xref: /openbmc/linux/arch/powerpc/platforms/pseries/nvram.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  */
13 
14 
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <asm/uaccess.h>
20 #include <asm/nvram.h>
21 #include <asm/rtas.h>
22 #include <asm/prom.h>
23 #include <asm/machdep.h>
24 
25 /* Max bytes to read/write in one go */
26 #define NVRW_CNT 0x20
27 
28 static unsigned int nvram_size;
29 static int nvram_fetch, nvram_store;
30 static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
31 static DEFINE_SPINLOCK(nvram_lock);
32 
33 static long nvram_error_log_index = -1;
34 static long nvram_error_log_size = 0;
35 
36 struct err_log_info {
37 	int error_type;
38 	unsigned int seq_num;
39 };
40 #define NVRAM_MAX_REQ		2079
41 #define NVRAM_MIN_REQ		1055
42 
43 #define NVRAM_LOG_PART_NAME	"ibm,rtas-log"
44 
45 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
46 {
47 	unsigned int i;
48 	unsigned long len;
49 	int done;
50 	unsigned long flags;
51 	char *p = buf;
52 
53 
54 	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
55 		return -ENODEV;
56 
57 	if (*index >= nvram_size)
58 		return 0;
59 
60 	i = *index;
61 	if (i + count > nvram_size)
62 		count = nvram_size - i;
63 
64 	spin_lock_irqsave(&nvram_lock, flags);
65 
66 	for (; count != 0; count -= len) {
67 		len = count;
68 		if (len > NVRW_CNT)
69 			len = NVRW_CNT;
70 
71 		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
72 			       len) != 0) || len != done) {
73 			spin_unlock_irqrestore(&nvram_lock, flags);
74 			return -EIO;
75 		}
76 
77 		memcpy(p, nvram_buf, len);
78 
79 		p += len;
80 		i += len;
81 	}
82 
83 	spin_unlock_irqrestore(&nvram_lock, flags);
84 
85 	*index = i;
86 	return p - buf;
87 }
88 
89 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
90 {
91 	unsigned int i;
92 	unsigned long len;
93 	int done;
94 	unsigned long flags;
95 	const char *p = buf;
96 
97 	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
98 		return -ENODEV;
99 
100 	if (*index >= nvram_size)
101 		return 0;
102 
103 	i = *index;
104 	if (i + count > nvram_size)
105 		count = nvram_size - i;
106 
107 	spin_lock_irqsave(&nvram_lock, flags);
108 
109 	for (; count != 0; count -= len) {
110 		len = count;
111 		if (len > NVRW_CNT)
112 			len = NVRW_CNT;
113 
114 		memcpy(nvram_buf, p, len);
115 
116 		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
117 			       len) != 0) || len != done) {
118 			spin_unlock_irqrestore(&nvram_lock, flags);
119 			return -EIO;
120 		}
121 
122 		p += len;
123 		i += len;
124 	}
125 	spin_unlock_irqrestore(&nvram_lock, flags);
126 
127 	*index = i;
128 	return p - buf;
129 }
130 
131 static ssize_t pSeries_nvram_get_size(void)
132 {
133 	return nvram_size ? nvram_size : -ENODEV;
134 }
135 
136 
137 /* nvram_write_error_log
138  *
139  * We need to buffer the error logs into nvram to ensure that we have
140  * the failure information to decode.  If we have a severe error there
141  * is no way to guarantee that the OS or the machine is in a state to
142  * get back to user land and write the error to disk.  For example if
143  * the SCSI device driver causes a Machine Check by writing to a bad
144  * IO address, there is no way of guaranteeing that the device driver
145  * is in any state that is would also be able to write the error data
146  * captured to disk, thus we buffer it in NVRAM for analysis on the
147  * next boot.
148  *
149  * In NVRAM the partition containing the error log buffer will looks like:
150  * Header (in bytes):
151  * +-----------+----------+--------+------------+------------------+
152  * | signature | checksum | length | name       | data             |
153  * |0          |1         |2      3|4         15|16        length-1|
154  * +-----------+----------+--------+------------+------------------+
155  *
156  * The 'data' section would look like (in bytes):
157  * +--------------+------------+-----------------------------------+
158  * | event_logged | sequence # | error log                         |
159  * |0            3|4          7|8            nvram_error_log_size-1|
160  * +--------------+------------+-----------------------------------+
161  *
162  * event_logged: 0 if event has not been logged to syslog, 1 if it has
163  * sequence #: The unique sequence # for each event. (until it wraps)
164  * error log: The error log from event_scan
165  */
166 int nvram_write_error_log(char * buff, int length,
167                           unsigned int err_type, unsigned int error_log_cnt)
168 {
169 	int rc;
170 	loff_t tmp_index;
171 	struct err_log_info info;
172 
173 	if (nvram_error_log_index == -1) {
174 		return -ESPIPE;
175 	}
176 
177 	if (length > nvram_error_log_size) {
178 		length = nvram_error_log_size;
179 	}
180 
181 	info.error_type = err_type;
182 	info.seq_num = error_log_cnt;
183 
184 	tmp_index = nvram_error_log_index;
185 
186 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
187 	if (rc <= 0) {
188 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
189 		return rc;
190 	}
191 
192 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
193 	if (rc <= 0) {
194 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
195 		return rc;
196 	}
197 
198 	return 0;
199 }
200 
201 /* nvram_read_error_log
202  *
203  * Reads nvram for error log for at most 'length'
204  */
205 int nvram_read_error_log(char * buff, int length,
206                          unsigned int * err_type, unsigned int * error_log_cnt)
207 {
208 	int rc;
209 	loff_t tmp_index;
210 	struct err_log_info info;
211 
212 	if (nvram_error_log_index == -1)
213 		return -1;
214 
215 	if (length > nvram_error_log_size)
216 		length = nvram_error_log_size;
217 
218 	tmp_index = nvram_error_log_index;
219 
220 	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
221 	if (rc <= 0) {
222 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
223 		return rc;
224 	}
225 
226 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
227 	if (rc <= 0) {
228 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
229 		return rc;
230 	}
231 
232 	*error_log_cnt = info.seq_num;
233 	*err_type = info.error_type;
234 
235 	return 0;
236 }
237 
238 /* This doesn't actually zero anything, but it sets the event_logged
239  * word to tell that this event is safely in syslog.
240  */
241 int nvram_clear_error_log(void)
242 {
243 	loff_t tmp_index;
244 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
245 	int rc;
246 
247 	if (nvram_error_log_index == -1)
248 		return -1;
249 
250 	tmp_index = nvram_error_log_index;
251 
252 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
253 	if (rc <= 0) {
254 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
255 		return rc;
256 	}
257 
258 	return 0;
259 }
260 
261 /* pseries_nvram_init_log_partition
262  *
263  * This will setup the partition we need for buffering the
264  * error logs and cleanup partitions if needed.
265  *
266  * The general strategy is the following:
267  * 1.) If there is log partition large enough then use it.
268  * 2.) If there is none large enough, search
269  * for a free partition that is large enough.
270  * 3.) If there is not a free partition large enough remove
271  * _all_ OS partitions and consolidate the space.
272  * 4.) Will first try getting a chunk that will satisfy the maximum
273  * error log size (NVRAM_MAX_REQ).
274  * 5.) If the max chunk cannot be allocated then try finding a chunk
275  * that will satisfy the minum needed (NVRAM_MIN_REQ).
276  */
277 static int __init pseries_nvram_init_log_partition(void)
278 {
279 	loff_t p;
280 	int size;
281 
282 	/* Scan nvram for partitions */
283 	nvram_scan_partitions();
284 
285 	/* Lookg for ours */
286 	p = nvram_find_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS, &size);
287 
288 	/* Found one but too small, remove it */
289 	if (p && size < NVRAM_MIN_REQ) {
290 		pr_info("nvram: Found too small "NVRAM_LOG_PART_NAME" partition"
291 			",removing it...");
292 		nvram_remove_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS);
293 		p = 0;
294 	}
295 
296 	/* Create one if we didn't find */
297 	if (!p) {
298 		p = nvram_create_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS,
299 					   NVRAM_MAX_REQ, NVRAM_MIN_REQ);
300 		/* No room for it, try to get rid of any OS partition
301 		 * and try again
302 		 */
303 		if (p == -ENOSPC) {
304 			pr_info("nvram: No room to create "NVRAM_LOG_PART_NAME
305 				" partition, deleting all OS partitions...");
306 			nvram_remove_partition(NULL, NVRAM_SIG_OS);
307 			p = nvram_create_partition(NVRAM_LOG_PART_NAME,
308 						   NVRAM_SIG_OS, NVRAM_MAX_REQ,
309 						   NVRAM_MIN_REQ);
310 		}
311 	}
312 
313 	if (p <= 0) {
314 		pr_err("nvram: Failed to find or create "NVRAM_LOG_PART_NAME
315 		       " partition, err %d\n", (int)p);
316 		return 0;
317 	}
318 
319 	nvram_error_log_index = p;
320 	nvram_error_log_size = nvram_get_partition_size(p) -
321 		sizeof(struct err_log_info);
322 
323 	return 0;
324 }
325 machine_arch_initcall(pseries, pseries_nvram_init_log_partition);
326 
327 int __init pSeries_nvram_init(void)
328 {
329 	struct device_node *nvram;
330 	const unsigned int *nbytes_p;
331 	unsigned int proplen;
332 
333 	nvram = of_find_node_by_type(NULL, "nvram");
334 	if (nvram == NULL)
335 		return -ENODEV;
336 
337 	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
338 	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
339 		of_node_put(nvram);
340 		return -EIO;
341 	}
342 
343 	nvram_size = *nbytes_p;
344 
345 	nvram_fetch = rtas_token("nvram-fetch");
346 	nvram_store = rtas_token("nvram-store");
347 	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
348 	of_node_put(nvram);
349 
350 	ppc_md.nvram_read	= pSeries_nvram_read;
351 	ppc_md.nvram_write	= pSeries_nvram_write;
352 	ppc_md.nvram_size	= pSeries_nvram_get_size;
353 
354 	return 0;
355 }
356