1 /*
2  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/interrupt.h>
21 #include <linux/irq.h>
22 #include <linux/of.h>
23 #include <linux/fs.h>
24 #include <linux/reboot.h>
25 #include <linux/irq_work.h>
26 
27 #include <asm/machdep.h>
28 #include <asm/rtas.h>
29 #include <asm/firmware.h>
30 #include <asm/mce.h>
31 
32 #include "pseries.h"
33 
34 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
35 static DEFINE_SPINLOCK(ras_log_buf_lock);
36 
37 static int ras_check_exception_token;
38 
39 static void mce_process_errlog_event(struct irq_work *work);
40 static struct irq_work mce_errlog_process_work = {
41 	.func = mce_process_errlog_event,
42 };
43 
44 #define EPOW_SENSOR_TOKEN	9
45 #define EPOW_SENSOR_INDEX	0
46 
47 /* EPOW events counter variable */
48 static int num_epow_events;
49 
50 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
51 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
52 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
53 
54 /* RTAS pseries MCE errorlog section. */
55 struct pseries_mc_errorlog {
56 	__be32	fru_id;
57 	__be32	proc_id;
58 	u8	error_type;
59 	/*
60 	 * sub_err_type (1 byte). Bit fields depends on error_type
61 	 *
62 	 *   MSB0
63 	 *   |
64 	 *   V
65 	 *   01234567
66 	 *   XXXXXXXX
67 	 *
68 	 * For error_type == MC_ERROR_TYPE_UE
69 	 *   XXXXXXXX
70 	 *   X		1: Permanent or Transient UE.
71 	 *    X		1: Effective address provided.
72 	 *     X	1: Logical address provided.
73 	 *      XX	2: Reserved.
74 	 *        XXX	3: Type of UE error.
75 	 *
76 	 * For error_type != MC_ERROR_TYPE_UE
77 	 *   XXXXXXXX
78 	 *   X		1: Effective address provided.
79 	 *    XXXXX	5: Reserved.
80 	 *         XX	2: Type of SLB/ERAT/TLB error.
81 	 */
82 	u8	sub_err_type;
83 	u8	reserved_1[6];
84 	__be64	effective_address;
85 	__be64	logical_address;
86 } __packed;
87 
88 /* RTAS pseries MCE error types */
89 #define MC_ERROR_TYPE_UE		0x00
90 #define MC_ERROR_TYPE_SLB		0x01
91 #define MC_ERROR_TYPE_ERAT		0x02
92 #define MC_ERROR_TYPE_TLB		0x04
93 #define MC_ERROR_TYPE_D_CACHE		0x05
94 #define MC_ERROR_TYPE_I_CACHE		0x07
95 
96 /* RTAS pseries MCE error sub types */
97 #define MC_ERROR_UE_INDETERMINATE		0
98 #define MC_ERROR_UE_IFETCH			1
99 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH	2
100 #define MC_ERROR_UE_LOAD_STORE			3
101 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE	4
102 
103 #define MC_ERROR_SLB_PARITY		0
104 #define MC_ERROR_SLB_MULTIHIT		1
105 #define MC_ERROR_SLB_INDETERMINATE	2
106 
107 #define MC_ERROR_ERAT_PARITY		1
108 #define MC_ERROR_ERAT_MULTIHIT		2
109 #define MC_ERROR_ERAT_INDETERMINATE	3
110 
111 #define MC_ERROR_TLB_PARITY		1
112 #define MC_ERROR_TLB_MULTIHIT		2
113 #define MC_ERROR_TLB_INDETERMINATE	3
114 
115 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
116 {
117 	switch (mlog->error_type) {
118 	case	MC_ERROR_TYPE_UE:
119 		return (mlog->sub_err_type & 0x07);
120 	case	MC_ERROR_TYPE_SLB:
121 	case	MC_ERROR_TYPE_ERAT:
122 	case	MC_ERROR_TYPE_TLB:
123 		return (mlog->sub_err_type & 0x03);
124 	default:
125 		return 0;
126 	}
127 }
128 
129 static
130 inline u64 rtas_mc_get_effective_addr(const struct pseries_mc_errorlog *mlog)
131 {
132 	__be64 addr = 0;
133 
134 	switch (mlog->error_type) {
135 	case	MC_ERROR_TYPE_UE:
136 		if (mlog->sub_err_type & 0x40)
137 			addr = mlog->effective_address;
138 		break;
139 	case	MC_ERROR_TYPE_SLB:
140 	case	MC_ERROR_TYPE_ERAT:
141 	case	MC_ERROR_TYPE_TLB:
142 		if (mlog->sub_err_type & 0x80)
143 			addr = mlog->effective_address;
144 	default:
145 		break;
146 	}
147 	return be64_to_cpu(addr);
148 }
149 
150 /*
151  * Enable the hotplug interrupt late because processing them may touch other
152  * devices or systems (e.g. hugepages) that have not been initialized at the
153  * subsys stage.
154  */
155 int __init init_ras_hotplug_IRQ(void)
156 {
157 	struct device_node *np;
158 
159 	/* Hotplug Events */
160 	np = of_find_node_by_path("/event-sources/hot-plug-events");
161 	if (np != NULL) {
162 		if (dlpar_workqueue_init() == 0)
163 			request_event_sources_irqs(np, ras_hotplug_interrupt,
164 						   "RAS_HOTPLUG");
165 		of_node_put(np);
166 	}
167 
168 	return 0;
169 }
170 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
171 
172 /*
173  * Initialize handlers for the set of interrupts caused by hardware errors
174  * and power system events.
175  */
176 static int __init init_ras_IRQ(void)
177 {
178 	struct device_node *np;
179 
180 	ras_check_exception_token = rtas_token("check-exception");
181 
182 	/* Internal Errors */
183 	np = of_find_node_by_path("/event-sources/internal-errors");
184 	if (np != NULL) {
185 		request_event_sources_irqs(np, ras_error_interrupt,
186 					   "RAS_ERROR");
187 		of_node_put(np);
188 	}
189 
190 	/* EPOW Events */
191 	np = of_find_node_by_path("/event-sources/epow-events");
192 	if (np != NULL) {
193 		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
194 		of_node_put(np);
195 	}
196 
197 	return 0;
198 }
199 machine_subsys_initcall(pseries, init_ras_IRQ);
200 
201 #define EPOW_SHUTDOWN_NORMAL				1
202 #define EPOW_SHUTDOWN_ON_UPS				2
203 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS	3
204 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH	4
205 
206 static void handle_system_shutdown(char event_modifier)
207 {
208 	switch (event_modifier) {
209 	case EPOW_SHUTDOWN_NORMAL:
210 		pr_emerg("Power off requested\n");
211 		orderly_poweroff(true);
212 		break;
213 
214 	case EPOW_SHUTDOWN_ON_UPS:
215 		pr_emerg("Loss of system power detected. System is running on"
216 			 " UPS/battery. Check RTAS error log for details\n");
217 		orderly_poweroff(true);
218 		break;
219 
220 	case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
221 		pr_emerg("Loss of system critical functions detected. Check"
222 			 " RTAS error log for details\n");
223 		orderly_poweroff(true);
224 		break;
225 
226 	case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
227 		pr_emerg("High ambient temperature detected. Check RTAS"
228 			 " error log for details\n");
229 		orderly_poweroff(true);
230 		break;
231 
232 	default:
233 		pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
234 			event_modifier);
235 	}
236 }
237 
238 struct epow_errorlog {
239 	unsigned char sensor_value;
240 	unsigned char event_modifier;
241 	unsigned char extended_modifier;
242 	unsigned char reserved;
243 	unsigned char platform_reason;
244 };
245 
246 #define EPOW_RESET			0
247 #define EPOW_WARN_COOLING		1
248 #define EPOW_WARN_POWER			2
249 #define EPOW_SYSTEM_SHUTDOWN		3
250 #define EPOW_SYSTEM_HALT		4
251 #define EPOW_MAIN_ENCLOSURE		5
252 #define EPOW_POWER_OFF			7
253 
254 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
255 {
256 	struct pseries_errorlog *pseries_log;
257 	struct epow_errorlog *epow_log;
258 	char action_code;
259 	char modifier;
260 
261 	pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
262 	if (pseries_log == NULL)
263 		return;
264 
265 	epow_log = (struct epow_errorlog *)pseries_log->data;
266 	action_code = epow_log->sensor_value & 0xF;	/* bottom 4 bits */
267 	modifier = epow_log->event_modifier & 0xF;	/* bottom 4 bits */
268 
269 	switch (action_code) {
270 	case EPOW_RESET:
271 		if (num_epow_events) {
272 			pr_info("Non critical power/cooling issue cleared\n");
273 			num_epow_events--;
274 		}
275 		break;
276 
277 	case EPOW_WARN_COOLING:
278 		pr_info("Non-critical cooling issue detected. Check RTAS error"
279 			" log for details\n");
280 		break;
281 
282 	case EPOW_WARN_POWER:
283 		pr_info("Non-critical power issue detected. Check RTAS error"
284 			" log for details\n");
285 		break;
286 
287 	case EPOW_SYSTEM_SHUTDOWN:
288 		handle_system_shutdown(epow_log->event_modifier);
289 		break;
290 
291 	case EPOW_SYSTEM_HALT:
292 		pr_emerg("Critical power/cooling issue detected. Check RTAS"
293 			 " error log for details. Powering off.\n");
294 		orderly_poweroff(true);
295 		break;
296 
297 	case EPOW_MAIN_ENCLOSURE:
298 	case EPOW_POWER_OFF:
299 		pr_emerg("System about to lose power. Check RTAS error log "
300 			 " for details. Powering off immediately.\n");
301 		emergency_sync();
302 		kernel_power_off();
303 		break;
304 
305 	default:
306 		pr_err("Unknown power/cooling event (action code  = %d)\n",
307 			action_code);
308 	}
309 
310 	/* Increment epow events counter variable */
311 	if (action_code != EPOW_RESET)
312 		num_epow_events++;
313 }
314 
315 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
316 {
317 	struct pseries_errorlog *pseries_log;
318 	struct pseries_hp_errorlog *hp_elog;
319 
320 	spin_lock(&ras_log_buf_lock);
321 
322 	rtas_call(ras_check_exception_token, 6, 1, NULL,
323 		  RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
324 		  RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
325 		  rtas_get_error_log_max());
326 
327 	pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
328 					   PSERIES_ELOG_SECT_ID_HOTPLUG);
329 	hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
330 
331 	/*
332 	 * Since PCI hotplug is not currently supported on pseries, put PCI
333 	 * hotplug events on the ras_log_buf to be handled by rtas_errd.
334 	 */
335 	if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
336 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
337 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
338 		queue_hotplug_event(hp_elog);
339 	else
340 		log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
341 
342 	spin_unlock(&ras_log_buf_lock);
343 	return IRQ_HANDLED;
344 }
345 
346 /* Handle environmental and power warning (EPOW) interrupts. */
347 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
348 {
349 	int status;
350 	int state;
351 	int critical;
352 
353 	status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
354 				      &state);
355 
356 	if (state > 3)
357 		critical = 1;		/* Time Critical */
358 	else
359 		critical = 0;
360 
361 	spin_lock(&ras_log_buf_lock);
362 
363 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
364 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
365 			   virq_to_hw(irq),
366 			   RTAS_EPOW_WARNING,
367 			   critical, __pa(&ras_log_buf),
368 				rtas_get_error_log_max());
369 
370 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
371 
372 	rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
373 
374 	spin_unlock(&ras_log_buf_lock);
375 	return IRQ_HANDLED;
376 }
377 
378 /*
379  * Handle hardware error interrupts.
380  *
381  * RTAS check-exception is called to collect data on the exception.  If
382  * the error is deemed recoverable, we log a warning and return.
383  * For nonrecoverable errors, an error is logged and we stop all processing
384  * as quickly as possible in order to prevent propagation of the failure.
385  */
386 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
387 {
388 	struct rtas_error_log *rtas_elog;
389 	int status;
390 	int fatal;
391 
392 	spin_lock(&ras_log_buf_lock);
393 
394 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
395 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
396 			   virq_to_hw(irq),
397 			   RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
398 			   __pa(&ras_log_buf),
399 				rtas_get_error_log_max());
400 
401 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
402 
403 	if (status == 0 &&
404 	    rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
405 		fatal = 1;
406 	else
407 		fatal = 0;
408 
409 	/* format and print the extended information */
410 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
411 
412 	if (fatal) {
413 		pr_emerg("Fatal hardware error detected. Check RTAS error"
414 			 " log for details. Powering off immediately\n");
415 		emergency_sync();
416 		kernel_power_off();
417 	} else {
418 		pr_err("Recoverable hardware error detected\n");
419 	}
420 
421 	spin_unlock(&ras_log_buf_lock);
422 	return IRQ_HANDLED;
423 }
424 
425 /*
426  * Some versions of FWNMI place the buffer inside the 4kB page starting at
427  * 0x7000. Other versions place it inside the rtas buffer. We check both.
428  */
429 #define VALID_FWNMI_BUFFER(A) \
430 	((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
431 	(((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
432 
433 static inline struct rtas_error_log *fwnmi_get_errlog(void)
434 {
435 	return (struct rtas_error_log *)local_paca->mce_data_buf;
436 }
437 
438 /*
439  * Get the error information for errors coming through the
440  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
441  * the actual r3 if possible, and a ptr to the error log entry
442  * will be returned if found.
443  *
444  * Use one buffer mce_data_buf per cpu to store RTAS error.
445  *
446  * The mce_data_buf does not have any locks or protection around it,
447  * if a second machine check comes in, or a system reset is done
448  * before we have logged the error, then we will get corruption in the
449  * error log.  This is preferable over holding off on calling
450  * ibm,nmi-interlock which would result in us checkstopping if a
451  * second machine check did come in.
452  */
453 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
454 {
455 	unsigned long *savep;
456 	struct rtas_error_log *h;
457 
458 	/* Mask top two bits */
459 	regs->gpr[3] &= ~(0x3UL << 62);
460 
461 	if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
462 		printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
463 		return NULL;
464 	}
465 
466 	savep = __va(regs->gpr[3]);
467 	regs->gpr[3] = be64_to_cpu(savep[0]);	/* restore original r3 */
468 
469 	h = (struct rtas_error_log *)&savep[1];
470 	/* Use the per cpu buffer from paca to store rtas error log */
471 	memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
472 	if (!rtas_error_extended(h)) {
473 		memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
474 	} else {
475 		int len, error_log_length;
476 
477 		error_log_length = 8 + rtas_error_extended_log_length(h);
478 		len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
479 		memcpy(local_paca->mce_data_buf, h, len);
480 	}
481 
482 	return (struct rtas_error_log *)local_paca->mce_data_buf;
483 }
484 
485 /* Call this when done with the data returned by FWNMI_get_errinfo.
486  * It will release the saved data area for other CPUs in the
487  * partition to receive FWNMI errors.
488  */
489 static void fwnmi_release_errinfo(void)
490 {
491 	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
492 	if (ret != 0)
493 		printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
494 }
495 
496 int pSeries_system_reset_exception(struct pt_regs *regs)
497 {
498 #ifdef __LITTLE_ENDIAN__
499 	/*
500 	 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
501 	 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
502 	 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
503 	 * so clear it. It will be missing MSR_RI so we won't try to recover.
504 	 */
505 	if ((be64_to_cpu(regs->msr) &
506 			(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
507 			 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
508 		regs->nip = be64_to_cpu((__be64)regs->nip);
509 		regs->msr = 0;
510 	}
511 #endif
512 
513 	if (fwnmi_active) {
514 		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
515 		if (errhdr) {
516 			/* XXX Should look at FWNMI information */
517 		}
518 		fwnmi_release_errinfo();
519 	}
520 
521 	if (smp_handle_nmi_ipi(regs))
522 		return 1;
523 
524 	return 0; /* need to perform reset */
525 }
526 
527 #define VAL_TO_STRING(ar, val)	\
528 	(((val) < ARRAY_SIZE(ar)) ? ar[(val)] : "Unknown")
529 
530 static void pseries_print_mce_info(struct pt_regs *regs,
531 				   struct rtas_error_log *errp)
532 {
533 	const char *level, *sevstr;
534 	struct pseries_errorlog *pseries_log;
535 	struct pseries_mc_errorlog *mce_log;
536 	u8 error_type, err_sub_type;
537 	u64 addr;
538 	u8 initiator = rtas_error_initiator(errp);
539 	int disposition = rtas_error_disposition(errp);
540 
541 	static const char * const initiators[] = {
542 		[0] = "Unknown",
543 		[1] = "CPU",
544 		[2] = "PCI",
545 		[3] = "ISA",
546 		[4] = "Memory",
547 		[5] = "Power Mgmt",
548 	};
549 	static const char * const mc_err_types[] = {
550 		[0] = "UE",
551 		[1] = "SLB",
552 		[2] = "ERAT",
553 		[3] = "Unknown",
554 		[4] = "TLB",
555 		[5] = "D-Cache",
556 		[6] = "Unknown",
557 		[7] = "I-Cache",
558 	};
559 	static const char * const mc_ue_types[] = {
560 		[0] = "Indeterminate",
561 		[1] = "Instruction fetch",
562 		[2] = "Page table walk ifetch",
563 		[3] = "Load/Store",
564 		[4] = "Page table walk Load/Store",
565 	};
566 
567 	/* SLB sub errors valid values are 0x0, 0x1, 0x2 */
568 	static const char * const mc_slb_types[] = {
569 		[0] = "Parity",
570 		[1] = "Multihit",
571 		[2] = "Indeterminate",
572 	};
573 
574 	/* TLB and ERAT sub errors valid values are 0x1, 0x2, 0x3 */
575 	static const char * const mc_soft_types[] = {
576 		[0] = "Unknown",
577 		[1] = "Parity",
578 		[2] = "Multihit",
579 		[3] = "Indeterminate",
580 	};
581 
582 	if (!rtas_error_extended(errp)) {
583 		pr_err("Machine check interrupt: Missing extended error log\n");
584 		return;
585 	}
586 
587 	pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
588 	if (pseries_log == NULL)
589 		return;
590 
591 	mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
592 
593 	error_type = mce_log->error_type;
594 	err_sub_type = rtas_mc_error_sub_type(mce_log);
595 
596 	switch (rtas_error_severity(errp)) {
597 	case RTAS_SEVERITY_NO_ERROR:
598 		level = KERN_INFO;
599 		sevstr = "Harmless";
600 		break;
601 	case RTAS_SEVERITY_WARNING:
602 		level = KERN_WARNING;
603 		sevstr = "";
604 		break;
605 	case RTAS_SEVERITY_ERROR:
606 	case RTAS_SEVERITY_ERROR_SYNC:
607 		level = KERN_ERR;
608 		sevstr = "Severe";
609 		break;
610 	case RTAS_SEVERITY_FATAL:
611 	default:
612 		level = KERN_ERR;
613 		sevstr = "Fatal";
614 		break;
615 	}
616 
617 #ifdef CONFIG_PPC_BOOK3S_64
618 	/* Display faulty slb contents for SLB errors. */
619 	if (error_type == MC_ERROR_TYPE_SLB)
620 		slb_dump_contents(local_paca->mce_faulty_slbs);
621 #endif
622 
623 	printk("%s%s Machine check interrupt [%s]\n", level, sevstr,
624 	       disposition == RTAS_DISP_FULLY_RECOVERED ?
625 	       "Recovered" : "Not recovered");
626 	if (user_mode(regs)) {
627 		printk("%s  NIP: [%016lx] PID: %d Comm: %s\n", level,
628 		       regs->nip, current->pid, current->comm);
629 	} else {
630 		printk("%s  NIP [%016lx]: %pS\n", level, regs->nip,
631 		       (void *)regs->nip);
632 	}
633 	printk("%s  Initiator: %s\n", level,
634 	       VAL_TO_STRING(initiators, initiator));
635 
636 	switch (error_type) {
637 	case MC_ERROR_TYPE_UE:
638 		printk("%s  Error type: %s [%s]\n", level,
639 		       VAL_TO_STRING(mc_err_types, error_type),
640 		       VAL_TO_STRING(mc_ue_types, err_sub_type));
641 		break;
642 	case MC_ERROR_TYPE_SLB:
643 		printk("%s  Error type: %s [%s]\n", level,
644 		       VAL_TO_STRING(mc_err_types, error_type),
645 		       VAL_TO_STRING(mc_slb_types, err_sub_type));
646 		break;
647 	case MC_ERROR_TYPE_ERAT:
648 	case MC_ERROR_TYPE_TLB:
649 		printk("%s  Error type: %s [%s]\n", level,
650 		       VAL_TO_STRING(mc_err_types, error_type),
651 		       VAL_TO_STRING(mc_soft_types, err_sub_type));
652 		break;
653 	default:
654 		printk("%s  Error type: %s\n", level,
655 		       VAL_TO_STRING(mc_err_types, error_type));
656 		break;
657 	}
658 
659 	addr = rtas_mc_get_effective_addr(mce_log);
660 	if (addr)
661 		printk("%s    Effective address: %016llx\n", level, addr);
662 }
663 
664 static int mce_handle_error(struct rtas_error_log *errp)
665 {
666 	struct pseries_errorlog *pseries_log;
667 	struct pseries_mc_errorlog *mce_log;
668 	int disposition = rtas_error_disposition(errp);
669 	u8 error_type;
670 
671 	if (!rtas_error_extended(errp))
672 		goto out;
673 
674 	pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
675 	if (pseries_log == NULL)
676 		goto out;
677 
678 	mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
679 	error_type = mce_log->error_type;
680 
681 #ifdef CONFIG_PPC_BOOK3S_64
682 	if (disposition == RTAS_DISP_NOT_RECOVERED) {
683 		switch (error_type) {
684 		case	MC_ERROR_TYPE_SLB:
685 		case	MC_ERROR_TYPE_ERAT:
686 			/*
687 			 * Store the old slb content in paca before flushing.
688 			 * Print this when we go to virtual mode.
689 			 * There are chances that we may hit MCE again if there
690 			 * is a parity error on the SLB entry we trying to read
691 			 * for saving. Hence limit the slb saving to single
692 			 * level of recursion.
693 			 */
694 			if (local_paca->in_mce == 1)
695 				slb_save_contents(local_paca->mce_faulty_slbs);
696 			flush_and_reload_slb();
697 			disposition = RTAS_DISP_FULLY_RECOVERED;
698 			rtas_set_disposition_recovered(errp);
699 			break;
700 		default:
701 			break;
702 		}
703 	}
704 #endif
705 
706 out:
707 	return disposition;
708 }
709 
710 #ifdef CONFIG_MEMORY_FAILURE
711 
712 static DEFINE_PER_CPU(int, rtas_ue_count);
713 static DEFINE_PER_CPU(unsigned long, rtas_ue_paddr[MAX_MC_EVT]);
714 
715 #define UE_EFFECTIVE_ADDR_PROVIDED	0x40
716 #define UE_LOGICAL_ADDR_PROVIDED	0x20
717 
718 
719 static void pseries_hwpoison_work_fn(struct work_struct *work)
720 {
721 	unsigned long paddr;
722 	int index;
723 
724 	while (__this_cpu_read(rtas_ue_count) > 0) {
725 		index = __this_cpu_read(rtas_ue_count) - 1;
726 		paddr = __this_cpu_read(rtas_ue_paddr[index]);
727 		memory_failure(paddr >> PAGE_SHIFT, 0);
728 		__this_cpu_dec(rtas_ue_count);
729 	}
730 }
731 
732 static DECLARE_WORK(hwpoison_work, pseries_hwpoison_work_fn);
733 
734 static void queue_ue_paddr(unsigned long paddr)
735 {
736 	int index;
737 
738 	index = __this_cpu_inc_return(rtas_ue_count) - 1;
739 	if (index >= MAX_MC_EVT) {
740 		__this_cpu_dec(rtas_ue_count);
741 		return;
742 	}
743 	this_cpu_write(rtas_ue_paddr[index], paddr);
744 	schedule_work(&hwpoison_work);
745 }
746 
747 static void pseries_do_memory_failure(struct pt_regs *regs,
748 				      struct pseries_mc_errorlog *mce_log)
749 {
750 	unsigned long paddr;
751 
752 	if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
753 		paddr = be64_to_cpu(mce_log->logical_address);
754 	} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
755 		unsigned long pfn;
756 
757 		pfn = addr_to_pfn(regs,
758 				  be64_to_cpu(mce_log->effective_address));
759 		if (pfn == ULONG_MAX)
760 			return;
761 		paddr = pfn << PAGE_SHIFT;
762 	} else {
763 		return;
764 	}
765 	queue_ue_paddr(paddr);
766 }
767 
768 static void pseries_process_ue(struct pt_regs *regs,
769 			       struct rtas_error_log *errp)
770 {
771 	struct pseries_errorlog *pseries_log;
772 	struct pseries_mc_errorlog *mce_log;
773 
774 	if (!rtas_error_extended(errp))
775 		return;
776 
777 	pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
778 	if (!pseries_log)
779 		return;
780 
781 	mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
782 
783 	if (mce_log->error_type == MC_ERROR_TYPE_UE)
784 		pseries_do_memory_failure(regs, mce_log);
785 }
786 #else
787 static inline void pseries_process_ue(struct pt_regs *regs,
788 				      struct rtas_error_log *errp) { }
789 #endif /*CONFIG_MEMORY_FAILURE */
790 
791 /*
792  * Process MCE rtas errlog event.
793  */
794 static void mce_process_errlog_event(struct irq_work *work)
795 {
796 	struct rtas_error_log *err;
797 
798 	err = fwnmi_get_errlog();
799 	log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
800 }
801 
802 /*
803  * See if we can recover from a machine check exception.
804  * This is only called on power4 (or above) and only via
805  * the Firmware Non-Maskable Interrupts (fwnmi) handler
806  * which provides the error analysis for us.
807  *
808  * Return 1 if corrected (or delivered a signal).
809  * Return 0 if there is nothing we can do.
810  */
811 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
812 {
813 	int recovered = 0;
814 	int disposition = rtas_error_disposition(err);
815 
816 	pseries_print_mce_info(regs, err);
817 
818 	if (!(regs->msr & MSR_RI)) {
819 		/* If MSR_RI isn't set, we cannot recover */
820 		pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
821 		recovered = 0;
822 
823 	} else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
824 		/* Platform corrected itself */
825 		recovered = 1;
826 
827 	} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
828 		/* Platform corrected itself but could be degraded */
829 		printk(KERN_ERR "MCE: limited recovery, system may "
830 		       "be degraded\n");
831 		recovered = 1;
832 
833 	} else if (user_mode(regs) && !is_global_init(current) &&
834 		   rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
835 
836 		/*
837 		 * If we received a synchronous error when in userspace
838 		 * kill the task. Firmware may report details of the fail
839 		 * asynchronously, so we can't rely on the target and type
840 		 * fields being valid here.
841 		 */
842 		printk(KERN_ERR "MCE: uncorrectable error, killing task "
843 		       "%s:%d\n", current->comm, current->pid);
844 
845 		_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
846 		recovered = 1;
847 	}
848 
849 	pseries_process_ue(regs, err);
850 
851 	/* Queue irq work to log this rtas event later. */
852 	irq_work_queue(&mce_errlog_process_work);
853 
854 	return recovered;
855 }
856 
857 /*
858  * Handle a machine check.
859  *
860  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
861  * should be present.  If so the handler which called us tells us if the
862  * error was recovered (never true if RI=0).
863  *
864  * On hardware prior to Power 4 these exceptions were asynchronous which
865  * means we can't tell exactly where it occurred and so we can't recover.
866  */
867 int pSeries_machine_check_exception(struct pt_regs *regs)
868 {
869 	struct rtas_error_log *errp;
870 
871 	if (fwnmi_active) {
872 		fwnmi_release_errinfo();
873 		errp = fwnmi_get_errlog();
874 		if (errp && recover_mce(regs, errp))
875 			return 1;
876 	}
877 
878 	return 0;
879 }
880 
881 long pseries_machine_check_realmode(struct pt_regs *regs)
882 {
883 	struct rtas_error_log *errp;
884 	int disposition;
885 
886 	if (fwnmi_active) {
887 		errp = fwnmi_get_errinfo(regs);
888 		/*
889 		 * Call to fwnmi_release_errinfo() in real mode causes kernel
890 		 * to panic. Hence we will call it as soon as we go into
891 		 * virtual mode.
892 		 */
893 		disposition = mce_handle_error(errp);
894 		if (disposition == RTAS_DISP_FULLY_RECOVERED)
895 			return 1;
896 	}
897 
898 	return 0;
899 }
900