1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "papr-scm: " fmt 4 5 #include <linux/of.h> 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/ioport.h> 9 #include <linux/slab.h> 10 #include <linux/ndctl.h> 11 #include <linux/sched.h> 12 #include <linux/libnvdimm.h> 13 #include <linux/platform_device.h> 14 #include <linux/delay.h> 15 #include <linux/seq_buf.h> 16 #include <linux/nd.h> 17 18 #include <asm/plpar_wrappers.h> 19 #include <asm/papr_pdsm.h> 20 #include <asm/mce.h> 21 22 #define BIND_ANY_ADDR (~0ul) 23 24 #define PAPR_SCM_DIMM_CMD_MASK \ 25 ((1ul << ND_CMD_GET_CONFIG_SIZE) | \ 26 (1ul << ND_CMD_GET_CONFIG_DATA) | \ 27 (1ul << ND_CMD_SET_CONFIG_DATA) | \ 28 (1ul << ND_CMD_CALL)) 29 30 /* DIMM health bitmap bitmap indicators */ 31 /* SCM device is unable to persist memory contents */ 32 #define PAPR_PMEM_UNARMED (1ULL << (63 - 0)) 33 /* SCM device failed to persist memory contents */ 34 #define PAPR_PMEM_SHUTDOWN_DIRTY (1ULL << (63 - 1)) 35 /* SCM device contents are persisted from previous IPL */ 36 #define PAPR_PMEM_SHUTDOWN_CLEAN (1ULL << (63 - 2)) 37 /* SCM device contents are not persisted from previous IPL */ 38 #define PAPR_PMEM_EMPTY (1ULL << (63 - 3)) 39 /* SCM device memory life remaining is critically low */ 40 #define PAPR_PMEM_HEALTH_CRITICAL (1ULL << (63 - 4)) 41 /* SCM device will be garded off next IPL due to failure */ 42 #define PAPR_PMEM_HEALTH_FATAL (1ULL << (63 - 5)) 43 /* SCM contents cannot persist due to current platform health status */ 44 #define PAPR_PMEM_HEALTH_UNHEALTHY (1ULL << (63 - 6)) 45 /* SCM device is unable to persist memory contents in certain conditions */ 46 #define PAPR_PMEM_HEALTH_NON_CRITICAL (1ULL << (63 - 7)) 47 /* SCM device is encrypted */ 48 #define PAPR_PMEM_ENCRYPTED (1ULL << (63 - 8)) 49 /* SCM device has been scrubbed and locked */ 50 #define PAPR_PMEM_SCRUBBED_AND_LOCKED (1ULL << (63 - 9)) 51 52 /* Bits status indicators for health bitmap indicating unarmed dimm */ 53 #define PAPR_PMEM_UNARMED_MASK (PAPR_PMEM_UNARMED | \ 54 PAPR_PMEM_HEALTH_UNHEALTHY) 55 56 /* Bits status indicators for health bitmap indicating unflushed dimm */ 57 #define PAPR_PMEM_BAD_SHUTDOWN_MASK (PAPR_PMEM_SHUTDOWN_DIRTY) 58 59 /* Bits status indicators for health bitmap indicating unrestored dimm */ 60 #define PAPR_PMEM_BAD_RESTORE_MASK (PAPR_PMEM_EMPTY) 61 62 /* Bit status indicators for smart event notification */ 63 #define PAPR_PMEM_SMART_EVENT_MASK (PAPR_PMEM_HEALTH_CRITICAL | \ 64 PAPR_PMEM_HEALTH_FATAL | \ 65 PAPR_PMEM_HEALTH_UNHEALTHY) 66 67 #define PAPR_SCM_PERF_STATS_EYECATCHER __stringify(SCMSTATS) 68 #define PAPR_SCM_PERF_STATS_VERSION 0x1 69 70 /* Struct holding a single performance metric */ 71 struct papr_scm_perf_stat { 72 u8 stat_id[8]; 73 __be64 stat_val; 74 } __packed; 75 76 /* Struct exchanged between kernel and PHYP for fetching drc perf stats */ 77 struct papr_scm_perf_stats { 78 u8 eye_catcher[8]; 79 /* Should be PAPR_SCM_PERF_STATS_VERSION */ 80 __be32 stats_version; 81 /* Number of stats following */ 82 __be32 num_statistics; 83 /* zero or more performance matrics */ 84 struct papr_scm_perf_stat scm_statistic[]; 85 } __packed; 86 87 /* private struct associated with each region */ 88 struct papr_scm_priv { 89 struct platform_device *pdev; 90 struct device_node *dn; 91 uint32_t drc_index; 92 uint64_t blocks; 93 uint64_t block_size; 94 int metadata_size; 95 bool is_volatile; 96 97 uint64_t bound_addr; 98 99 struct nvdimm_bus_descriptor bus_desc; 100 struct nvdimm_bus *bus; 101 struct nvdimm *nvdimm; 102 struct resource res; 103 struct nd_region *region; 104 struct nd_interleave_set nd_set; 105 struct list_head region_list; 106 107 /* Protect dimm health data from concurrent read/writes */ 108 struct mutex health_mutex; 109 110 /* Last time the health information of the dimm was updated */ 111 unsigned long lasthealth_jiffies; 112 113 /* Health information for the dimm */ 114 u64 health_bitmap; 115 116 /* length of the stat buffer as expected by phyp */ 117 size_t stat_buffer_len; 118 }; 119 120 static LIST_HEAD(papr_nd_regions); 121 static DEFINE_MUTEX(papr_ndr_lock); 122 123 static int drc_pmem_bind(struct papr_scm_priv *p) 124 { 125 unsigned long ret[PLPAR_HCALL_BUFSIZE]; 126 uint64_t saved = 0; 127 uint64_t token; 128 int64_t rc; 129 130 /* 131 * When the hypervisor cannot map all the requested memory in a single 132 * hcall it returns H_BUSY and we call again with the token until 133 * we get H_SUCCESS. Aborting the retry loop before getting H_SUCCESS 134 * leave the system in an undefined state, so we wait. 135 */ 136 token = 0; 137 138 do { 139 rc = plpar_hcall(H_SCM_BIND_MEM, ret, p->drc_index, 0, 140 p->blocks, BIND_ANY_ADDR, token); 141 token = ret[0]; 142 if (!saved) 143 saved = ret[1]; 144 cond_resched(); 145 } while (rc == H_BUSY); 146 147 if (rc) 148 return rc; 149 150 p->bound_addr = saved; 151 dev_dbg(&p->pdev->dev, "bound drc 0x%x to 0x%lx\n", 152 p->drc_index, (unsigned long)saved); 153 return rc; 154 } 155 156 static void drc_pmem_unbind(struct papr_scm_priv *p) 157 { 158 unsigned long ret[PLPAR_HCALL_BUFSIZE]; 159 uint64_t token = 0; 160 int64_t rc; 161 162 dev_dbg(&p->pdev->dev, "unbind drc 0x%x\n", p->drc_index); 163 164 /* NB: unbind has the same retry requirements as drc_pmem_bind() */ 165 do { 166 167 /* Unbind of all SCM resources associated with drcIndex */ 168 rc = plpar_hcall(H_SCM_UNBIND_ALL, ret, H_UNBIND_SCOPE_DRC, 169 p->drc_index, token); 170 token = ret[0]; 171 172 /* Check if we are stalled for some time */ 173 if (H_IS_LONG_BUSY(rc)) { 174 msleep(get_longbusy_msecs(rc)); 175 rc = H_BUSY; 176 } else if (rc == H_BUSY) { 177 cond_resched(); 178 } 179 180 } while (rc == H_BUSY); 181 182 if (rc) 183 dev_err(&p->pdev->dev, "unbind error: %lld\n", rc); 184 else 185 dev_dbg(&p->pdev->dev, "unbind drc 0x%x complete\n", 186 p->drc_index); 187 188 return; 189 } 190 191 static int drc_pmem_query_n_bind(struct papr_scm_priv *p) 192 { 193 unsigned long start_addr; 194 unsigned long end_addr; 195 unsigned long ret[PLPAR_HCALL_BUFSIZE]; 196 int64_t rc; 197 198 199 rc = plpar_hcall(H_SCM_QUERY_BLOCK_MEM_BINDING, ret, 200 p->drc_index, 0); 201 if (rc) 202 goto err_out; 203 start_addr = ret[0]; 204 205 /* Make sure the full region is bound. */ 206 rc = plpar_hcall(H_SCM_QUERY_BLOCK_MEM_BINDING, ret, 207 p->drc_index, p->blocks - 1); 208 if (rc) 209 goto err_out; 210 end_addr = ret[0]; 211 212 if ((end_addr - start_addr) != ((p->blocks - 1) * p->block_size)) 213 goto err_out; 214 215 p->bound_addr = start_addr; 216 dev_dbg(&p->pdev->dev, "bound drc 0x%x to 0x%lx\n", p->drc_index, start_addr); 217 return rc; 218 219 err_out: 220 dev_info(&p->pdev->dev, 221 "Failed to query, trying an unbind followed by bind"); 222 drc_pmem_unbind(p); 223 return drc_pmem_bind(p); 224 } 225 226 /* 227 * Query the Dimm performance stats from PHYP and copy them (if returned) to 228 * provided struct papr_scm_perf_stats instance 'stats' that can hold atleast 229 * (num_stats + header) bytes. 230 * - If buff_stats == NULL the return value is the size in byes of the buffer 231 * needed to hold all supported performance-statistics. 232 * - If buff_stats != NULL and num_stats == 0 then we copy all known 233 * performance-statistics to 'buff_stat' and expect to be large enough to 234 * hold them. 235 * - if buff_stats != NULL and num_stats > 0 then copy the requested 236 * performance-statistics to buff_stats. 237 */ 238 static ssize_t drc_pmem_query_stats(struct papr_scm_priv *p, 239 struct papr_scm_perf_stats *buff_stats, 240 unsigned int num_stats) 241 { 242 unsigned long ret[PLPAR_HCALL_BUFSIZE]; 243 size_t size; 244 s64 rc; 245 246 /* Setup the out buffer */ 247 if (buff_stats) { 248 memcpy(buff_stats->eye_catcher, 249 PAPR_SCM_PERF_STATS_EYECATCHER, 8); 250 buff_stats->stats_version = 251 cpu_to_be32(PAPR_SCM_PERF_STATS_VERSION); 252 buff_stats->num_statistics = 253 cpu_to_be32(num_stats); 254 255 /* 256 * Calculate the buffer size based on num-stats provided 257 * or use the prefetched max buffer length 258 */ 259 if (num_stats) 260 /* Calculate size from the num_stats */ 261 size = sizeof(struct papr_scm_perf_stats) + 262 num_stats * sizeof(struct papr_scm_perf_stat); 263 else 264 size = p->stat_buffer_len; 265 } else { 266 /* In case of no out buffer ignore the size */ 267 size = 0; 268 } 269 270 /* Do the HCALL asking PHYP for info */ 271 rc = plpar_hcall(H_SCM_PERFORMANCE_STATS, ret, p->drc_index, 272 buff_stats ? virt_to_phys(buff_stats) : 0, 273 size); 274 275 /* Check if the error was due to an unknown stat-id */ 276 if (rc == H_PARTIAL) { 277 dev_err(&p->pdev->dev, 278 "Unknown performance stats, Err:0x%016lX\n", ret[0]); 279 return -ENOENT; 280 } else if (rc != H_SUCCESS) { 281 dev_err(&p->pdev->dev, 282 "Failed to query performance stats, Err:%lld\n", rc); 283 return -EIO; 284 285 } else if (!size) { 286 /* Handle case where stat buffer size was requested */ 287 dev_dbg(&p->pdev->dev, 288 "Performance stats size %ld\n", ret[0]); 289 return ret[0]; 290 } 291 292 /* Successfully fetched the requested stats from phyp */ 293 dev_dbg(&p->pdev->dev, 294 "Performance stats returned %d stats\n", 295 be32_to_cpu(buff_stats->num_statistics)); 296 return 0; 297 } 298 299 /* 300 * Issue hcall to retrieve dimm health info and populate papr_scm_priv with the 301 * health information. 302 */ 303 static int __drc_pmem_query_health(struct papr_scm_priv *p) 304 { 305 unsigned long ret[PLPAR_HCALL_BUFSIZE]; 306 long rc; 307 308 /* issue the hcall */ 309 rc = plpar_hcall(H_SCM_HEALTH, ret, p->drc_index); 310 if (rc != H_SUCCESS) { 311 dev_err(&p->pdev->dev, 312 "Failed to query health information, Err:%ld\n", rc); 313 return -ENXIO; 314 } 315 316 p->lasthealth_jiffies = jiffies; 317 p->health_bitmap = ret[0] & ret[1]; 318 319 dev_dbg(&p->pdev->dev, 320 "Queried dimm health info. Bitmap:0x%016lx Mask:0x%016lx\n", 321 ret[0], ret[1]); 322 323 return 0; 324 } 325 326 /* Min interval in seconds for assuming stable dimm health */ 327 #define MIN_HEALTH_QUERY_INTERVAL 60 328 329 /* Query cached health info and if needed call drc_pmem_query_health */ 330 static int drc_pmem_query_health(struct papr_scm_priv *p) 331 { 332 unsigned long cache_timeout; 333 int rc; 334 335 /* Protect concurrent modifications to papr_scm_priv */ 336 rc = mutex_lock_interruptible(&p->health_mutex); 337 if (rc) 338 return rc; 339 340 /* Jiffies offset for which the health data is assumed to be same */ 341 cache_timeout = p->lasthealth_jiffies + 342 msecs_to_jiffies(MIN_HEALTH_QUERY_INTERVAL * 1000); 343 344 /* Fetch new health info is its older than MIN_HEALTH_QUERY_INTERVAL */ 345 if (time_after(jiffies, cache_timeout)) 346 rc = __drc_pmem_query_health(p); 347 else 348 /* Assume cached health data is valid */ 349 rc = 0; 350 351 mutex_unlock(&p->health_mutex); 352 return rc; 353 } 354 355 static int papr_scm_meta_get(struct papr_scm_priv *p, 356 struct nd_cmd_get_config_data_hdr *hdr) 357 { 358 unsigned long data[PLPAR_HCALL_BUFSIZE]; 359 unsigned long offset, data_offset; 360 int len, read; 361 int64_t ret; 362 363 if ((hdr->in_offset + hdr->in_length) > p->metadata_size) 364 return -EINVAL; 365 366 for (len = hdr->in_length; len; len -= read) { 367 368 data_offset = hdr->in_length - len; 369 offset = hdr->in_offset + data_offset; 370 371 if (len >= 8) 372 read = 8; 373 else if (len >= 4) 374 read = 4; 375 else if (len >= 2) 376 read = 2; 377 else 378 read = 1; 379 380 ret = plpar_hcall(H_SCM_READ_METADATA, data, p->drc_index, 381 offset, read); 382 383 if (ret == H_PARAMETER) /* bad DRC index */ 384 return -ENODEV; 385 if (ret) 386 return -EINVAL; /* other invalid parameter */ 387 388 switch (read) { 389 case 8: 390 *(uint64_t *)(hdr->out_buf + data_offset) = be64_to_cpu(data[0]); 391 break; 392 case 4: 393 *(uint32_t *)(hdr->out_buf + data_offset) = be32_to_cpu(data[0] & 0xffffffff); 394 break; 395 396 case 2: 397 *(uint16_t *)(hdr->out_buf + data_offset) = be16_to_cpu(data[0] & 0xffff); 398 break; 399 400 case 1: 401 *(uint8_t *)(hdr->out_buf + data_offset) = (data[0] & 0xff); 402 break; 403 } 404 } 405 return 0; 406 } 407 408 static int papr_scm_meta_set(struct papr_scm_priv *p, 409 struct nd_cmd_set_config_hdr *hdr) 410 { 411 unsigned long offset, data_offset; 412 int len, wrote; 413 unsigned long data; 414 __be64 data_be; 415 int64_t ret; 416 417 if ((hdr->in_offset + hdr->in_length) > p->metadata_size) 418 return -EINVAL; 419 420 for (len = hdr->in_length; len; len -= wrote) { 421 422 data_offset = hdr->in_length - len; 423 offset = hdr->in_offset + data_offset; 424 425 if (len >= 8) { 426 data = *(uint64_t *)(hdr->in_buf + data_offset); 427 data_be = cpu_to_be64(data); 428 wrote = 8; 429 } else if (len >= 4) { 430 data = *(uint32_t *)(hdr->in_buf + data_offset); 431 data &= 0xffffffff; 432 data_be = cpu_to_be32(data); 433 wrote = 4; 434 } else if (len >= 2) { 435 data = *(uint16_t *)(hdr->in_buf + data_offset); 436 data &= 0xffff; 437 data_be = cpu_to_be16(data); 438 wrote = 2; 439 } else { 440 data_be = *(uint8_t *)(hdr->in_buf + data_offset); 441 data_be &= 0xff; 442 wrote = 1; 443 } 444 445 ret = plpar_hcall_norets(H_SCM_WRITE_METADATA, p->drc_index, 446 offset, data_be, wrote); 447 if (ret == H_PARAMETER) /* bad DRC index */ 448 return -ENODEV; 449 if (ret) 450 return -EINVAL; /* other invalid parameter */ 451 } 452 453 return 0; 454 } 455 456 /* 457 * Do a sanity checks on the inputs args to dimm-control function and return 458 * '0' if valid. Validation of PDSM payloads happens later in 459 * papr_scm_service_pdsm. 460 */ 461 static int is_cmd_valid(struct nvdimm *nvdimm, unsigned int cmd, void *buf, 462 unsigned int buf_len) 463 { 464 unsigned long cmd_mask = PAPR_SCM_DIMM_CMD_MASK; 465 struct nd_cmd_pkg *nd_cmd; 466 struct papr_scm_priv *p; 467 enum papr_pdsm pdsm; 468 469 /* Only dimm-specific calls are supported atm */ 470 if (!nvdimm) 471 return -EINVAL; 472 473 /* get the provider data from struct nvdimm */ 474 p = nvdimm_provider_data(nvdimm); 475 476 if (!test_bit(cmd, &cmd_mask)) { 477 dev_dbg(&p->pdev->dev, "Unsupported cmd=%u\n", cmd); 478 return -EINVAL; 479 } 480 481 /* For CMD_CALL verify pdsm request */ 482 if (cmd == ND_CMD_CALL) { 483 /* Verify the envelope and envelop size */ 484 if (!buf || 485 buf_len < (sizeof(struct nd_cmd_pkg) + ND_PDSM_HDR_SIZE)) { 486 dev_dbg(&p->pdev->dev, "Invalid pkg size=%u\n", 487 buf_len); 488 return -EINVAL; 489 } 490 491 /* Verify that the nd_cmd_pkg.nd_family is correct */ 492 nd_cmd = (struct nd_cmd_pkg *)buf; 493 494 if (nd_cmd->nd_family != NVDIMM_FAMILY_PAPR) { 495 dev_dbg(&p->pdev->dev, "Invalid pkg family=0x%llx\n", 496 nd_cmd->nd_family); 497 return -EINVAL; 498 } 499 500 pdsm = (enum papr_pdsm)nd_cmd->nd_command; 501 502 /* Verify if the pdsm command is valid */ 503 if (pdsm <= PAPR_PDSM_MIN || pdsm >= PAPR_PDSM_MAX) { 504 dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid PDSM\n", 505 pdsm); 506 return -EINVAL; 507 } 508 509 /* Have enough space to hold returned 'nd_pkg_pdsm' header */ 510 if (nd_cmd->nd_size_out < ND_PDSM_HDR_SIZE) { 511 dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid payload\n", 512 pdsm); 513 return -EINVAL; 514 } 515 } 516 517 /* Let the command be further processed */ 518 return 0; 519 } 520 521 static int papr_pdsm_fuel_gauge(struct papr_scm_priv *p, 522 union nd_pdsm_payload *payload) 523 { 524 int rc, size; 525 u64 statval; 526 struct papr_scm_perf_stat *stat; 527 struct papr_scm_perf_stats *stats; 528 529 /* Silently fail if fetching performance metrics isn't supported */ 530 if (!p->stat_buffer_len) 531 return 0; 532 533 /* Allocate request buffer enough to hold single performance stat */ 534 size = sizeof(struct papr_scm_perf_stats) + 535 sizeof(struct papr_scm_perf_stat); 536 537 stats = kzalloc(size, GFP_KERNEL); 538 if (!stats) 539 return -ENOMEM; 540 541 stat = &stats->scm_statistic[0]; 542 memcpy(&stat->stat_id, "MemLife ", sizeof(stat->stat_id)); 543 stat->stat_val = 0; 544 545 /* Fetch the fuel gauge and populate it in payload */ 546 rc = drc_pmem_query_stats(p, stats, 1); 547 if (rc < 0) { 548 dev_dbg(&p->pdev->dev, "Err(%d) fetching fuel gauge\n", rc); 549 goto free_stats; 550 } 551 552 statval = be64_to_cpu(stat->stat_val); 553 dev_dbg(&p->pdev->dev, 554 "Fetched fuel-gauge %llu", statval); 555 payload->health.extension_flags |= 556 PDSM_DIMM_HEALTH_RUN_GAUGE_VALID; 557 payload->health.dimm_fuel_gauge = statval; 558 559 rc = sizeof(struct nd_papr_pdsm_health); 560 561 free_stats: 562 kfree(stats); 563 return rc; 564 } 565 566 /* Fetch the DIMM health info and populate it in provided package. */ 567 static int papr_pdsm_health(struct papr_scm_priv *p, 568 union nd_pdsm_payload *payload) 569 { 570 int rc; 571 572 /* Ensure dimm health mutex is taken preventing concurrent access */ 573 rc = mutex_lock_interruptible(&p->health_mutex); 574 if (rc) 575 goto out; 576 577 /* Always fetch upto date dimm health data ignoring cached values */ 578 rc = __drc_pmem_query_health(p); 579 if (rc) { 580 mutex_unlock(&p->health_mutex); 581 goto out; 582 } 583 584 /* update health struct with various flags derived from health bitmap */ 585 payload->health = (struct nd_papr_pdsm_health) { 586 .extension_flags = 0, 587 .dimm_unarmed = !!(p->health_bitmap & PAPR_PMEM_UNARMED_MASK), 588 .dimm_bad_shutdown = !!(p->health_bitmap & PAPR_PMEM_BAD_SHUTDOWN_MASK), 589 .dimm_bad_restore = !!(p->health_bitmap & PAPR_PMEM_BAD_RESTORE_MASK), 590 .dimm_scrubbed = !!(p->health_bitmap & PAPR_PMEM_SCRUBBED_AND_LOCKED), 591 .dimm_locked = !!(p->health_bitmap & PAPR_PMEM_SCRUBBED_AND_LOCKED), 592 .dimm_encrypted = !!(p->health_bitmap & PAPR_PMEM_ENCRYPTED), 593 .dimm_health = PAPR_PDSM_DIMM_HEALTHY, 594 }; 595 596 /* Update field dimm_health based on health_bitmap flags */ 597 if (p->health_bitmap & PAPR_PMEM_HEALTH_FATAL) 598 payload->health.dimm_health = PAPR_PDSM_DIMM_FATAL; 599 else if (p->health_bitmap & PAPR_PMEM_HEALTH_CRITICAL) 600 payload->health.dimm_health = PAPR_PDSM_DIMM_CRITICAL; 601 else if (p->health_bitmap & PAPR_PMEM_HEALTH_UNHEALTHY) 602 payload->health.dimm_health = PAPR_PDSM_DIMM_UNHEALTHY; 603 604 /* struct populated hence can release the mutex now */ 605 mutex_unlock(&p->health_mutex); 606 607 /* Populate the fuel gauge meter in the payload */ 608 papr_pdsm_fuel_gauge(p, payload); 609 610 rc = sizeof(struct nd_papr_pdsm_health); 611 612 out: 613 return rc; 614 } 615 616 /* 617 * 'struct pdsm_cmd_desc' 618 * Identifies supported PDSMs' expected length of in/out payloads 619 * and pdsm service function. 620 * 621 * size_in : Size of input payload if any in the PDSM request. 622 * size_out : Size of output payload if any in the PDSM request. 623 * service : Service function for the PDSM request. Return semantics: 624 * rc < 0 : Error servicing PDSM and rc indicates the error. 625 * rc >=0 : Serviced successfully and 'rc' indicate number of 626 * bytes written to payload. 627 */ 628 struct pdsm_cmd_desc { 629 u32 size_in; 630 u32 size_out; 631 int (*service)(struct papr_scm_priv *dimm, 632 union nd_pdsm_payload *payload); 633 }; 634 635 /* Holds all supported PDSMs' command descriptors */ 636 static const struct pdsm_cmd_desc __pdsm_cmd_descriptors[] = { 637 [PAPR_PDSM_MIN] = { 638 .size_in = 0, 639 .size_out = 0, 640 .service = NULL, 641 }, 642 /* New PDSM command descriptors to be added below */ 643 644 [PAPR_PDSM_HEALTH] = { 645 .size_in = 0, 646 .size_out = sizeof(struct nd_papr_pdsm_health), 647 .service = papr_pdsm_health, 648 }, 649 /* Empty */ 650 [PAPR_PDSM_MAX] = { 651 .size_in = 0, 652 .size_out = 0, 653 .service = NULL, 654 }, 655 }; 656 657 /* Given a valid pdsm cmd return its command descriptor else return NULL */ 658 static inline const struct pdsm_cmd_desc *pdsm_cmd_desc(enum papr_pdsm cmd) 659 { 660 if (cmd >= 0 || cmd < ARRAY_SIZE(__pdsm_cmd_descriptors)) 661 return &__pdsm_cmd_descriptors[cmd]; 662 663 return NULL; 664 } 665 666 /* 667 * For a given pdsm request call an appropriate service function. 668 * Returns errors if any while handling the pdsm command package. 669 */ 670 static int papr_scm_service_pdsm(struct papr_scm_priv *p, 671 struct nd_cmd_pkg *pkg) 672 { 673 /* Get the PDSM header and PDSM command */ 674 struct nd_pkg_pdsm *pdsm_pkg = (struct nd_pkg_pdsm *)pkg->nd_payload; 675 enum papr_pdsm pdsm = (enum papr_pdsm)pkg->nd_command; 676 const struct pdsm_cmd_desc *pdsc; 677 int rc; 678 679 /* Fetch corresponding pdsm descriptor for validation and servicing */ 680 pdsc = pdsm_cmd_desc(pdsm); 681 682 /* Validate pdsm descriptor */ 683 /* Ensure that reserved fields are 0 */ 684 if (pdsm_pkg->reserved[0] || pdsm_pkg->reserved[1]) { 685 dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid reserved field\n", 686 pdsm); 687 return -EINVAL; 688 } 689 690 /* If pdsm expects some input, then ensure that the size_in matches */ 691 if (pdsc->size_in && 692 pkg->nd_size_in != (pdsc->size_in + ND_PDSM_HDR_SIZE)) { 693 dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Mismatched size_in=%d\n", 694 pdsm, pkg->nd_size_in); 695 return -EINVAL; 696 } 697 698 /* If pdsm wants to return data, then ensure that size_out matches */ 699 if (pdsc->size_out && 700 pkg->nd_size_out != (pdsc->size_out + ND_PDSM_HDR_SIZE)) { 701 dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Mismatched size_out=%d\n", 702 pdsm, pkg->nd_size_out); 703 return -EINVAL; 704 } 705 706 /* Service the pdsm */ 707 if (pdsc->service) { 708 dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Servicing..\n", pdsm); 709 710 rc = pdsc->service(p, &pdsm_pkg->payload); 711 712 if (rc < 0) { 713 /* error encountered while servicing pdsm */ 714 pdsm_pkg->cmd_status = rc; 715 pkg->nd_fw_size = ND_PDSM_HDR_SIZE; 716 } else { 717 /* pdsm serviced and 'rc' bytes written to payload */ 718 pdsm_pkg->cmd_status = 0; 719 pkg->nd_fw_size = ND_PDSM_HDR_SIZE + rc; 720 } 721 } else { 722 dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Unsupported PDSM request\n", 723 pdsm); 724 pdsm_pkg->cmd_status = -ENOENT; 725 pkg->nd_fw_size = ND_PDSM_HDR_SIZE; 726 } 727 728 return pdsm_pkg->cmd_status; 729 } 730 731 static int papr_scm_ndctl(struct nvdimm_bus_descriptor *nd_desc, 732 struct nvdimm *nvdimm, unsigned int cmd, void *buf, 733 unsigned int buf_len, int *cmd_rc) 734 { 735 struct nd_cmd_get_config_size *get_size_hdr; 736 struct nd_cmd_pkg *call_pkg = NULL; 737 struct papr_scm_priv *p; 738 int rc; 739 740 rc = is_cmd_valid(nvdimm, cmd, buf, buf_len); 741 if (rc) { 742 pr_debug("Invalid cmd=0x%x. Err=%d\n", cmd, rc); 743 return rc; 744 } 745 746 /* Use a local variable in case cmd_rc pointer is NULL */ 747 if (!cmd_rc) 748 cmd_rc = &rc; 749 750 p = nvdimm_provider_data(nvdimm); 751 752 switch (cmd) { 753 case ND_CMD_GET_CONFIG_SIZE: 754 get_size_hdr = buf; 755 756 get_size_hdr->status = 0; 757 get_size_hdr->max_xfer = 8; 758 get_size_hdr->config_size = p->metadata_size; 759 *cmd_rc = 0; 760 break; 761 762 case ND_CMD_GET_CONFIG_DATA: 763 *cmd_rc = papr_scm_meta_get(p, buf); 764 break; 765 766 case ND_CMD_SET_CONFIG_DATA: 767 *cmd_rc = papr_scm_meta_set(p, buf); 768 break; 769 770 case ND_CMD_CALL: 771 call_pkg = (struct nd_cmd_pkg *)buf; 772 *cmd_rc = papr_scm_service_pdsm(p, call_pkg); 773 break; 774 775 default: 776 dev_dbg(&p->pdev->dev, "Unknown command = %d\n", cmd); 777 return -EINVAL; 778 } 779 780 dev_dbg(&p->pdev->dev, "returned with cmd_rc = %d\n", *cmd_rc); 781 782 return 0; 783 } 784 785 static ssize_t perf_stats_show(struct device *dev, 786 struct device_attribute *attr, char *buf) 787 { 788 int index, rc; 789 struct seq_buf s; 790 struct papr_scm_perf_stat *stat; 791 struct papr_scm_perf_stats *stats; 792 struct nvdimm *dimm = to_nvdimm(dev); 793 struct papr_scm_priv *p = nvdimm_provider_data(dimm); 794 795 if (!p->stat_buffer_len) 796 return -ENOENT; 797 798 /* Allocate the buffer for phyp where stats are written */ 799 stats = kzalloc(p->stat_buffer_len, GFP_KERNEL); 800 if (!stats) 801 return -ENOMEM; 802 803 /* Ask phyp to return all dimm perf stats */ 804 rc = drc_pmem_query_stats(p, stats, 0); 805 if (rc) 806 goto free_stats; 807 /* 808 * Go through the returned output buffer and print stats and 809 * values. Since stat_id is essentially a char string of 810 * 8 bytes, simply use the string format specifier to print it. 811 */ 812 seq_buf_init(&s, buf, PAGE_SIZE); 813 for (index = 0, stat = stats->scm_statistic; 814 index < be32_to_cpu(stats->num_statistics); 815 ++index, ++stat) { 816 seq_buf_printf(&s, "%.8s = 0x%016llX\n", 817 stat->stat_id, 818 be64_to_cpu(stat->stat_val)); 819 } 820 821 free_stats: 822 kfree(stats); 823 return rc ? rc : seq_buf_used(&s); 824 } 825 DEVICE_ATTR_RO(perf_stats); 826 827 static ssize_t flags_show(struct device *dev, 828 struct device_attribute *attr, char *buf) 829 { 830 struct nvdimm *dimm = to_nvdimm(dev); 831 struct papr_scm_priv *p = nvdimm_provider_data(dimm); 832 struct seq_buf s; 833 u64 health; 834 int rc; 835 836 rc = drc_pmem_query_health(p); 837 if (rc) 838 return rc; 839 840 /* Copy health_bitmap locally, check masks & update out buffer */ 841 health = READ_ONCE(p->health_bitmap); 842 843 seq_buf_init(&s, buf, PAGE_SIZE); 844 if (health & PAPR_PMEM_UNARMED_MASK) 845 seq_buf_printf(&s, "not_armed "); 846 847 if (health & PAPR_PMEM_BAD_SHUTDOWN_MASK) 848 seq_buf_printf(&s, "flush_fail "); 849 850 if (health & PAPR_PMEM_BAD_RESTORE_MASK) 851 seq_buf_printf(&s, "restore_fail "); 852 853 if (health & PAPR_PMEM_ENCRYPTED) 854 seq_buf_printf(&s, "encrypted "); 855 856 if (health & PAPR_PMEM_SMART_EVENT_MASK) 857 seq_buf_printf(&s, "smart_notify "); 858 859 if (health & PAPR_PMEM_SCRUBBED_AND_LOCKED) 860 seq_buf_printf(&s, "scrubbed locked "); 861 862 if (seq_buf_used(&s)) 863 seq_buf_printf(&s, "\n"); 864 865 return seq_buf_used(&s); 866 } 867 DEVICE_ATTR_RO(flags); 868 869 /* papr_scm specific dimm attributes */ 870 static struct attribute *papr_nd_attributes[] = { 871 &dev_attr_flags.attr, 872 &dev_attr_perf_stats.attr, 873 NULL, 874 }; 875 876 static struct attribute_group papr_nd_attribute_group = { 877 .name = "papr", 878 .attrs = papr_nd_attributes, 879 }; 880 881 static const struct attribute_group *papr_nd_attr_groups[] = { 882 &papr_nd_attribute_group, 883 NULL, 884 }; 885 886 static int papr_scm_nvdimm_init(struct papr_scm_priv *p) 887 { 888 struct device *dev = &p->pdev->dev; 889 struct nd_mapping_desc mapping; 890 struct nd_region_desc ndr_desc; 891 unsigned long dimm_flags; 892 int target_nid, online_nid; 893 ssize_t stat_size; 894 895 p->bus_desc.ndctl = papr_scm_ndctl; 896 p->bus_desc.module = THIS_MODULE; 897 p->bus_desc.of_node = p->pdev->dev.of_node; 898 p->bus_desc.provider_name = kstrdup(p->pdev->name, GFP_KERNEL); 899 900 if (!p->bus_desc.provider_name) 901 return -ENOMEM; 902 903 p->bus = nvdimm_bus_register(NULL, &p->bus_desc); 904 if (!p->bus) { 905 dev_err(dev, "Error creating nvdimm bus %pOF\n", p->dn); 906 kfree(p->bus_desc.provider_name); 907 return -ENXIO; 908 } 909 910 dimm_flags = 0; 911 set_bit(NDD_LABELING, &dimm_flags); 912 913 p->nvdimm = nvdimm_create(p->bus, p, papr_nd_attr_groups, 914 dimm_flags, PAPR_SCM_DIMM_CMD_MASK, 0, NULL); 915 if (!p->nvdimm) { 916 dev_err(dev, "Error creating DIMM object for %pOF\n", p->dn); 917 goto err; 918 } 919 920 if (nvdimm_bus_check_dimm_count(p->bus, 1)) 921 goto err; 922 923 /* now add the region */ 924 925 memset(&mapping, 0, sizeof(mapping)); 926 mapping.nvdimm = p->nvdimm; 927 mapping.start = 0; 928 mapping.size = p->blocks * p->block_size; // XXX: potential overflow? 929 930 memset(&ndr_desc, 0, sizeof(ndr_desc)); 931 target_nid = dev_to_node(&p->pdev->dev); 932 online_nid = numa_map_to_online_node(target_nid); 933 ndr_desc.numa_node = online_nid; 934 ndr_desc.target_node = target_nid; 935 ndr_desc.res = &p->res; 936 ndr_desc.of_node = p->dn; 937 ndr_desc.provider_data = p; 938 ndr_desc.mapping = &mapping; 939 ndr_desc.num_mappings = 1; 940 ndr_desc.nd_set = &p->nd_set; 941 942 if (p->is_volatile) 943 p->region = nvdimm_volatile_region_create(p->bus, &ndr_desc); 944 else { 945 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc.flags); 946 p->region = nvdimm_pmem_region_create(p->bus, &ndr_desc); 947 } 948 if (!p->region) { 949 dev_err(dev, "Error registering region %pR from %pOF\n", 950 ndr_desc.res, p->dn); 951 goto err; 952 } 953 if (target_nid != online_nid) 954 dev_info(dev, "Region registered with target node %d and online node %d", 955 target_nid, online_nid); 956 957 mutex_lock(&papr_ndr_lock); 958 list_add_tail(&p->region_list, &papr_nd_regions); 959 mutex_unlock(&papr_ndr_lock); 960 961 /* Try retriving the stat buffer and see if its supported */ 962 stat_size = drc_pmem_query_stats(p, NULL, 0); 963 if (stat_size > 0) { 964 p->stat_buffer_len = stat_size; 965 dev_dbg(&p->pdev->dev, "Max perf-stat size %lu-bytes\n", 966 p->stat_buffer_len); 967 } else { 968 dev_info(&p->pdev->dev, "Dimm performance stats unavailable\n"); 969 } 970 971 return 0; 972 973 err: nvdimm_bus_unregister(p->bus); 974 kfree(p->bus_desc.provider_name); 975 return -ENXIO; 976 } 977 978 static void papr_scm_add_badblock(struct nd_region *region, 979 struct nvdimm_bus *bus, u64 phys_addr) 980 { 981 u64 aligned_addr = ALIGN_DOWN(phys_addr, L1_CACHE_BYTES); 982 983 if (nvdimm_bus_add_badrange(bus, aligned_addr, L1_CACHE_BYTES)) { 984 pr_err("Bad block registration for 0x%llx failed\n", phys_addr); 985 return; 986 } 987 988 pr_debug("Add memory range (0x%llx - 0x%llx) as bad range\n", 989 aligned_addr, aligned_addr + L1_CACHE_BYTES); 990 991 nvdimm_region_notify(region, NVDIMM_REVALIDATE_POISON); 992 } 993 994 static int handle_mce_ue(struct notifier_block *nb, unsigned long val, 995 void *data) 996 { 997 struct machine_check_event *evt = data; 998 struct papr_scm_priv *p; 999 u64 phys_addr; 1000 bool found = false; 1001 1002 if (evt->error_type != MCE_ERROR_TYPE_UE) 1003 return NOTIFY_DONE; 1004 1005 if (list_empty(&papr_nd_regions)) 1006 return NOTIFY_DONE; 1007 1008 /* 1009 * The physical address obtained here is PAGE_SIZE aligned, so get the 1010 * exact address from the effective address 1011 */ 1012 phys_addr = evt->u.ue_error.physical_address + 1013 (evt->u.ue_error.effective_address & ~PAGE_MASK); 1014 1015 if (!evt->u.ue_error.physical_address_provided || 1016 !is_zone_device_page(pfn_to_page(phys_addr >> PAGE_SHIFT))) 1017 return NOTIFY_DONE; 1018 1019 /* mce notifier is called from a process context, so mutex is safe */ 1020 mutex_lock(&papr_ndr_lock); 1021 list_for_each_entry(p, &papr_nd_regions, region_list) { 1022 if (phys_addr >= p->res.start && phys_addr <= p->res.end) { 1023 found = true; 1024 break; 1025 } 1026 } 1027 1028 if (found) 1029 papr_scm_add_badblock(p->region, p->bus, phys_addr); 1030 1031 mutex_unlock(&papr_ndr_lock); 1032 1033 return found ? NOTIFY_OK : NOTIFY_DONE; 1034 } 1035 1036 static struct notifier_block mce_ue_nb = { 1037 .notifier_call = handle_mce_ue 1038 }; 1039 1040 static int papr_scm_probe(struct platform_device *pdev) 1041 { 1042 struct device_node *dn = pdev->dev.of_node; 1043 u32 drc_index, metadata_size; 1044 u64 blocks, block_size; 1045 struct papr_scm_priv *p; 1046 const char *uuid_str; 1047 u64 uuid[2]; 1048 int rc; 1049 1050 /* check we have all the required DT properties */ 1051 if (of_property_read_u32(dn, "ibm,my-drc-index", &drc_index)) { 1052 dev_err(&pdev->dev, "%pOF: missing drc-index!\n", dn); 1053 return -ENODEV; 1054 } 1055 1056 if (of_property_read_u64(dn, "ibm,block-size", &block_size)) { 1057 dev_err(&pdev->dev, "%pOF: missing block-size!\n", dn); 1058 return -ENODEV; 1059 } 1060 1061 if (of_property_read_u64(dn, "ibm,number-of-blocks", &blocks)) { 1062 dev_err(&pdev->dev, "%pOF: missing number-of-blocks!\n", dn); 1063 return -ENODEV; 1064 } 1065 1066 if (of_property_read_string(dn, "ibm,unit-guid", &uuid_str)) { 1067 dev_err(&pdev->dev, "%pOF: missing unit-guid!\n", dn); 1068 return -ENODEV; 1069 } 1070 1071 1072 p = kzalloc(sizeof(*p), GFP_KERNEL); 1073 if (!p) 1074 return -ENOMEM; 1075 1076 /* Initialize the dimm mutex */ 1077 mutex_init(&p->health_mutex); 1078 1079 /* optional DT properties */ 1080 of_property_read_u32(dn, "ibm,metadata-size", &metadata_size); 1081 1082 p->dn = dn; 1083 p->drc_index = drc_index; 1084 p->block_size = block_size; 1085 p->blocks = blocks; 1086 p->is_volatile = !of_property_read_bool(dn, "ibm,cache-flush-required"); 1087 1088 /* We just need to ensure that set cookies are unique across */ 1089 uuid_parse(uuid_str, (uuid_t *) uuid); 1090 /* 1091 * cookie1 and cookie2 are not really little endian 1092 * we store a little endian representation of the 1093 * uuid str so that we can compare this with the label 1094 * area cookie irrespective of the endian config with which 1095 * the kernel is built. 1096 */ 1097 p->nd_set.cookie1 = cpu_to_le64(uuid[0]); 1098 p->nd_set.cookie2 = cpu_to_le64(uuid[1]); 1099 1100 /* might be zero */ 1101 p->metadata_size = metadata_size; 1102 p->pdev = pdev; 1103 1104 /* request the hypervisor to bind this region to somewhere in memory */ 1105 rc = drc_pmem_bind(p); 1106 1107 /* If phyp says drc memory still bound then force unbound and retry */ 1108 if (rc == H_OVERLAP) 1109 rc = drc_pmem_query_n_bind(p); 1110 1111 if (rc != H_SUCCESS) { 1112 dev_err(&p->pdev->dev, "bind err: %d\n", rc); 1113 rc = -ENXIO; 1114 goto err; 1115 } 1116 1117 /* setup the resource for the newly bound range */ 1118 p->res.start = p->bound_addr; 1119 p->res.end = p->bound_addr + p->blocks * p->block_size - 1; 1120 p->res.name = pdev->name; 1121 p->res.flags = IORESOURCE_MEM; 1122 1123 rc = papr_scm_nvdimm_init(p); 1124 if (rc) 1125 goto err2; 1126 1127 platform_set_drvdata(pdev, p); 1128 1129 return 0; 1130 1131 err2: drc_pmem_unbind(p); 1132 err: kfree(p); 1133 return rc; 1134 } 1135 1136 static int papr_scm_remove(struct platform_device *pdev) 1137 { 1138 struct papr_scm_priv *p = platform_get_drvdata(pdev); 1139 1140 mutex_lock(&papr_ndr_lock); 1141 list_del(&p->region_list); 1142 mutex_unlock(&papr_ndr_lock); 1143 1144 nvdimm_bus_unregister(p->bus); 1145 drc_pmem_unbind(p); 1146 kfree(p->bus_desc.provider_name); 1147 kfree(p); 1148 1149 return 0; 1150 } 1151 1152 static const struct of_device_id papr_scm_match[] = { 1153 { .compatible = "ibm,pmemory" }, 1154 { .compatible = "ibm,pmemory-v2" }, 1155 { }, 1156 }; 1157 1158 static struct platform_driver papr_scm_driver = { 1159 .probe = papr_scm_probe, 1160 .remove = papr_scm_remove, 1161 .driver = { 1162 .name = "papr_scm", 1163 .of_match_table = papr_scm_match, 1164 }, 1165 }; 1166 1167 static int __init papr_scm_init(void) 1168 { 1169 int ret; 1170 1171 ret = platform_driver_register(&papr_scm_driver); 1172 if (!ret) 1173 mce_register_notifier(&mce_ue_nb); 1174 1175 return ret; 1176 } 1177 module_init(papr_scm_init); 1178 1179 static void __exit papr_scm_exit(void) 1180 { 1181 mce_unregister_notifier(&mce_ue_nb); 1182 platform_driver_unregister(&papr_scm_driver); 1183 } 1184 module_exit(papr_scm_exit); 1185 1186 MODULE_DEVICE_TABLE(of, papr_scm_match); 1187 MODULE_LICENSE("GPL"); 1188 MODULE_AUTHOR("IBM Corporation"); 1189