be present.  If so the handler which called us tells us if the
835  * error was recovered (never true if RI=0).
836  *
837  * On hardware prior to Power 4 these exceptions were asynchronous which
838  * means we can't tell exactly where it occurred and so we can't recover.
839  */
840 int pSeries_machine_check_exception(struct pt_regs *regs)
841 {
842 	struct machine_check_event evt;
843 
844 	if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
845 		return 0;
846 
847 	/* Print things out */
848 	if (evt.version != MCE_V1) {
849 		pr_err("Machine Check Exception, Unknown event version %d !\n",
850 		       evt.version);
851 		return 0;
852 	}
853 	machine_check_print_event_info(&evt, user_mode(regs), false);
854 
855 	if (recover_mce(regs, &evt))
856 		return 1;
857 
858 	return 0;
859 }
860 
861 long pseries_machine_check_realmode(struct pt_regs *regs)
862 {
863 	struct rtas_error_log *errp;
864 	int disposition;
865 
866 	if (fwnmi_active) {
867 		errp = fwnmi_get_errinfo(regs);
868 		/*
869 		 * Call to fwnmi_release_errinfo() in real mode causes kernel
870 		 * to panic. Hence we will call it as soon as we go into
871 		 * virtual mode.
872 		 */
873 		disposition = mce_handle_error(regs, errp);
874 
875 		fwnmi_release_errinfo();
876 
877 		if (disposition == RTAS_DISP_FULLY_RECOVERED)
878 			return 1;
879 	}
880 
881 	return 0;
882 }
883