1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)	"papr-scm: " fmt
4 
5 #include <linux/of.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/ioport.h>
9 #include <linux/slab.h>
10 #include <linux/ndctl.h>
11 #include <linux/sched.h>
12 #include <linux/libnvdimm.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/seq_buf.h>
16 #include <linux/nd.h>
17 
18 #include <asm/plpar_wrappers.h>
19 #include <asm/papr_pdsm.h>
20 #include <asm/mce.h>
21 #include <asm/unaligned.h>
22 #include <linux/perf_event.h>
23 
24 #define BIND_ANY_ADDR (~0ul)
25 
26 #define PAPR_SCM_DIMM_CMD_MASK \
27 	((1ul << ND_CMD_GET_CONFIG_SIZE) | \
28 	 (1ul << ND_CMD_GET_CONFIG_DATA) | \
29 	 (1ul << ND_CMD_SET_CONFIG_DATA) | \
30 	 (1ul << ND_CMD_CALL))
31 
32 /* DIMM health bitmap bitmap indicators */
33 /* SCM device is unable to persist memory contents */
34 #define PAPR_PMEM_UNARMED                   (1ULL << (63 - 0))
35 /* SCM device failed to persist memory contents */
36 #define PAPR_PMEM_SHUTDOWN_DIRTY            (1ULL << (63 - 1))
37 /* SCM device contents are persisted from previous IPL */
38 #define PAPR_PMEM_SHUTDOWN_CLEAN            (1ULL << (63 - 2))
39 /* SCM device contents are not persisted from previous IPL */
40 #define PAPR_PMEM_EMPTY                     (1ULL << (63 - 3))
41 /* SCM device memory life remaining is critically low */
42 #define PAPR_PMEM_HEALTH_CRITICAL           (1ULL << (63 - 4))
43 /* SCM device will be garded off next IPL due to failure */
44 #define PAPR_PMEM_HEALTH_FATAL              (1ULL << (63 - 5))
45 /* SCM contents cannot persist due to current platform health status */
46 #define PAPR_PMEM_HEALTH_UNHEALTHY          (1ULL << (63 - 6))
47 /* SCM device is unable to persist memory contents in certain conditions */
48 #define PAPR_PMEM_HEALTH_NON_CRITICAL       (1ULL << (63 - 7))
49 /* SCM device is encrypted */
50 #define PAPR_PMEM_ENCRYPTED                 (1ULL << (63 - 8))
51 /* SCM device has been scrubbed and locked */
52 #define PAPR_PMEM_SCRUBBED_AND_LOCKED       (1ULL << (63 - 9))
53 
54 /* Bits status indicators for health bitmap indicating unarmed dimm */
55 #define PAPR_PMEM_UNARMED_MASK (PAPR_PMEM_UNARMED |		\
56 				PAPR_PMEM_HEALTH_UNHEALTHY)
57 
58 /* Bits status indicators for health bitmap indicating unflushed dimm */
59 #define PAPR_PMEM_BAD_SHUTDOWN_MASK (PAPR_PMEM_SHUTDOWN_DIRTY)
60 
61 /* Bits status indicators for health bitmap indicating unrestored dimm */
62 #define PAPR_PMEM_BAD_RESTORE_MASK  (PAPR_PMEM_EMPTY)
63 
64 /* Bit status indicators for smart event notification */
65 #define PAPR_PMEM_SMART_EVENT_MASK (PAPR_PMEM_HEALTH_CRITICAL | \
66 				    PAPR_PMEM_HEALTH_FATAL |	\
67 				    PAPR_PMEM_HEALTH_UNHEALTHY)
68 
69 #define PAPR_SCM_PERF_STATS_EYECATCHER __stringify(SCMSTATS)
70 #define PAPR_SCM_PERF_STATS_VERSION 0x1
71 
72 /* Struct holding a single performance metric */
73 struct papr_scm_perf_stat {
74 	u8 stat_id[8];
75 	__be64 stat_val;
76 } __packed;
77 
78 /* Struct exchanged between kernel and PHYP for fetching drc perf stats */
79 struct papr_scm_perf_stats {
80 	u8 eye_catcher[8];
81 	/* Should be PAPR_SCM_PERF_STATS_VERSION */
82 	__be32 stats_version;
83 	/* Number of stats following */
84 	__be32 num_statistics;
85 	/* zero or more performance matrics */
86 	struct papr_scm_perf_stat scm_statistic[];
87 } __packed;
88 
89 /* private struct associated with each region */
90 struct papr_scm_priv {
91 	struct platform_device *pdev;
92 	struct device_node *dn;
93 	uint32_t drc_index;
94 	uint64_t blocks;
95 	uint64_t block_size;
96 	int metadata_size;
97 	bool is_volatile;
98 	bool hcall_flush_required;
99 
100 	uint64_t bound_addr;
101 
102 	struct nvdimm_bus_descriptor bus_desc;
103 	struct nvdimm_bus *bus;
104 	struct nvdimm *nvdimm;
105 	struct resource res;
106 	struct nd_region *region;
107 	struct nd_interleave_set nd_set;
108 	struct list_head region_list;
109 
110 	/* Protect dimm health data from concurrent read/writes */
111 	struct mutex health_mutex;
112 
113 	/* Last time the health information of the dimm was updated */
114 	unsigned long lasthealth_jiffies;
115 
116 	/* Health information for the dimm */
117 	u64 health_bitmap;
118 
119 	/* Holds the last known dirty shutdown counter value */
120 	u64 dirty_shutdown_counter;
121 
122 	/* length of the stat buffer as expected by phyp */
123 	size_t stat_buffer_len;
124 
125 	/* The bits which needs to be overridden */
126 	u64 health_bitmap_inject_mask;
127 
128 	 /* array to have event_code and stat_id mappings */
129 	char **nvdimm_events_map;
130 };
131 
132 static int papr_scm_pmem_flush(struct nd_region *nd_region,
133 			       struct bio *bio __maybe_unused)
134 {
135 	struct papr_scm_priv *p = nd_region_provider_data(nd_region);
136 	unsigned long ret_buf[PLPAR_HCALL_BUFSIZE], token = 0;
137 	long rc;
138 
139 	dev_dbg(&p->pdev->dev, "flush drc 0x%x", p->drc_index);
140 
141 	do {
142 		rc = plpar_hcall(H_SCM_FLUSH, ret_buf, p->drc_index, token);
143 		token = ret_buf[0];
144 
145 		/* Check if we are stalled for some time */
146 		if (H_IS_LONG_BUSY(rc)) {
147 			msleep(get_longbusy_msecs(rc));
148 			rc = H_BUSY;
149 		} else if (rc == H_BUSY) {
150 			cond_resched();
151 		}
152 	} while (rc == H_BUSY);
153 
154 	if (rc) {
155 		dev_err(&p->pdev->dev, "flush error: %ld", rc);
156 		rc = -EIO;
157 	} else {
158 		dev_dbg(&p->pdev->dev, "flush drc 0x%x complete", p->drc_index);
159 	}
160 
161 	return rc;
162 }
163 
164 static LIST_HEAD(papr_nd_regions);
165 static DEFINE_MUTEX(papr_ndr_lock);
166 
167 static int drc_pmem_bind(struct papr_scm_priv *p)
168 {
169 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
170 	uint64_t saved = 0;
171 	uint64_t token;
172 	int64_t rc;
173 
174 	/*
175 	 * When the hypervisor cannot map all the requested memory in a single
176 	 * hcall it returns H_BUSY and we call again with the token until
177 	 * we get H_SUCCESS. Aborting the retry loop before getting H_SUCCESS
178 	 * leave the system in an undefined state, so we wait.
179 	 */
180 	token = 0;
181 
182 	do {
183 		rc = plpar_hcall(H_SCM_BIND_MEM, ret, p->drc_index, 0,
184 				p->blocks, BIND_ANY_ADDR, token);
185 		token = ret[0];
186 		if (!saved)
187 			saved = ret[1];
188 		cond_resched();
189 	} while (rc == H_BUSY);
190 
191 	if (rc)
192 		return rc;
193 
194 	p->bound_addr = saved;
195 	dev_dbg(&p->pdev->dev, "bound drc 0x%x to 0x%lx\n",
196 		p->drc_index, (unsigned long)saved);
197 	return rc;
198 }
199 
200 static void drc_pmem_unbind(struct papr_scm_priv *p)
201 {
202 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
203 	uint64_t token = 0;
204 	int64_t rc;
205 
206 	dev_dbg(&p->pdev->dev, "unbind drc 0x%x\n", p->drc_index);
207 
208 	/* NB: unbind has the same retry requirements as drc_pmem_bind() */
209 	do {
210 
211 		/* Unbind of all SCM resources associated with drcIndex */
212 		rc = plpar_hcall(H_SCM_UNBIND_ALL, ret, H_UNBIND_SCOPE_DRC,
213 				 p->drc_index, token);
214 		token = ret[0];
215 
216 		/* Check if we are stalled for some time */
217 		if (H_IS_LONG_BUSY(rc)) {
218 			msleep(get_longbusy_msecs(rc));
219 			rc = H_BUSY;
220 		} else if (rc == H_BUSY) {
221 			cond_resched();
222 		}
223 
224 	} while (rc == H_BUSY);
225 
226 	if (rc)
227 		dev_err(&p->pdev->dev, "unbind error: %lld\n", rc);
228 	else
229 		dev_dbg(&p->pdev->dev, "unbind drc 0x%x complete\n",
230 			p->drc_index);
231 
232 	return;
233 }
234 
235 static int drc_pmem_query_n_bind(struct papr_scm_priv *p)
236 {
237 	unsigned long start_addr;
238 	unsigned long end_addr;
239 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
240 	int64_t rc;
241 
242 
243 	rc = plpar_hcall(H_SCM_QUERY_BLOCK_MEM_BINDING, ret,
244 			 p->drc_index, 0);
245 	if (rc)
246 		goto err_out;
247 	start_addr = ret[0];
248 
249 	/* Make sure the full region is bound. */
250 	rc = plpar_hcall(H_SCM_QUERY_BLOCK_MEM_BINDING, ret,
251 			 p->drc_index, p->blocks - 1);
252 	if (rc)
253 		goto err_out;
254 	end_addr = ret[0];
255 
256 	if ((end_addr - start_addr) != ((p->blocks - 1) * p->block_size))
257 		goto err_out;
258 
259 	p->bound_addr = start_addr;
260 	dev_dbg(&p->pdev->dev, "bound drc 0x%x to 0x%lx\n", p->drc_index, start_addr);
261 	return rc;
262 
263 err_out:
264 	dev_info(&p->pdev->dev,
265 		 "Failed to query, trying an unbind followed by bind");
266 	drc_pmem_unbind(p);
267 	return drc_pmem_bind(p);
268 }
269 
270 /*
271  * Query the Dimm performance stats from PHYP and copy them (if returned) to
272  * provided struct papr_scm_perf_stats instance 'stats' that can hold atleast
273  * (num_stats + header) bytes.
274  * - If buff_stats == NULL the return value is the size in bytes of the buffer
275  * needed to hold all supported performance-statistics.
276  * - If buff_stats != NULL and num_stats == 0 then we copy all known
277  * performance-statistics to 'buff_stat' and expect to be large enough to
278  * hold them.
279  * - if buff_stats != NULL and num_stats > 0 then copy the requested
280  * performance-statistics to buff_stats.
281  */
282 static ssize_t drc_pmem_query_stats(struct papr_scm_priv *p,
283 				    struct papr_scm_perf_stats *buff_stats,
284 				    unsigned int num_stats)
285 {
286 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
287 	size_t size;
288 	s64 rc;
289 
290 	/* Setup the out buffer */
291 	if (buff_stats) {
292 		memcpy(buff_stats->eye_catcher,
293 		       PAPR_SCM_PERF_STATS_EYECATCHER, 8);
294 		buff_stats->stats_version =
295 			cpu_to_be32(PAPR_SCM_PERF_STATS_VERSION);
296 		buff_stats->num_statistics =
297 			cpu_to_be32(num_stats);
298 
299 		/*
300 		 * Calculate the buffer size based on num-stats provided
301 		 * or use the prefetched max buffer length
302 		 */
303 		if (num_stats)
304 			/* Calculate size from the num_stats */
305 			size = sizeof(struct papr_scm_perf_stats) +
306 				num_stats * sizeof(struct papr_scm_perf_stat);
307 		else
308 			size = p->stat_buffer_len;
309 	} else {
310 		/* In case of no out buffer ignore the size */
311 		size = 0;
312 	}
313 
314 	/* Do the HCALL asking PHYP for info */
315 	rc = plpar_hcall(H_SCM_PERFORMANCE_STATS, ret, p->drc_index,
316 			 buff_stats ? virt_to_phys(buff_stats) : 0,
317 			 size);
318 
319 	/* Check if the error was due to an unknown stat-id */
320 	if (rc == H_PARTIAL) {
321 		dev_err(&p->pdev->dev,
322 			"Unknown performance stats, Err:0x%016lX\n", ret[0]);
323 		return -ENOENT;
324 	} else if (rc == H_AUTHORITY) {
325 		dev_info(&p->pdev->dev,
326 			 "Permission denied while accessing performance stats");
327 		return -EPERM;
328 	} else if (rc == H_UNSUPPORTED) {
329 		dev_dbg(&p->pdev->dev, "Performance stats unsupported\n");
330 		return -EOPNOTSUPP;
331 	} else if (rc != H_SUCCESS) {
332 		dev_err(&p->pdev->dev,
333 			"Failed to query performance stats, Err:%lld\n", rc);
334 		return -EIO;
335 
336 	} else if (!size) {
337 		/* Handle case where stat buffer size was requested */
338 		dev_dbg(&p->pdev->dev,
339 			"Performance stats size %ld\n", ret[0]);
340 		return ret[0];
341 	}
342 
343 	/* Successfully fetched the requested stats from phyp */
344 	dev_dbg(&p->pdev->dev,
345 		"Performance stats returned %d stats\n",
346 		be32_to_cpu(buff_stats->num_statistics));
347 	return 0;
348 }
349 
350 #ifdef CONFIG_PERF_EVENTS
351 #define to_nvdimm_pmu(_pmu)	container_of(_pmu, struct nvdimm_pmu, pmu)
352 
353 static int papr_scm_pmu_get_value(struct perf_event *event, struct device *dev, u64 *count)
354 {
355 	struct papr_scm_perf_stat *stat;
356 	struct papr_scm_perf_stats *stats;
357 	struct papr_scm_priv *p = (struct papr_scm_priv *)dev->driver_data;
358 	int rc, size;
359 
360 	/* Allocate request buffer enough to hold single performance stat */
361 	size = sizeof(struct papr_scm_perf_stats) +
362 		sizeof(struct papr_scm_perf_stat);
363 
364 	if (!p || !p->nvdimm_events_map)
365 		return -EINVAL;
366 
367 	stats = kzalloc(size, GFP_KERNEL);
368 	if (!stats)
369 		return -ENOMEM;
370 
371 	stat = &stats->scm_statistic[0];
372 	memcpy(&stat->stat_id,
373 	       p->nvdimm_events_map[event->attr.config],
374 		sizeof(stat->stat_id));
375 	stat->stat_val = 0;
376 
377 	rc = drc_pmem_query_stats(p, stats, 1);
378 	if (rc < 0) {
379 		kfree(stats);
380 		return rc;
381 	}
382 
383 	*count = be64_to_cpu(stat->stat_val);
384 	kfree(stats);
385 	return 0;
386 }
387 
388 static int papr_scm_pmu_event_init(struct perf_event *event)
389 {
390 	struct nvdimm_pmu *nd_pmu = to_nvdimm_pmu(event->pmu);
391 	struct papr_scm_priv *p;
392 
393 	if (!nd_pmu)
394 		return -EINVAL;
395 
396 	/* test the event attr type for PMU enumeration */
397 	if (event->attr.type != event->pmu->type)
398 		return -ENOENT;
399 
400 	/* it does not support event sampling mode */
401 	if (is_sampling_event(event))
402 		return -EOPNOTSUPP;
403 
404 	/* no branch sampling */
405 	if (has_branch_stack(event))
406 		return -EOPNOTSUPP;
407 
408 	p = (struct papr_scm_priv *)nd_pmu->dev->driver_data;
409 	if (!p)
410 		return -EINVAL;
411 
412 	/* Invalid eventcode */
413 	if (event->attr.config == 0 || event->attr.config > 16)
414 		return -EINVAL;
415 
416 	return 0;
417 }
418 
419 static int papr_scm_pmu_add(struct perf_event *event, int flags)
420 {
421 	u64 count;
422 	int rc;
423 	struct nvdimm_pmu *nd_pmu = to_nvdimm_pmu(event->pmu);
424 
425 	if (!nd_pmu)
426 		return -EINVAL;
427 
428 	if (flags & PERF_EF_START) {
429 		rc = papr_scm_pmu_get_value(event, nd_pmu->dev, &count);
430 		if (rc)
431 			return rc;
432 
433 		local64_set(&event->hw.prev_count, count);
434 	}
435 
436 	return 0;
437 }
438 
439 static void papr_scm_pmu_read(struct perf_event *event)
440 {
441 	u64 prev, now;
442 	int rc;
443 	struct nvdimm_pmu *nd_pmu = to_nvdimm_pmu(event->pmu);
444 
445 	if (!nd_pmu)
446 		return;
447 
448 	rc = papr_scm_pmu_get_value(event, nd_pmu->dev, &now);
449 	if (rc)
450 		return;
451 
452 	prev = local64_xchg(&event->hw.prev_count, now);
453 	local64_add(now - prev, &event->count);
454 }
455 
456 static void papr_scm_pmu_del(struct perf_event *event, int flags)
457 {
458 	papr_scm_pmu_read(event);
459 }
460 
461 static int papr_scm_pmu_check_events(struct papr_scm_priv *p, struct nvdimm_pmu *nd_pmu)
462 {
463 	struct papr_scm_perf_stat *stat;
464 	struct papr_scm_perf_stats *stats;
465 	char *statid;
466 	int index, rc, count;
467 	u32 available_events;
468 
469 	if (!p->stat_buffer_len)
470 		return -ENOENT;
471 
472 	available_events = (p->stat_buffer_len  - sizeof(struct papr_scm_perf_stats))
473 			/ sizeof(struct papr_scm_perf_stat);
474 
475 	/* Allocate the buffer for phyp where stats are written */
476 	stats = kzalloc(p->stat_buffer_len, GFP_KERNEL);
477 	if (!stats) {
478 		rc = -ENOMEM;
479 		return rc;
480 	}
481 
482 	/* Allocate memory to nvdimm_event_map */
483 	p->nvdimm_events_map = kcalloc(available_events, sizeof(char *), GFP_KERNEL);
484 	if (!p->nvdimm_events_map) {
485 		rc = -ENOMEM;
486 		goto out_stats;
487 	}
488 
489 	/* Called to get list of events supported */
490 	rc = drc_pmem_query_stats(p, stats, 0);
491 	if (rc)
492 		goto out_nvdimm_events_map;
493 
494 	for (index = 0, stat = stats->scm_statistic, count = 0;
495 		     index < available_events; index++, ++stat) {
496 		statid = kzalloc(strlen(stat->stat_id) + 1, GFP_KERNEL);
497 		if (!statid) {
498 			rc = -ENOMEM;
499 			goto out_nvdimm_events_map;
500 		}
501 
502 		strcpy(statid, stat->stat_id);
503 		p->nvdimm_events_map[count] = statid;
504 		count++;
505 	}
506 	p->nvdimm_events_map[count] = NULL;
507 	kfree(stats);
508 	return 0;
509 
510 out_nvdimm_events_map:
511 	kfree(p->nvdimm_events_map);
512 out_stats:
513 	kfree(stats);
514 	return rc;
515 }
516 
517 static void papr_scm_pmu_register(struct papr_scm_priv *p)
518 {
519 	struct nvdimm_pmu *nd_pmu;
520 	int rc, nodeid;
521 
522 	nd_pmu = kzalloc(sizeof(*nd_pmu), GFP_KERNEL);
523 	if (!nd_pmu) {
524 		rc = -ENOMEM;
525 		goto pmu_err_print;
526 	}
527 
528 	rc = papr_scm_pmu_check_events(p, nd_pmu);
529 	if (rc)
530 		goto pmu_check_events_err;
531 
532 	nd_pmu->pmu.task_ctx_nr = perf_invalid_context;
533 	nd_pmu->pmu.name = nvdimm_name(p->nvdimm);
534 	nd_pmu->pmu.event_init = papr_scm_pmu_event_init;
535 	nd_pmu->pmu.read = papr_scm_pmu_read;
536 	nd_pmu->pmu.add = papr_scm_pmu_add;
537 	nd_pmu->pmu.del = papr_scm_pmu_del;
538 
539 	nd_pmu->pmu.capabilities = PERF_PMU_CAP_NO_INTERRUPT |
540 				PERF_PMU_CAP_NO_EXCLUDE;
541 
542 	/*updating the cpumask variable */
543 	nodeid = numa_map_to_online_node(dev_to_node(&p->pdev->dev));
544 	nd_pmu->arch_cpumask = *cpumask_of_node(nodeid);
545 
546 	rc = register_nvdimm_pmu(nd_pmu, p->pdev);
547 	if (rc)
548 		goto pmu_register_err;
549 
550 	/*
551 	 * Set archdata.priv value to nvdimm_pmu structure, to handle the
552 	 * unregistering of pmu device.
553 	 */
554 	p->pdev->archdata.priv = nd_pmu;
555 	return;
556 
557 pmu_register_err:
558 	kfree(p->nvdimm_events_map);
559 pmu_check_events_err:
560 	kfree(nd_pmu);
561 pmu_err_print:
562 	dev_info(&p->pdev->dev, "nvdimm pmu didn't register rc=%d\n", rc);
563 }
564 
565 #else
566 static void papr_scm_pmu_register(struct papr_scm_priv *p) { }
567 #endif
568 
569 /*
570  * Issue hcall to retrieve dimm health info and populate papr_scm_priv with the
571  * health information.
572  */
573 static int __drc_pmem_query_health(struct papr_scm_priv *p)
574 {
575 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
576 	u64 bitmap = 0;
577 	long rc;
578 
579 	/* issue the hcall */
580 	rc = plpar_hcall(H_SCM_HEALTH, ret, p->drc_index);
581 	if (rc == H_SUCCESS)
582 		bitmap = ret[0] & ret[1];
583 	else if (rc == H_FUNCTION)
584 		dev_info_once(&p->pdev->dev,
585 			      "Hcall H_SCM_HEALTH not implemented, assuming empty health bitmap");
586 	else {
587 
588 		dev_err(&p->pdev->dev,
589 			"Failed to query health information, Err:%ld\n", rc);
590 		return -ENXIO;
591 	}
592 
593 	p->lasthealth_jiffies = jiffies;
594 	/* Allow injecting specific health bits via inject mask. */
595 	if (p->health_bitmap_inject_mask)
596 		bitmap = (bitmap & ~p->health_bitmap_inject_mask) |
597 			p->health_bitmap_inject_mask;
598 	WRITE_ONCE(p->health_bitmap, bitmap);
599 	dev_dbg(&p->pdev->dev,
600 		"Queried dimm health info. Bitmap:0x%016lx Mask:0x%016lx\n",
601 		ret[0], ret[1]);
602 
603 	return 0;
604 }
605 
606 /* Min interval in seconds for assuming stable dimm health */
607 #define MIN_HEALTH_QUERY_INTERVAL 60
608 
609 /* Query cached health info and if needed call drc_pmem_query_health */
610 static int drc_pmem_query_health(struct papr_scm_priv *p)
611 {
612 	unsigned long cache_timeout;
613 	int rc;
614 
615 	/* Protect concurrent modifications to papr_scm_priv */
616 	rc = mutex_lock_interruptible(&p->health_mutex);
617 	if (rc)
618 		return rc;
619 
620 	/* Jiffies offset for which the health data is assumed to be same */
621 	cache_timeout = p->lasthealth_jiffies +
622 		msecs_to_jiffies(MIN_HEALTH_QUERY_INTERVAL * 1000);
623 
624 	/* Fetch new health info is its older than MIN_HEALTH_QUERY_INTERVAL */
625 	if (time_after(jiffies, cache_timeout))
626 		rc = __drc_pmem_query_health(p);
627 	else
628 		/* Assume cached health data is valid */
629 		rc = 0;
630 
631 	mutex_unlock(&p->health_mutex);
632 	return rc;
633 }
634 
635 static int papr_scm_meta_get(struct papr_scm_priv *p,
636 			     struct nd_cmd_get_config_data_hdr *hdr)
637 {
638 	unsigned long data[PLPAR_HCALL_BUFSIZE];
639 	unsigned long offset, data_offset;
640 	int len, read;
641 	int64_t ret;
642 
643 	if ((hdr->in_offset + hdr->in_length) > p->metadata_size)
644 		return -EINVAL;
645 
646 	for (len = hdr->in_length; len; len -= read) {
647 
648 		data_offset = hdr->in_length - len;
649 		offset = hdr->in_offset + data_offset;
650 
651 		if (len >= 8)
652 			read = 8;
653 		else if (len >= 4)
654 			read = 4;
655 		else if (len >= 2)
656 			read = 2;
657 		else
658 			read = 1;
659 
660 		ret = plpar_hcall(H_SCM_READ_METADATA, data, p->drc_index,
661 				  offset, read);
662 
663 		if (ret == H_PARAMETER) /* bad DRC index */
664 			return -ENODEV;
665 		if (ret)
666 			return -EINVAL; /* other invalid parameter */
667 
668 		switch (read) {
669 		case 8:
670 			*(uint64_t *)(hdr->out_buf + data_offset) = be64_to_cpu(data[0]);
671 			break;
672 		case 4:
673 			*(uint32_t *)(hdr->out_buf + data_offset) = be32_to_cpu(data[0] & 0xffffffff);
674 			break;
675 
676 		case 2:
677 			*(uint16_t *)(hdr->out_buf + data_offset) = be16_to_cpu(data[0] & 0xffff);
678 			break;
679 
680 		case 1:
681 			*(uint8_t *)(hdr->out_buf + data_offset) = (data[0] & 0xff);
682 			break;
683 		}
684 	}
685 	return 0;
686 }
687 
688 static int papr_scm_meta_set(struct papr_scm_priv *p,
689 			     struct nd_cmd_set_config_hdr *hdr)
690 {
691 	unsigned long offset, data_offset;
692 	int len, wrote;
693 	unsigned long data;
694 	__be64 data_be;
695 	int64_t ret;
696 
697 	if ((hdr->in_offset + hdr->in_length) > p->metadata_size)
698 		return -EINVAL;
699 
700 	for (len = hdr->in_length; len; len -= wrote) {
701 
702 		data_offset = hdr->in_length - len;
703 		offset = hdr->in_offset + data_offset;
704 
705 		if (len >= 8) {
706 			data = *(uint64_t *)(hdr->in_buf + data_offset);
707 			data_be = cpu_to_be64(data);
708 			wrote = 8;
709 		} else if (len >= 4) {
710 			data = *(uint32_t *)(hdr->in_buf + data_offset);
711 			data &= 0xffffffff;
712 			data_be = cpu_to_be32(data);
713 			wrote = 4;
714 		} else if (len >= 2) {
715 			data = *(uint16_t *)(hdr->in_buf + data_offset);
716 			data &= 0xffff;
717 			data_be = cpu_to_be16(data);
718 			wrote = 2;
719 		} else {
720 			data_be = *(uint8_t *)(hdr->in_buf + data_offset);
721 			data_be &= 0xff;
722 			wrote = 1;
723 		}
724 
725 		ret = plpar_hcall_norets(H_SCM_WRITE_METADATA, p->drc_index,
726 					 offset, data_be, wrote);
727 		if (ret == H_PARAMETER) /* bad DRC index */
728 			return -ENODEV;
729 		if (ret)
730 			return -EINVAL; /* other invalid parameter */
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Do a sanity checks on the inputs args to dimm-control function and return
738  * '0' if valid. Validation of PDSM payloads happens later in
739  * papr_scm_service_pdsm.
740  */
741 static int is_cmd_valid(struct nvdimm *nvdimm, unsigned int cmd, void *buf,
742 			unsigned int buf_len)
743 {
744 	unsigned long cmd_mask = PAPR_SCM_DIMM_CMD_MASK;
745 	struct nd_cmd_pkg *nd_cmd;
746 	struct papr_scm_priv *p;
747 	enum papr_pdsm pdsm;
748 
749 	/* Only dimm-specific calls are supported atm */
750 	if (!nvdimm)
751 		return -EINVAL;
752 
753 	/* get the provider data from struct nvdimm */
754 	p = nvdimm_provider_data(nvdimm);
755 
756 	if (!test_bit(cmd, &cmd_mask)) {
757 		dev_dbg(&p->pdev->dev, "Unsupported cmd=%u\n", cmd);
758 		return -EINVAL;
759 	}
760 
761 	/* For CMD_CALL verify pdsm request */
762 	if (cmd == ND_CMD_CALL) {
763 		/* Verify the envelope and envelop size */
764 		if (!buf ||
765 		    buf_len < (sizeof(struct nd_cmd_pkg) + ND_PDSM_HDR_SIZE)) {
766 			dev_dbg(&p->pdev->dev, "Invalid pkg size=%u\n",
767 				buf_len);
768 			return -EINVAL;
769 		}
770 
771 		/* Verify that the nd_cmd_pkg.nd_family is correct */
772 		nd_cmd = (struct nd_cmd_pkg *)buf;
773 
774 		if (nd_cmd->nd_family != NVDIMM_FAMILY_PAPR) {
775 			dev_dbg(&p->pdev->dev, "Invalid pkg family=0x%llx\n",
776 				nd_cmd->nd_family);
777 			return -EINVAL;
778 		}
779 
780 		pdsm = (enum papr_pdsm)nd_cmd->nd_command;
781 
782 		/* Verify if the pdsm command is valid */
783 		if (pdsm <= PAPR_PDSM_MIN || pdsm >= PAPR_PDSM_MAX) {
784 			dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid PDSM\n",
785 				pdsm);
786 			return -EINVAL;
787 		}
788 
789 		/* Have enough space to hold returned 'nd_pkg_pdsm' header */
790 		if (nd_cmd->nd_size_out < ND_PDSM_HDR_SIZE) {
791 			dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid payload\n",
792 				pdsm);
793 			return -EINVAL;
794 		}
795 	}
796 
797 	/* Let the command be further processed */
798 	return 0;
799 }
800 
801 static int papr_pdsm_fuel_gauge(struct papr_scm_priv *p,
802 				union nd_pdsm_payload *payload)
803 {
804 	int rc, size;
805 	u64 statval;
806 	struct papr_scm_perf_stat *stat;
807 	struct papr_scm_perf_stats *stats;
808 
809 	/* Silently fail if fetching performance metrics isn't  supported */
810 	if (!p->stat_buffer_len)
811 		return 0;
812 
813 	/* Allocate request buffer enough to hold single performance stat */
814 	size = sizeof(struct papr_scm_perf_stats) +
815 		sizeof(struct papr_scm_perf_stat);
816 
817 	stats = kzalloc(size, GFP_KERNEL);
818 	if (!stats)
819 		return -ENOMEM;
820 
821 	stat = &stats->scm_statistic[0];
822 	memcpy(&stat->stat_id, "MemLife ", sizeof(stat->stat_id));
823 	stat->stat_val = 0;
824 
825 	/* Fetch the fuel gauge and populate it in payload */
826 	rc = drc_pmem_query_stats(p, stats, 1);
827 	if (rc < 0) {
828 		dev_dbg(&p->pdev->dev, "Err(%d) fetching fuel gauge\n", rc);
829 		goto free_stats;
830 	}
831 
832 	statval = be64_to_cpu(stat->stat_val);
833 	dev_dbg(&p->pdev->dev,
834 		"Fetched fuel-gauge %llu", statval);
835 	payload->health.extension_flags |=
836 		PDSM_DIMM_HEALTH_RUN_GAUGE_VALID;
837 	payload->health.dimm_fuel_gauge = statval;
838 
839 	rc = sizeof(struct nd_papr_pdsm_health);
840 
841 free_stats:
842 	kfree(stats);
843 	return rc;
844 }
845 
846 /* Add the dirty-shutdown-counter value to the pdsm */
847 static int papr_pdsm_dsc(struct papr_scm_priv *p,
848 			 union nd_pdsm_payload *payload)
849 {
850 	payload->health.extension_flags |= PDSM_DIMM_DSC_VALID;
851 	payload->health.dimm_dsc = p->dirty_shutdown_counter;
852 
853 	return sizeof(struct nd_papr_pdsm_health);
854 }
855 
856 /* Fetch the DIMM health info and populate it in provided package. */
857 static int papr_pdsm_health(struct papr_scm_priv *p,
858 			    union nd_pdsm_payload *payload)
859 {
860 	int rc;
861 
862 	/* Ensure dimm health mutex is taken preventing concurrent access */
863 	rc = mutex_lock_interruptible(&p->health_mutex);
864 	if (rc)
865 		goto out;
866 
867 	/* Always fetch upto date dimm health data ignoring cached values */
868 	rc = __drc_pmem_query_health(p);
869 	if (rc) {
870 		mutex_unlock(&p->health_mutex);
871 		goto out;
872 	}
873 
874 	/* update health struct with various flags derived from health bitmap */
875 	payload->health = (struct nd_papr_pdsm_health) {
876 		.extension_flags = 0,
877 		.dimm_unarmed = !!(p->health_bitmap & PAPR_PMEM_UNARMED_MASK),
878 		.dimm_bad_shutdown = !!(p->health_bitmap & PAPR_PMEM_BAD_SHUTDOWN_MASK),
879 		.dimm_bad_restore = !!(p->health_bitmap & PAPR_PMEM_BAD_RESTORE_MASK),
880 		.dimm_scrubbed = !!(p->health_bitmap & PAPR_PMEM_SCRUBBED_AND_LOCKED),
881 		.dimm_locked = !!(p->health_bitmap & PAPR_PMEM_SCRUBBED_AND_LOCKED),
882 		.dimm_encrypted = !!(p->health_bitmap & PAPR_PMEM_ENCRYPTED),
883 		.dimm_health = PAPR_PDSM_DIMM_HEALTHY,
884 	};
885 
886 	/* Update field dimm_health based on health_bitmap flags */
887 	if (p->health_bitmap & PAPR_PMEM_HEALTH_FATAL)
888 		payload->health.dimm_health = PAPR_PDSM_DIMM_FATAL;
889 	else if (p->health_bitmap & PAPR_PMEM_HEALTH_CRITICAL)
890 		payload->health.dimm_health = PAPR_PDSM_DIMM_CRITICAL;
891 	else if (p->health_bitmap & PAPR_PMEM_HEALTH_UNHEALTHY)
892 		payload->health.dimm_health = PAPR_PDSM_DIMM_UNHEALTHY;
893 
894 	/* struct populated hence can release the mutex now */
895 	mutex_unlock(&p->health_mutex);
896 
897 	/* Populate the fuel gauge meter in the payload */
898 	papr_pdsm_fuel_gauge(p, payload);
899 	/* Populate the dirty-shutdown-counter field */
900 	papr_pdsm_dsc(p, payload);
901 
902 	rc = sizeof(struct nd_papr_pdsm_health);
903 
904 out:
905 	return rc;
906 }
907 
908 /* Inject a smart error Add the dirty-shutdown-counter value to the pdsm */
909 static int papr_pdsm_smart_inject(struct papr_scm_priv *p,
910 				  union nd_pdsm_payload *payload)
911 {
912 	int rc;
913 	u32 supported_flags = 0;
914 	u64 inject_mask = 0, clear_mask = 0;
915 	u64 mask;
916 
917 	/* Check for individual smart error flags and update inject/clear masks */
918 	if (payload->smart_inject.flags & PDSM_SMART_INJECT_HEALTH_FATAL) {
919 		supported_flags |= PDSM_SMART_INJECT_HEALTH_FATAL;
920 		if (payload->smart_inject.fatal_enable)
921 			inject_mask |= PAPR_PMEM_HEALTH_FATAL;
922 		else
923 			clear_mask |= PAPR_PMEM_HEALTH_FATAL;
924 	}
925 
926 	if (payload->smart_inject.flags & PDSM_SMART_INJECT_BAD_SHUTDOWN) {
927 		supported_flags |= PDSM_SMART_INJECT_BAD_SHUTDOWN;
928 		if (payload->smart_inject.unsafe_shutdown_enable)
929 			inject_mask |= PAPR_PMEM_SHUTDOWN_DIRTY;
930 		else
931 			clear_mask |= PAPR_PMEM_SHUTDOWN_DIRTY;
932 	}
933 
934 	dev_dbg(&p->pdev->dev, "[Smart-inject] inject_mask=%#llx clear_mask=%#llx\n",
935 		inject_mask, clear_mask);
936 
937 	/* Prevent concurrent access to dimm health bitmap related members */
938 	rc = mutex_lock_interruptible(&p->health_mutex);
939 	if (rc)
940 		return rc;
941 
942 	/* Use inject/clear masks to set health_bitmap_inject_mask */
943 	mask = READ_ONCE(p->health_bitmap_inject_mask);
944 	mask = (mask & ~clear_mask) | inject_mask;
945 	WRITE_ONCE(p->health_bitmap_inject_mask, mask);
946 
947 	/* Invalidate cached health bitmap */
948 	p->lasthealth_jiffies = 0;
949 
950 	mutex_unlock(&p->health_mutex);
951 
952 	/* Return the supported flags back to userspace */
953 	payload->smart_inject.flags = supported_flags;
954 
955 	return sizeof(struct nd_papr_pdsm_health);
956 }
957 
958 /*
959  * 'struct pdsm_cmd_desc'
960  * Identifies supported PDSMs' expected length of in/out payloads
961  * and pdsm service function.
962  *
963  * size_in	: Size of input payload if any in the PDSM request.
964  * size_out	: Size of output payload if any in the PDSM request.
965  * service	: Service function for the PDSM request. Return semantics:
966  *		  rc < 0 : Error servicing PDSM and rc indicates the error.
967  *		  rc >=0 : Serviced successfully and 'rc' indicate number of
968  *			bytes written to payload.
969  */
970 struct pdsm_cmd_desc {
971 	u32 size_in;
972 	u32 size_out;
973 	int (*service)(struct papr_scm_priv *dimm,
974 		       union nd_pdsm_payload *payload);
975 };
976 
977 /* Holds all supported PDSMs' command descriptors */
978 static const struct pdsm_cmd_desc __pdsm_cmd_descriptors[] = {
979 	[PAPR_PDSM_MIN] = {
980 		.size_in = 0,
981 		.size_out = 0,
982 		.service = NULL,
983 	},
984 	/* New PDSM command descriptors to be added below */
985 
986 	[PAPR_PDSM_HEALTH] = {
987 		.size_in = 0,
988 		.size_out = sizeof(struct nd_papr_pdsm_health),
989 		.service = papr_pdsm_health,
990 	},
991 
992 	[PAPR_PDSM_SMART_INJECT] = {
993 		.size_in = sizeof(struct nd_papr_pdsm_smart_inject),
994 		.size_out = sizeof(struct nd_papr_pdsm_smart_inject),
995 		.service = papr_pdsm_smart_inject,
996 	},
997 	/* Empty */
998 	[PAPR_PDSM_MAX] = {
999 		.size_in = 0,
1000 		.size_out = 0,
1001 		.service = NULL,
1002 	},
1003 };
1004 
1005 /* Given a valid pdsm cmd return its command descriptor else return NULL */
1006 static inline const struct pdsm_cmd_desc *pdsm_cmd_desc(enum papr_pdsm cmd)
1007 {
1008 	if (cmd >= 0 || cmd < ARRAY_SIZE(__pdsm_cmd_descriptors))
1009 		return &__pdsm_cmd_descriptors[cmd];
1010 
1011 	return NULL;
1012 }
1013 
1014 /*
1015  * For a given pdsm request call an appropriate service function.
1016  * Returns errors if any while handling the pdsm command package.
1017  */
1018 static int papr_scm_service_pdsm(struct papr_scm_priv *p,
1019 				 struct nd_cmd_pkg *pkg)
1020 {
1021 	/* Get the PDSM header and PDSM command */
1022 	struct nd_pkg_pdsm *pdsm_pkg = (struct nd_pkg_pdsm *)pkg->nd_payload;
1023 	enum papr_pdsm pdsm = (enum papr_pdsm)pkg->nd_command;
1024 	const struct pdsm_cmd_desc *pdsc;
1025 	int rc;
1026 
1027 	/* Fetch corresponding pdsm descriptor for validation and servicing */
1028 	pdsc = pdsm_cmd_desc(pdsm);
1029 
1030 	/* Validate pdsm descriptor */
1031 	/* Ensure that reserved fields are 0 */
1032 	if (pdsm_pkg->reserved[0] || pdsm_pkg->reserved[1]) {
1033 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid reserved field\n",
1034 			pdsm);
1035 		return -EINVAL;
1036 	}
1037 
1038 	/* If pdsm expects some input, then ensure that the size_in matches */
1039 	if (pdsc->size_in &&
1040 	    pkg->nd_size_in != (pdsc->size_in + ND_PDSM_HDR_SIZE)) {
1041 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Mismatched size_in=%d\n",
1042 			pdsm, pkg->nd_size_in);
1043 		return -EINVAL;
1044 	}
1045 
1046 	/* If pdsm wants to return data, then ensure that  size_out matches */
1047 	if (pdsc->size_out &&
1048 	    pkg->nd_size_out != (pdsc->size_out + ND_PDSM_HDR_SIZE)) {
1049 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Mismatched size_out=%d\n",
1050 			pdsm, pkg->nd_size_out);
1051 		return -EINVAL;
1052 	}
1053 
1054 	/* Service the pdsm */
1055 	if (pdsc->service) {
1056 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Servicing..\n", pdsm);
1057 
1058 		rc = pdsc->service(p, &pdsm_pkg->payload);
1059 
1060 		if (rc < 0) {
1061 			/* error encountered while servicing pdsm */
1062 			pdsm_pkg->cmd_status = rc;
1063 			pkg->nd_fw_size = ND_PDSM_HDR_SIZE;
1064 		} else {
1065 			/* pdsm serviced and 'rc' bytes written to payload */
1066 			pdsm_pkg->cmd_status = 0;
1067 			pkg->nd_fw_size = ND_PDSM_HDR_SIZE + rc;
1068 		}
1069 	} else {
1070 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Unsupported PDSM request\n",
1071 			pdsm);
1072 		pdsm_pkg->cmd_status = -ENOENT;
1073 		pkg->nd_fw_size = ND_PDSM_HDR_SIZE;
1074 	}
1075 
1076 	return pdsm_pkg->cmd_status;
1077 }
1078 
1079 static int papr_scm_ndctl(struct nvdimm_bus_descriptor *nd_desc,
1080 			  struct nvdimm *nvdimm, unsigned int cmd, void *buf,
1081 			  unsigned int buf_len, int *cmd_rc)
1082 {
1083 	struct nd_cmd_get_config_size *get_size_hdr;
1084 	struct nd_cmd_pkg *call_pkg = NULL;
1085 	struct papr_scm_priv *p;
1086 	int rc;
1087 
1088 	rc = is_cmd_valid(nvdimm, cmd, buf, buf_len);
1089 	if (rc) {
1090 		pr_debug("Invalid cmd=0x%x. Err=%d\n", cmd, rc);
1091 		return rc;
1092 	}
1093 
1094 	/* Use a local variable in case cmd_rc pointer is NULL */
1095 	if (!cmd_rc)
1096 		cmd_rc = &rc;
1097 
1098 	p = nvdimm_provider_data(nvdimm);
1099 
1100 	switch (cmd) {
1101 	case ND_CMD_GET_CONFIG_SIZE:
1102 		get_size_hdr = buf;
1103 
1104 		get_size_hdr->status = 0;
1105 		get_size_hdr->max_xfer = 8;
1106 		get_size_hdr->config_size = p->metadata_size;
1107 		*cmd_rc = 0;
1108 		break;
1109 
1110 	case ND_CMD_GET_CONFIG_DATA:
1111 		*cmd_rc = papr_scm_meta_get(p, buf);
1112 		break;
1113 
1114 	case ND_CMD_SET_CONFIG_DATA:
1115 		*cmd_rc = papr_scm_meta_set(p, buf);
1116 		break;
1117 
1118 	case ND_CMD_CALL:
1119 		call_pkg = (struct nd_cmd_pkg *)buf;
1120 		*cmd_rc = papr_scm_service_pdsm(p, call_pkg);
1121 		break;
1122 
1123 	default:
1124 		dev_dbg(&p->pdev->dev, "Unknown command = %d\n", cmd);
1125 		return -EINVAL;
1126 	}
1127 
1128 	dev_dbg(&p->pdev->dev, "returned with cmd_rc = %d\n", *cmd_rc);
1129 
1130 	return 0;
1131 }
1132 
1133 static ssize_t health_bitmap_inject_show(struct device *dev,
1134 					 struct device_attribute *attr,
1135 					 char *buf)
1136 {
1137 	struct nvdimm *dimm = to_nvdimm(dev);
1138 	struct papr_scm_priv *p = nvdimm_provider_data(dimm);
1139 
1140 	return sprintf(buf, "%#llx\n",
1141 		       READ_ONCE(p->health_bitmap_inject_mask));
1142 }
1143 
1144 static DEVICE_ATTR_ADMIN_RO(health_bitmap_inject);
1145 
1146 static ssize_t perf_stats_show(struct device *dev,
1147 			       struct device_attribute *attr, char *buf)
1148 {
1149 	int index;
1150 	ssize_t rc;
1151 	struct seq_buf s;
1152 	struct papr_scm_perf_stat *stat;
1153 	struct papr_scm_perf_stats *stats;
1154 	struct nvdimm *dimm = to_nvdimm(dev);
1155 	struct papr_scm_priv *p = nvdimm_provider_data(dimm);
1156 
1157 	if (!p->stat_buffer_len)
1158 		return -ENOENT;
1159 
1160 	/* Allocate the buffer for phyp where stats are written */
1161 	stats = kzalloc(p->stat_buffer_len, GFP_KERNEL);
1162 	if (!stats)
1163 		return -ENOMEM;
1164 
1165 	/* Ask phyp to return all dimm perf stats */
1166 	rc = drc_pmem_query_stats(p, stats, 0);
1167 	if (rc)
1168 		goto free_stats;
1169 	/*
1170 	 * Go through the returned output buffer and print stats and
1171 	 * values. Since stat_id is essentially a char string of
1172 	 * 8 bytes, simply use the string format specifier to print it.
1173 	 */
1174 	seq_buf_init(&s, buf, PAGE_SIZE);
1175 	for (index = 0, stat = stats->scm_statistic;
1176 	     index < be32_to_cpu(stats->num_statistics);
1177 	     ++index, ++stat) {
1178 		seq_buf_printf(&s, "%.8s = 0x%016llX\n",
1179 			       stat->stat_id,
1180 			       be64_to_cpu(stat->stat_val));
1181 	}
1182 
1183 free_stats:
1184 	kfree(stats);
1185 	return rc ? rc : (ssize_t)seq_buf_used(&s);
1186 }
1187 static DEVICE_ATTR_ADMIN_RO(perf_stats);
1188 
1189 static ssize_t flags_show(struct device *dev,
1190 			  struct device_attribute *attr, char *buf)
1191 {
1192 	struct nvdimm *dimm = to_nvdimm(dev);
1193 	struct papr_scm_priv *p = nvdimm_provider_data(dimm);
1194 	struct seq_buf s;
1195 	u64 health;
1196 	int rc;
1197 
1198 	rc = drc_pmem_query_health(p);
1199 	if (rc)
1200 		return rc;
1201 
1202 	/* Copy health_bitmap locally, check masks & update out buffer */
1203 	health = READ_ONCE(p->health_bitmap);
1204 
1205 	seq_buf_init(&s, buf, PAGE_SIZE);
1206 	if (health & PAPR_PMEM_UNARMED_MASK)
1207 		seq_buf_printf(&s, "not_armed ");
1208 
1209 	if (health & PAPR_PMEM_BAD_SHUTDOWN_MASK)
1210 		seq_buf_printf(&s, "flush_fail ");
1211 
1212 	if (health & PAPR_PMEM_BAD_RESTORE_MASK)
1213 		seq_buf_printf(&s, "restore_fail ");
1214 
1215 	if (health & PAPR_PMEM_ENCRYPTED)
1216 		seq_buf_printf(&s, "encrypted ");
1217 
1218 	if (health & PAPR_PMEM_SMART_EVENT_MASK)
1219 		seq_buf_printf(&s, "smart_notify ");
1220 
1221 	if (health & PAPR_PMEM_SCRUBBED_AND_LOCKED)
1222 		seq_buf_printf(&s, "scrubbed locked ");
1223 
1224 	if (seq_buf_used(&s))
1225 		seq_buf_printf(&s, "\n");
1226 
1227 	return seq_buf_used(&s);
1228 }
1229 DEVICE_ATTR_RO(flags);
1230 
1231 static ssize_t dirty_shutdown_show(struct device *dev,
1232 			  struct device_attribute *attr, char *buf)
1233 {
1234 	struct nvdimm *dimm = to_nvdimm(dev);
1235 	struct papr_scm_priv *p = nvdimm_provider_data(dimm);
1236 
1237 	return sysfs_emit(buf, "%llu\n", p->dirty_shutdown_counter);
1238 }
1239 DEVICE_ATTR_RO(dirty_shutdown);
1240 
1241 static umode_t papr_nd_attribute_visible(struct kobject *kobj,
1242 					 struct attribute *attr, int n)
1243 {
1244 	struct device *dev = kobj_to_dev(kobj);
1245 	struct nvdimm *nvdimm = to_nvdimm(dev);
1246 	struct papr_scm_priv *p = nvdimm_provider_data(nvdimm);
1247 
1248 	/* For if perf-stats not available remove perf_stats sysfs */
1249 	if (attr == &dev_attr_perf_stats.attr && p->stat_buffer_len == 0)
1250 		return 0;
1251 
1252 	return attr->mode;
1253 }
1254 
1255 /* papr_scm specific dimm attributes */
1256 static struct attribute *papr_nd_attributes[] = {
1257 	&dev_attr_flags.attr,
1258 	&dev_attr_perf_stats.attr,
1259 	&dev_attr_dirty_shutdown.attr,
1260 	&dev_attr_health_bitmap_inject.attr,
1261 	NULL,
1262 };
1263 
1264 static const struct attribute_group papr_nd_attribute_group = {
1265 	.name = "papr",
1266 	.is_visible = papr_nd_attribute_visible,
1267 	.attrs = papr_nd_attributes,
1268 };
1269 
1270 static const struct attribute_group *papr_nd_attr_groups[] = {
1271 	&papr_nd_attribute_group,
1272 	NULL,
1273 };
1274 
1275 static int papr_scm_nvdimm_init(struct papr_scm_priv *p)
1276 {
1277 	struct device *dev = &p->pdev->dev;
1278 	struct nd_mapping_desc mapping;
1279 	struct nd_region_desc ndr_desc;
1280 	unsigned long dimm_flags;
1281 	int target_nid, online_nid;
1282 
1283 	p->bus_desc.ndctl = papr_scm_ndctl;
1284 	p->bus_desc.module = THIS_MODULE;
1285 	p->bus_desc.of_node = p->pdev->dev.of_node;
1286 	p->bus_desc.provider_name = kstrdup(p->pdev->name, GFP_KERNEL);
1287 
1288 	/* Set the dimm command family mask to accept PDSMs */
1289 	set_bit(NVDIMM_FAMILY_PAPR, &p->bus_desc.dimm_family_mask);
1290 
1291 	if (!p->bus_desc.provider_name)
1292 		return -ENOMEM;
1293 
1294 	p->bus = nvdimm_bus_register(NULL, &p->bus_desc);
1295 	if (!p->bus) {
1296 		dev_err(dev, "Error creating nvdimm bus %pOF\n", p->dn);
1297 		kfree(p->bus_desc.provider_name);
1298 		return -ENXIO;
1299 	}
1300 
1301 	dimm_flags = 0;
1302 	set_bit(NDD_LABELING, &dimm_flags);
1303 
1304 	/*
1305 	 * Check if the nvdimm is unarmed. No locking needed as we are still
1306 	 * initializing. Ignore error encountered if any.
1307 	 */
1308 	__drc_pmem_query_health(p);
1309 
1310 	if (p->health_bitmap & PAPR_PMEM_UNARMED_MASK)
1311 		set_bit(NDD_UNARMED, &dimm_flags);
1312 
1313 	p->nvdimm = nvdimm_create(p->bus, p, papr_nd_attr_groups,
1314 				  dimm_flags, PAPR_SCM_DIMM_CMD_MASK, 0, NULL);
1315 	if (!p->nvdimm) {
1316 		dev_err(dev, "Error creating DIMM object for %pOF\n", p->dn);
1317 		goto err;
1318 	}
1319 
1320 	if (nvdimm_bus_check_dimm_count(p->bus, 1))
1321 		goto err;
1322 
1323 	/* now add the region */
1324 
1325 	memset(&mapping, 0, sizeof(mapping));
1326 	mapping.nvdimm = p->nvdimm;
1327 	mapping.start = 0;
1328 	mapping.size = p->blocks * p->block_size; // XXX: potential overflow?
1329 
1330 	memset(&ndr_desc, 0, sizeof(ndr_desc));
1331 	target_nid = dev_to_node(&p->pdev->dev);
1332 	online_nid = numa_map_to_online_node(target_nid);
1333 	ndr_desc.numa_node = online_nid;
1334 	ndr_desc.target_node = target_nid;
1335 	ndr_desc.res = &p->res;
1336 	ndr_desc.of_node = p->dn;
1337 	ndr_desc.provider_data = p;
1338 	ndr_desc.mapping = &mapping;
1339 	ndr_desc.num_mappings = 1;
1340 	ndr_desc.nd_set = &p->nd_set;
1341 
1342 	if (p->hcall_flush_required) {
1343 		set_bit(ND_REGION_ASYNC, &ndr_desc.flags);
1344 		ndr_desc.flush = papr_scm_pmem_flush;
1345 	}
1346 
1347 	if (p->is_volatile)
1348 		p->region = nvdimm_volatile_region_create(p->bus, &ndr_desc);
1349 	else {
1350 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc.flags);
1351 		p->region = nvdimm_pmem_region_create(p->bus, &ndr_desc);
1352 	}
1353 	if (!p->region) {
1354 		dev_err(dev, "Error registering region %pR from %pOF\n",
1355 				ndr_desc.res, p->dn);
1356 		goto err;
1357 	}
1358 	if (target_nid != online_nid)
1359 		dev_info(dev, "Region registered with target node %d and online node %d",
1360 			 target_nid, online_nid);
1361 
1362 	mutex_lock(&papr_ndr_lock);
1363 	list_add_tail(&p->region_list, &papr_nd_regions);
1364 	mutex_unlock(&papr_ndr_lock);
1365 
1366 	return 0;
1367 
1368 err:	nvdimm_bus_unregister(p->bus);
1369 	kfree(p->bus_desc.provider_name);
1370 	return -ENXIO;
1371 }
1372 
1373 static void papr_scm_add_badblock(struct nd_region *region,
1374 				  struct nvdimm_bus *bus, u64 phys_addr)
1375 {
1376 	u64 aligned_addr = ALIGN_DOWN(phys_addr, L1_CACHE_BYTES);
1377 
1378 	if (nvdimm_bus_add_badrange(bus, aligned_addr, L1_CACHE_BYTES)) {
1379 		pr_err("Bad block registration for 0x%llx failed\n", phys_addr);
1380 		return;
1381 	}
1382 
1383 	pr_debug("Add memory range (0x%llx - 0x%llx) as bad range\n",
1384 		 aligned_addr, aligned_addr + L1_CACHE_BYTES);
1385 
1386 	nvdimm_region_notify(region, NVDIMM_REVALIDATE_POISON);
1387 }
1388 
1389 static int handle_mce_ue(struct notifier_block *nb, unsigned long val,
1390 			 void *data)
1391 {
1392 	struct machine_check_event *evt = data;
1393 	struct papr_scm_priv *p;
1394 	u64 phys_addr;
1395 	bool found = false;
1396 
1397 	if (evt->error_type != MCE_ERROR_TYPE_UE)
1398 		return NOTIFY_DONE;
1399 
1400 	if (list_empty(&papr_nd_regions))
1401 		return NOTIFY_DONE;
1402 
1403 	/*
1404 	 * The physical address obtained here is PAGE_SIZE aligned, so get the
1405 	 * exact address from the effective address
1406 	 */
1407 	phys_addr = evt->u.ue_error.physical_address +
1408 			(evt->u.ue_error.effective_address & ~PAGE_MASK);
1409 
1410 	if (!evt->u.ue_error.physical_address_provided ||
1411 	    !is_zone_device_page(pfn_to_page(phys_addr >> PAGE_SHIFT)))
1412 		return NOTIFY_DONE;
1413 
1414 	/* mce notifier is called from a process context, so mutex is safe */
1415 	mutex_lock(&papr_ndr_lock);
1416 	list_for_each_entry(p, &papr_nd_regions, region_list) {
1417 		if (phys_addr >= p->res.start && phys_addr <= p->res.end) {
1418 			found = true;
1419 			break;
1420 		}
1421 	}
1422 
1423 	if (found)
1424 		papr_scm_add_badblock(p->region, p->bus, phys_addr);
1425 
1426 	mutex_unlock(&papr_ndr_lock);
1427 
1428 	return found ? NOTIFY_OK : NOTIFY_DONE;
1429 }
1430 
1431 static struct notifier_block mce_ue_nb = {
1432 	.notifier_call = handle_mce_ue
1433 };
1434 
1435 static int papr_scm_probe(struct platform_device *pdev)
1436 {
1437 	struct device_node *dn = pdev->dev.of_node;
1438 	u32 drc_index, metadata_size;
1439 	u64 blocks, block_size;
1440 	struct papr_scm_priv *p;
1441 	u8 uuid_raw[UUID_SIZE];
1442 	const char *uuid_str;
1443 	ssize_t stat_size;
1444 	uuid_t uuid;
1445 	int rc;
1446 
1447 	/* check we have all the required DT properties */
1448 	if (of_property_read_u32(dn, "ibm,my-drc-index", &drc_index)) {
1449 		dev_err(&pdev->dev, "%pOF: missing drc-index!\n", dn);
1450 		return -ENODEV;
1451 	}
1452 
1453 	if (of_property_read_u64(dn, "ibm,block-size", &block_size)) {
1454 		dev_err(&pdev->dev, "%pOF: missing block-size!\n", dn);
1455 		return -ENODEV;
1456 	}
1457 
1458 	if (of_property_read_u64(dn, "ibm,number-of-blocks", &blocks)) {
1459 		dev_err(&pdev->dev, "%pOF: missing number-of-blocks!\n", dn);
1460 		return -ENODEV;
1461 	}
1462 
1463 	if (of_property_read_string(dn, "ibm,unit-guid", &uuid_str)) {
1464 		dev_err(&pdev->dev, "%pOF: missing unit-guid!\n", dn);
1465 		return -ENODEV;
1466 	}
1467 
1468 
1469 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1470 	if (!p)
1471 		return -ENOMEM;
1472 
1473 	/* Initialize the dimm mutex */
1474 	mutex_init(&p->health_mutex);
1475 
1476 	/* optional DT properties */
1477 	of_property_read_u32(dn, "ibm,metadata-size", &metadata_size);
1478 
1479 	p->dn = dn;
1480 	p->drc_index = drc_index;
1481 	p->block_size = block_size;
1482 	p->blocks = blocks;
1483 	p->is_volatile = !of_property_read_bool(dn, "ibm,cache-flush-required");
1484 	p->hcall_flush_required = of_property_read_bool(dn, "ibm,hcall-flush-required");
1485 
1486 	if (of_property_read_u64(dn, "ibm,persistence-failed-count",
1487 				 &p->dirty_shutdown_counter))
1488 		p->dirty_shutdown_counter = 0;
1489 
1490 	/* We just need to ensure that set cookies are unique across */
1491 	uuid_parse(uuid_str, &uuid);
1492 
1493 	/*
1494 	 * The cookie1 and cookie2 are not really little endian.
1495 	 * We store a raw buffer representation of the
1496 	 * uuid string so that we can compare this with the label
1497 	 * area cookie irrespective of the endian configuration
1498 	 * with which the kernel is built.
1499 	 *
1500 	 * Historically we stored the cookie in the below format.
1501 	 * for a uuid string 72511b67-0b3b-42fd-8d1d-5be3cae8bcaa
1502 	 *	cookie1 was 0xfd423b0b671b5172
1503 	 *	cookie2 was 0xaabce8cae35b1d8d
1504 	 */
1505 	export_uuid(uuid_raw, &uuid);
1506 	p->nd_set.cookie1 = get_unaligned_le64(&uuid_raw[0]);
1507 	p->nd_set.cookie2 = get_unaligned_le64(&uuid_raw[8]);
1508 
1509 	/* might be zero */
1510 	p->metadata_size = metadata_size;
1511 	p->pdev = pdev;
1512 
1513 	/* request the hypervisor to bind this region to somewhere in memory */
1514 	rc = drc_pmem_bind(p);
1515 
1516 	/* If phyp says drc memory still bound then force unbound and retry */
1517 	if (rc == H_OVERLAP)
1518 		rc = drc_pmem_query_n_bind(p);
1519 
1520 	if (rc != H_SUCCESS) {
1521 		dev_err(&p->pdev->dev, "bind err: %d\n", rc);
1522 		rc = -ENXIO;
1523 		goto err;
1524 	}
1525 
1526 	/* setup the resource for the newly bound range */
1527 	p->res.start = p->bound_addr;
1528 	p->res.end   = p->bound_addr + p->blocks * p->block_size - 1;
1529 	p->res.name  = pdev->name;
1530 	p->res.flags = IORESOURCE_MEM;
1531 
1532 	/* Try retrieving the stat buffer and see if its supported */
1533 	stat_size = drc_pmem_query_stats(p, NULL, 0);
1534 	if (stat_size > 0) {
1535 		p->stat_buffer_len = stat_size;
1536 		dev_dbg(&p->pdev->dev, "Max perf-stat size %lu-bytes\n",
1537 			p->stat_buffer_len);
1538 	}
1539 
1540 	rc = papr_scm_nvdimm_init(p);
1541 	if (rc)
1542 		goto err2;
1543 
1544 	platform_set_drvdata(pdev, p);
1545 	papr_scm_pmu_register(p);
1546 
1547 	return 0;
1548 
1549 err2:	drc_pmem_unbind(p);
1550 err:	kfree(p);
1551 	return rc;
1552 }
1553 
1554 static int papr_scm_remove(struct platform_device *pdev)
1555 {
1556 	struct papr_scm_priv *p = platform_get_drvdata(pdev);
1557 
1558 	mutex_lock(&papr_ndr_lock);
1559 	list_del(&p->region_list);
1560 	mutex_unlock(&papr_ndr_lock);
1561 
1562 	nvdimm_bus_unregister(p->bus);
1563 	drc_pmem_unbind(p);
1564 
1565 	if (pdev->archdata.priv)
1566 		unregister_nvdimm_pmu(pdev->archdata.priv);
1567 
1568 	pdev->archdata.priv = NULL;
1569 	kfree(p->nvdimm_events_map);
1570 	kfree(p->bus_desc.provider_name);
1571 	kfree(p);
1572 
1573 	return 0;
1574 }
1575 
1576 static const struct of_device_id papr_scm_match[] = {
1577 	{ .compatible = "ibm,pmemory" },
1578 	{ .compatible = "ibm,pmemory-v2" },
1579 	{ },
1580 };
1581 
1582 static struct platform_driver papr_scm_driver = {
1583 	.probe = papr_scm_probe,
1584 	.remove = papr_scm_remove,
1585 	.driver = {
1586 		.name = "papr_scm",
1587 		.of_match_table = papr_scm_match,
1588 	},
1589 };
1590 
1591 static int __init papr_scm_init(void)
1592 {
1593 	int ret;
1594 
1595 	ret = platform_driver_register(&papr_scm_driver);
1596 	if (!ret)
1597 		mce_register_notifier(&mce_ue_nb);
1598 
1599 	return ret;
1600 }
1601 module_init(papr_scm_init);
1602 
1603 static void __exit papr_scm_exit(void)
1604 {
1605 	mce_unregister_notifier(&mce_ue_nb);
1606 	platform_driver_unregister(&papr_scm_driver);
1607 }
1608 module_exit(papr_scm_exit);
1609 
1610 MODULE_DEVICE_TABLE(of, papr_scm_match);
1611 MODULE_LICENSE("GPL");
1612 MODULE_AUTHOR("IBM Corporation");
1613