1 /*
2  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 /* Change Activity:
20  * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21  * End Change Activity
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/irq.h>
35 #include <linux/random.h>
36 #include <linux/sysrq.h>
37 #include <linux/bitops.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/pgtable.h>
43 #include <asm/irq.h>
44 #include <asm/cache.h>
45 #include <asm/prom.h>
46 #include <asm/ptrace.h>
47 #include <asm/machdep.h>
48 #include <asm/rtas.h>
49 #include <asm/udbg.h>
50 #include <asm/firmware.h>
51 
52 #include "pseries.h"
53 
54 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
55 static DEFINE_SPINLOCK(ras_log_buf_lock);
56 
57 static char global_mce_data_buf[RTAS_ERROR_LOG_MAX];
58 static DEFINE_PER_CPU(__u64, mce_data_buf);
59 
60 static int ras_get_sensor_state_token;
61 static int ras_check_exception_token;
62 
63 #define EPOW_SENSOR_TOKEN	9
64 #define EPOW_SENSOR_INDEX	0
65 
66 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
67 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
68 
69 
70 /*
71  * Initialize handlers for the set of interrupts caused by hardware errors
72  * and power system events.
73  */
74 static int __init init_ras_IRQ(void)
75 {
76 	struct device_node *np;
77 
78 	ras_get_sensor_state_token = rtas_token("get-sensor-state");
79 	ras_check_exception_token = rtas_token("check-exception");
80 
81 	/* Internal Errors */
82 	np = of_find_node_by_path("/event-sources/internal-errors");
83 	if (np != NULL) {
84 		request_event_sources_irqs(np, ras_error_interrupt,
85 					   "RAS_ERROR");
86 		of_node_put(np);
87 	}
88 
89 	/* EPOW Events */
90 	np = of_find_node_by_path("/event-sources/epow-events");
91 	if (np != NULL) {
92 		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
93 		of_node_put(np);
94 	}
95 
96 	return 0;
97 }
98 __initcall(init_ras_IRQ);
99 
100 /*
101  * Handle power subsystem events (EPOW).
102  *
103  * Presently we just log the event has occurred.  This should be fixed
104  * to examine the type of power failure and take appropriate action where
105  * the time horizon permits something useful to be done.
106  */
107 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
108 {
109 	int status = 0xdeadbeef;
110 	int state = 0;
111 	int critical;
112 
113 	status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
114 			   EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
115 
116 	if (state > 3)
117 		critical = 1;  /* Time Critical */
118 	else
119 		critical = 0;
120 
121 	spin_lock(&ras_log_buf_lock);
122 
123 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
124 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
125 			   virq_to_hw(irq),
126 			   RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
127 			   critical, __pa(&ras_log_buf),
128 				rtas_get_error_log_max());
129 
130 	udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
131 		    *((unsigned long *)&ras_log_buf), status, state);
132 	printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
133 	       *((unsigned long *)&ras_log_buf), status, state);
134 
135 	/* format and print the extended information */
136 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
137 
138 	spin_unlock(&ras_log_buf_lock);
139 	return IRQ_HANDLED;
140 }
141 
142 /*
143  * Handle hardware error interrupts.
144  *
145  * RTAS check-exception is called to collect data on the exception.  If
146  * the error is deemed recoverable, we log a warning and return.
147  * For nonrecoverable errors, an error is logged and we stop all processing
148  * as quickly as possible in order to prevent propagation of the failure.
149  */
150 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
151 {
152 	struct rtas_error_log *rtas_elog;
153 	int status = 0xdeadbeef;
154 	int fatal;
155 
156 	spin_lock(&ras_log_buf_lock);
157 
158 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
159 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
160 			   virq_to_hw(irq),
161 			   RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
162 			   __pa(&ras_log_buf),
163 				rtas_get_error_log_max());
164 
165 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
166 
167 	if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
168 		fatal = 1;
169 	else
170 		fatal = 0;
171 
172 	/* format and print the extended information */
173 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
174 
175 	if (fatal) {
176 		udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
177 			    *((unsigned long *)&ras_log_buf), status);
178 		printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
179 		       *((unsigned long *)&ras_log_buf), status);
180 
181 #ifndef DEBUG_RTAS_POWER_OFF
182 		/* Don't actually power off when debugging so we can test
183 		 * without actually failing while injecting errors.
184 		 * Error data will not be logged to syslog.
185 		 */
186 		ppc_md.power_off();
187 #endif
188 	} else {
189 		udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
190 			    *((unsigned long *)&ras_log_buf), status);
191 		printk(KERN_WARNING
192 		       "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
193 		       *((unsigned long *)&ras_log_buf), status);
194 	}
195 
196 	spin_unlock(&ras_log_buf_lock);
197 	return IRQ_HANDLED;
198 }
199 
200 /*
201  * Some versions of FWNMI place the buffer inside the 4kB page starting at
202  * 0x7000. Other versions place it inside the rtas buffer. We check both.
203  */
204 #define VALID_FWNMI_BUFFER(A) \
205 	((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
206 	(((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
207 
208 /*
209  * Get the error information for errors coming through the
210  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
211  * the actual r3 if possible, and a ptr to the error log entry
212  * will be returned if found.
213  *
214  * If the RTAS error is not of the extended type, then we put it in a per
215  * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
216  *
217  * The global_mce_data_buf does not have any locks or protection around it,
218  * if a second machine check comes in, or a system reset is done
219  * before we have logged the error, then we will get corruption in the
220  * error log.  This is preferable over holding off on calling
221  * ibm,nmi-interlock which would result in us checkstopping if a
222  * second machine check did come in.
223  */
224 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
225 {
226 	unsigned long *savep;
227 	struct rtas_error_log *h, *errhdr = NULL;
228 
229 	if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
230 		printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
231 		return NULL;
232 	}
233 
234 	savep = __va(regs->gpr[3]);
235 	regs->gpr[3] = savep[0];	/* restore original r3 */
236 
237 	/* If it isn't an extended log we can use the per cpu 64bit buffer */
238 	h = (struct rtas_error_log *)&savep[1];
239 	if (!h->extended) {
240 		memcpy(&__get_cpu_var(mce_data_buf), h, sizeof(__u64));
241 		errhdr = (struct rtas_error_log *)&__get_cpu_var(mce_data_buf);
242 	} else {
243 		int len;
244 
245 		len = max_t(int, 8+h->extended_log_length, RTAS_ERROR_LOG_MAX);
246 		memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
247 		memcpy(global_mce_data_buf, h, len);
248 		errhdr = (struct rtas_error_log *)global_mce_data_buf;
249 	}
250 
251 	return errhdr;
252 }
253 
254 /* Call this when done with the data returned by FWNMI_get_errinfo.
255  * It will release the saved data area for other CPUs in the
256  * partition to receive FWNMI errors.
257  */
258 static void fwnmi_release_errinfo(void)
259 {
260 	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
261 	if (ret != 0)
262 		printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
263 }
264 
265 int pSeries_system_reset_exception(struct pt_regs *regs)
266 {
267 	if (fwnmi_active) {
268 		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
269 		if (errhdr) {
270 			/* XXX Should look at FWNMI information */
271 		}
272 		fwnmi_release_errinfo();
273 	}
274 	return 0; /* need to perform reset */
275 }
276 
277 /*
278  * See if we can recover from a machine check exception.
279  * This is only called on power4 (or above) and only via
280  * the Firmware Non-Maskable Interrupts (fwnmi) handler
281  * which provides the error analysis for us.
282  *
283  * Return 1 if corrected (or delivered a signal).
284  * Return 0 if there is nothing we can do.
285  */
286 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
287 {
288 	int recovered = 0;
289 
290 	if (!(regs->msr & MSR_RI)) {
291 		/* If MSR_RI isn't set, we cannot recover */
292 		recovered = 0;
293 
294 	} else if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
295 		/* Platform corrected itself */
296 		recovered = 1;
297 
298 	} else if (err->disposition == RTAS_DISP_LIMITED_RECOVERY) {
299 		/* Platform corrected itself but could be degraded */
300 		printk(KERN_ERR "MCE: limited recovery, system may "
301 		       "be degraded\n");
302 		recovered = 1;
303 
304 	} else if (user_mode(regs) && !is_global_init(current) &&
305 		   err->severity == RTAS_SEVERITY_ERROR_SYNC) {
306 
307 		/*
308 		 * If we received a synchronous error when in userspace
309 		 * kill the task. Firmware may report details of the fail
310 		 * asynchronously, so we can't rely on the target and type
311 		 * fields being valid here.
312 		 */
313 		printk(KERN_ERR "MCE: uncorrectable error, killing task "
314 		       "%s:%d\n", current->comm, current->pid);
315 
316 		_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
317 		recovered = 1;
318 	}
319 
320 	log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
321 
322 	return recovered;
323 }
324 
325 /*
326  * Handle a machine check.
327  *
328  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
329  * should be present.  If so the handler which called us tells us if the
330  * error was recovered (never true if RI=0).
331  *
332  * On hardware prior to Power 4 these exceptions were asynchronous which
333  * means we can't tell exactly where it occurred and so we can't recover.
334  */
335 int pSeries_machine_check_exception(struct pt_regs *regs)
336 {
337 	struct rtas_error_log *errp;
338 
339 	if (fwnmi_active) {
340 		errp = fwnmi_get_errinfo(regs);
341 		fwnmi_release_errinfo();
342 		if (errp && recover_mce(regs, errp))
343 			return 1;
344 	}
345 
346 	return 0;
347 }
348