1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  */
13 
14 
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/pstore.h>
22 #include <linux/ctype.h>
23 #include <linux/zlib.h>
24 #include <asm/uaccess.h>
25 #include <asm/nvram.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29 
30 /* Max bytes to read/write in one go */
31 #define NVRW_CNT 0x20
32 
33 /*
34  * Set oops header version to distingush between old and new format header.
35  * lnx,oops-log partition max size is 4000, header version > 4000 will
36  * help in identifying new header.
37  */
38 #define OOPS_HDR_VERSION 5000
39 
40 static unsigned int nvram_size;
41 static int nvram_fetch, nvram_store;
42 static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
43 static DEFINE_SPINLOCK(nvram_lock);
44 
45 struct err_log_info {
46 	int error_type;
47 	unsigned int seq_num;
48 };
49 
50 struct nvram_os_partition {
51 	const char *name;
52 	int req_size;	/* desired size, in bytes */
53 	int min_size;	/* minimum acceptable size (0 means req_size) */
54 	long size;	/* size of data portion (excluding err_log_info) */
55 	long index;	/* offset of data portion of partition */
56 	bool os_partition; /* partition initialized by OS, not FW */
57 };
58 
59 static struct nvram_os_partition rtas_log_partition = {
60 	.name = "ibm,rtas-log",
61 	.req_size = 2079,
62 	.min_size = 1055,
63 	.index = -1,
64 	.os_partition = true
65 };
66 
67 static struct nvram_os_partition oops_log_partition = {
68 	.name = "lnx,oops-log",
69 	.req_size = 4000,
70 	.min_size = 2000,
71 	.index = -1,
72 	.os_partition = true
73 };
74 
75 static const char *pseries_nvram_os_partitions[] = {
76 	"ibm,rtas-log",
77 	"lnx,oops-log",
78 	NULL
79 };
80 
81 struct oops_log_info {
82 	u16 version;
83 	u16 report_length;
84 	u64 timestamp;
85 } __attribute__((packed));
86 
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88 			  enum kmsg_dump_reason reason);
89 
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91 	.dump = oops_to_nvram
92 };
93 
94 /* See clobbering_unread_rtas_event() */
95 #define NVRAM_RTAS_READ_TIMEOUT 5		/* seconds */
96 static unsigned long last_unread_rtas_event;	/* timestamp */
97 
98 /*
99  * For capturing and compressing an oops or panic report...
100 
101  * big_oops_buf[] holds the uncompressed text we're capturing.
102  *
103  * oops_buf[] holds the compressed text, preceded by a oops header.
104  * oops header has u16 holding the version of oops header (to differentiate
105  * between old and new format header) followed by u16 holding the length of
106  * the compressed* text (*Or uncompressed, if compression fails.) and u64
107  * holding the timestamp. oops_buf[] gets written to NVRAM.
108  *
109  * oops_log_info points to the header. oops_data points to the compressed text.
110  *
111  * +- oops_buf
112  * |                                   +- oops_data
113  * v                                   v
114  * +-----------+-----------+-----------+------------------------+
115  * | version   | length    | timestamp | text                   |
116  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
117  * +-----------+-----------+-----------+------------------------+
118  * ^
119  * +- oops_log_info
120  *
121  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
122  */
123 static size_t big_oops_buf_sz;
124 static char *big_oops_buf, *oops_buf;
125 static char *oops_data;
126 static size_t oops_data_sz;
127 
128 /* Compression parameters */
129 #define COMPR_LEVEL 6
130 #define WINDOW_BITS 12
131 #define MEM_LEVEL 4
132 static struct z_stream_s stream;
133 
134 #ifdef CONFIG_PSTORE
135 static struct nvram_os_partition of_config_partition = {
136 	.name = "of-config",
137 	.index = -1,
138 	.os_partition = false
139 };
140 
141 static struct nvram_os_partition common_partition = {
142 	.name = "common",
143 	.index = -1,
144 	.os_partition = false
145 };
146 
147 static enum pstore_type_id nvram_type_ids[] = {
148 	PSTORE_TYPE_DMESG,
149 	PSTORE_TYPE_PPC_RTAS,
150 	PSTORE_TYPE_PPC_OF,
151 	PSTORE_TYPE_PPC_COMMON,
152 	-1
153 };
154 static int read_type;
155 static unsigned long last_rtas_event;
156 #endif
157 
158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
159 {
160 	unsigned int i;
161 	unsigned long len;
162 	int done;
163 	unsigned long flags;
164 	char *p = buf;
165 
166 
167 	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
168 		return -ENODEV;
169 
170 	if (*index >= nvram_size)
171 		return 0;
172 
173 	i = *index;
174 	if (i + count > nvram_size)
175 		count = nvram_size - i;
176 
177 	spin_lock_irqsave(&nvram_lock, flags);
178 
179 	for (; count != 0; count -= len) {
180 		len = count;
181 		if (len > NVRW_CNT)
182 			len = NVRW_CNT;
183 
184 		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
185 			       len) != 0) || len != done) {
186 			spin_unlock_irqrestore(&nvram_lock, flags);
187 			return -EIO;
188 		}
189 
190 		memcpy(p, nvram_buf, len);
191 
192 		p += len;
193 		i += len;
194 	}
195 
196 	spin_unlock_irqrestore(&nvram_lock, flags);
197 
198 	*index = i;
199 	return p - buf;
200 }
201 
202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
203 {
204 	unsigned int i;
205 	unsigned long len;
206 	int done;
207 	unsigned long flags;
208 	const char *p = buf;
209 
210 	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
211 		return -ENODEV;
212 
213 	if (*index >= nvram_size)
214 		return 0;
215 
216 	i = *index;
217 	if (i + count > nvram_size)
218 		count = nvram_size - i;
219 
220 	spin_lock_irqsave(&nvram_lock, flags);
221 
222 	for (; count != 0; count -= len) {
223 		len = count;
224 		if (len > NVRW_CNT)
225 			len = NVRW_CNT;
226 
227 		memcpy(nvram_buf, p, len);
228 
229 		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
230 			       len) != 0) || len != done) {
231 			spin_unlock_irqrestore(&nvram_lock, flags);
232 			return -EIO;
233 		}
234 
235 		p += len;
236 		i += len;
237 	}
238 	spin_unlock_irqrestore(&nvram_lock, flags);
239 
240 	*index = i;
241 	return p - buf;
242 }
243 
244 static ssize_t pSeries_nvram_get_size(void)
245 {
246 	return nvram_size ? nvram_size : -ENODEV;
247 }
248 
249 
250 /* nvram_write_os_partition, nvram_write_error_log
251  *
252  * We need to buffer the error logs into nvram to ensure that we have
253  * the failure information to decode.  If we have a severe error there
254  * is no way to guarantee that the OS or the machine is in a state to
255  * get back to user land and write the error to disk.  For example if
256  * the SCSI device driver causes a Machine Check by writing to a bad
257  * IO address, there is no way of guaranteeing that the device driver
258  * is in any state that is would also be able to write the error data
259  * captured to disk, thus we buffer it in NVRAM for analysis on the
260  * next boot.
261  *
262  * In NVRAM the partition containing the error log buffer will looks like:
263  * Header (in bytes):
264  * +-----------+----------+--------+------------+------------------+
265  * | signature | checksum | length | name       | data             |
266  * |0          |1         |2      3|4         15|16        length-1|
267  * +-----------+----------+--------+------------+------------------+
268  *
269  * The 'data' section would look like (in bytes):
270  * +--------------+------------+-----------------------------------+
271  * | event_logged | sequence # | error log                         |
272  * |0            3|4          7|8                  error_log_size-1|
273  * +--------------+------------+-----------------------------------+
274  *
275  * event_logged: 0 if event has not been logged to syslog, 1 if it has
276  * sequence #: The unique sequence # for each event. (until it wraps)
277  * error log: The error log from event_scan
278  */
279 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
280 		int length, unsigned int err_type, unsigned int error_log_cnt)
281 {
282 	int rc;
283 	loff_t tmp_index;
284 	struct err_log_info info;
285 
286 	if (part->index == -1) {
287 		return -ESPIPE;
288 	}
289 
290 	if (length > part->size) {
291 		length = part->size;
292 	}
293 
294 	info.error_type = err_type;
295 	info.seq_num = error_log_cnt;
296 
297 	tmp_index = part->index;
298 
299 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
300 	if (rc <= 0) {
301 		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
302 		return rc;
303 	}
304 
305 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
306 	if (rc <= 0) {
307 		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
308 		return rc;
309 	}
310 
311 	return 0;
312 }
313 
314 int nvram_write_error_log(char * buff, int length,
315                           unsigned int err_type, unsigned int error_log_cnt)
316 {
317 	int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
318 						err_type, error_log_cnt);
319 	if (!rc) {
320 		last_unread_rtas_event = get_seconds();
321 #ifdef CONFIG_PSTORE
322 		last_rtas_event = get_seconds();
323 #endif
324 	}
325 
326 	return rc;
327 }
328 
329 /* nvram_read_partition
330  *
331  * Reads nvram partition for at most 'length'
332  */
333 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
334 			int length, unsigned int *err_type,
335 			unsigned int *error_log_cnt)
336 {
337 	int rc;
338 	loff_t tmp_index;
339 	struct err_log_info info;
340 
341 	if (part->index == -1)
342 		return -1;
343 
344 	if (length > part->size)
345 		length = part->size;
346 
347 	tmp_index = part->index;
348 
349 	if (part->os_partition) {
350 		rc = ppc_md.nvram_read((char *)&info,
351 					sizeof(struct err_log_info),
352 					&tmp_index);
353 		if (rc <= 0) {
354 			pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__,
355 									rc);
356 			return rc;
357 		}
358 	}
359 
360 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
361 	if (rc <= 0) {
362 		pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__, rc);
363 		return rc;
364 	}
365 
366 	if (part->os_partition) {
367 		*error_log_cnt = info.seq_num;
368 		*err_type = info.error_type;
369 	}
370 
371 	return 0;
372 }
373 
374 /* nvram_read_error_log
375  *
376  * Reads nvram for error log for at most 'length'
377  */
378 int nvram_read_error_log(char *buff, int length,
379 			unsigned int *err_type, unsigned int *error_log_cnt)
380 {
381 	return nvram_read_partition(&rtas_log_partition, buff, length,
382 						err_type, error_log_cnt);
383 }
384 
385 /* This doesn't actually zero anything, but it sets the event_logged
386  * word to tell that this event is safely in syslog.
387  */
388 int nvram_clear_error_log(void)
389 {
390 	loff_t tmp_index;
391 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
392 	int rc;
393 
394 	if (rtas_log_partition.index == -1)
395 		return -1;
396 
397 	tmp_index = rtas_log_partition.index;
398 
399 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
400 	if (rc <= 0) {
401 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
402 		return rc;
403 	}
404 	last_unread_rtas_event = 0;
405 
406 	return 0;
407 }
408 
409 /* pseries_nvram_init_os_partition
410  *
411  * This sets up a partition with an "OS" signature.
412  *
413  * The general strategy is the following:
414  * 1.) If a partition with the indicated name already exists...
415  *	- If it's large enough, use it.
416  *	- Otherwise, recycle it and keep going.
417  * 2.) Search for a free partition that is large enough.
418  * 3.) If there's not a free partition large enough, recycle any obsolete
419  * OS partitions and try again.
420  * 4.) Will first try getting a chunk that will satisfy the requested size.
421  * 5.) If a chunk of the requested size cannot be allocated, then try finding
422  * a chunk that will satisfy the minum needed.
423  *
424  * Returns 0 on success, else -1.
425  */
426 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
427 									*part)
428 {
429 	loff_t p;
430 	int size;
431 
432 	/* Scan nvram for partitions */
433 	nvram_scan_partitions();
434 
435 	/* Look for ours */
436 	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
437 
438 	/* Found one but too small, remove it */
439 	if (p && size < part->min_size) {
440 		pr_info("nvram: Found too small %s partition,"
441 					" removing it...\n", part->name);
442 		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
443 		p = 0;
444 	}
445 
446 	/* Create one if we didn't find */
447 	if (!p) {
448 		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
449 					part->req_size, part->min_size);
450 		if (p == -ENOSPC) {
451 			pr_info("nvram: No room to create %s partition, "
452 				"deleting any obsolete OS partitions...\n",
453 				part->name);
454 			nvram_remove_partition(NULL, NVRAM_SIG_OS,
455 						pseries_nvram_os_partitions);
456 			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
457 					part->req_size, part->min_size);
458 		}
459 	}
460 
461 	if (p <= 0) {
462 		pr_err("nvram: Failed to find or create %s"
463 		       " partition, err %d\n", part->name, (int)p);
464 		return -1;
465 	}
466 
467 	part->index = p;
468 	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
469 
470 	return 0;
471 }
472 
473 /*
474  * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
475  * would logging this oops/panic overwrite an RTAS event that rtas_errd
476  * hasn't had a chance to read and process?  Return 1 if so, else 0.
477  *
478  * We assume that if rtas_errd hasn't read the RTAS event in
479  * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
480  */
481 static int clobbering_unread_rtas_event(void)
482 {
483 	return (oops_log_partition.index == rtas_log_partition.index
484 		&& last_unread_rtas_event
485 		&& get_seconds() - last_unread_rtas_event <=
486 						NVRAM_RTAS_READ_TIMEOUT);
487 }
488 
489 /* Derived from logfs_compress() */
490 static int nvram_compress(const void *in, void *out, size_t inlen,
491 							size_t outlen)
492 {
493 	int err, ret;
494 
495 	ret = -EIO;
496 	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
497 						MEM_LEVEL, Z_DEFAULT_STRATEGY);
498 	if (err != Z_OK)
499 		goto error;
500 
501 	stream.next_in = in;
502 	stream.avail_in = inlen;
503 	stream.total_in = 0;
504 	stream.next_out = out;
505 	stream.avail_out = outlen;
506 	stream.total_out = 0;
507 
508 	err = zlib_deflate(&stream, Z_FINISH);
509 	if (err != Z_STREAM_END)
510 		goto error;
511 
512 	err = zlib_deflateEnd(&stream);
513 	if (err != Z_OK)
514 		goto error;
515 
516 	if (stream.total_out >= stream.total_in)
517 		goto error;
518 
519 	ret = stream.total_out;
520 error:
521 	return ret;
522 }
523 
524 /* Compress the text from big_oops_buf into oops_buf. */
525 static int zip_oops(size_t text_len)
526 {
527 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
528 	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
529 								oops_data_sz);
530 	if (zipped_len < 0) {
531 		pr_err("nvram: compression failed; returned %d\n", zipped_len);
532 		pr_err("nvram: logging uncompressed oops/panic report\n");
533 		return -1;
534 	}
535 	oops_hdr->version = OOPS_HDR_VERSION;
536 	oops_hdr->report_length = (u16) zipped_len;
537 	oops_hdr->timestamp = get_seconds();
538 	return 0;
539 }
540 
541 #ifdef CONFIG_PSTORE
542 /* Derived from logfs_uncompress */
543 int nvram_decompress(void *in, void *out, size_t inlen, size_t outlen)
544 {
545 	int err, ret;
546 
547 	ret = -EIO;
548 	err = zlib_inflateInit(&stream);
549 	if (err != Z_OK)
550 		goto error;
551 
552 	stream.next_in = in;
553 	stream.avail_in = inlen;
554 	stream.total_in = 0;
555 	stream.next_out = out;
556 	stream.avail_out = outlen;
557 	stream.total_out = 0;
558 
559 	err = zlib_inflate(&stream, Z_FINISH);
560 	if (err != Z_STREAM_END)
561 		goto error;
562 
563 	err = zlib_inflateEnd(&stream);
564 	if (err != Z_OK)
565 		goto error;
566 
567 	ret = stream.total_out;
568 error:
569 	return ret;
570 }
571 
572 static int nvram_pstore_open(struct pstore_info *psi)
573 {
574 	/* Reset the iterator to start reading partitions again */
575 	read_type = -1;
576 	return 0;
577 }
578 
579 /**
580  * nvram_pstore_write - pstore write callback for nvram
581  * @type:               Type of message logged
582  * @reason:             reason behind dump (oops/panic)
583  * @id:                 identifier to indicate the write performed
584  * @part:               pstore writes data to registered buffer in parts,
585  *                      part number will indicate the same.
586  * @count:              Indicates oops count
587  * @hsize:              Size of header added by pstore
588  * @size:               number of bytes written to the registered buffer
589  * @psi:                registered pstore_info structure
590  *
591  * Called by pstore_dump() when an oops or panic report is logged in the
592  * printk buffer.
593  * Returns 0 on successful write.
594  */
595 static int nvram_pstore_write(enum pstore_type_id type,
596 				enum kmsg_dump_reason reason,
597 				u64 *id, unsigned int part, int count,
598 				size_t hsize, size_t size,
599 				struct pstore_info *psi)
600 {
601 	int rc;
602 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
603 	struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
604 
605 	/* part 1 has the recent messages from printk buffer */
606 	if (part > 1 || type != PSTORE_TYPE_DMESG ||
607 				clobbering_unread_rtas_event())
608 		return -1;
609 
610 	oops_hdr->version = OOPS_HDR_VERSION;
611 	oops_hdr->report_length = (u16) size;
612 	oops_hdr->timestamp = get_seconds();
613 
614 	if (big_oops_buf) {
615 		rc = zip_oops(size);
616 		/*
617 		 * If compression fails copy recent log messages from
618 		 * big_oops_buf to oops_data.
619 		 */
620 		if (rc != 0) {
621 			size_t diff = size - oops_data_sz + hsize;
622 
623 			if (size > oops_data_sz) {
624 				memcpy(oops_data, big_oops_buf, hsize);
625 				memcpy(oops_data + hsize, big_oops_buf + diff,
626 					oops_data_sz - hsize);
627 
628 				oops_hdr->report_length = (u16) oops_data_sz;
629 			} else
630 				memcpy(oops_data, big_oops_buf, size);
631 		} else
632 			err_type = ERR_TYPE_KERNEL_PANIC_GZ;
633 	}
634 
635 	rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
636 		(int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
637 		count);
638 
639 	if (rc != 0)
640 		return rc;
641 
642 	*id = part;
643 	return 0;
644 }
645 
646 /*
647  * Reads the oops/panic report, rtas, of-config and common partition.
648  * Returns the length of the data we read from each partition.
649  * Returns 0 if we've been called before.
650  */
651 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
652 				int *count, struct timespec *time, char **buf,
653 				struct pstore_info *psi)
654 {
655 	struct oops_log_info *oops_hdr;
656 	unsigned int err_type, id_no, size = 0;
657 	struct nvram_os_partition *part = NULL;
658 	char *buff = NULL, *big_buff = NULL;
659 	int sig = 0;
660 	loff_t p;
661 
662 	read_type++;
663 
664 	switch (nvram_type_ids[read_type]) {
665 	case PSTORE_TYPE_DMESG:
666 		part = &oops_log_partition;
667 		*type = PSTORE_TYPE_DMESG;
668 		break;
669 	case PSTORE_TYPE_PPC_RTAS:
670 		part = &rtas_log_partition;
671 		*type = PSTORE_TYPE_PPC_RTAS;
672 		time->tv_sec = last_rtas_event;
673 		time->tv_nsec = 0;
674 		break;
675 	case PSTORE_TYPE_PPC_OF:
676 		sig = NVRAM_SIG_OF;
677 		part = &of_config_partition;
678 		*type = PSTORE_TYPE_PPC_OF;
679 		*id = PSTORE_TYPE_PPC_OF;
680 		time->tv_sec = 0;
681 		time->tv_nsec = 0;
682 		break;
683 	case PSTORE_TYPE_PPC_COMMON:
684 		sig = NVRAM_SIG_SYS;
685 		part = &common_partition;
686 		*type = PSTORE_TYPE_PPC_COMMON;
687 		*id = PSTORE_TYPE_PPC_COMMON;
688 		time->tv_sec = 0;
689 		time->tv_nsec = 0;
690 		break;
691 	default:
692 		return 0;
693 	}
694 
695 	if (!part->os_partition) {
696 		p = nvram_find_partition(part->name, sig, &size);
697 		if (p <= 0) {
698 			pr_err("nvram: Failed to find partition %s, "
699 				"err %d\n", part->name, (int)p);
700 			return 0;
701 		}
702 		part->index = p;
703 		part->size = size;
704 	}
705 
706 	buff = kmalloc(part->size, GFP_KERNEL);
707 
708 	if (!buff)
709 		return -ENOMEM;
710 
711 	if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
712 		kfree(buff);
713 		return 0;
714 	}
715 
716 	*count = 0;
717 
718 	if (part->os_partition)
719 		*id = id_no;
720 
721 	if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
722 		int length, unzipped_len;
723 		size_t hdr_size;
724 
725 		oops_hdr = (struct oops_log_info *)buff;
726 		if (oops_hdr->version < OOPS_HDR_VERSION) {
727 			/* Old format oops header had 2-byte record size */
728 			hdr_size = sizeof(u16);
729 			length = oops_hdr->version;
730 			time->tv_sec = 0;
731 			time->tv_nsec = 0;
732 		} else {
733 			hdr_size = sizeof(*oops_hdr);
734 			length = oops_hdr->report_length;
735 			time->tv_sec = oops_hdr->timestamp;
736 			time->tv_nsec = 0;
737 		}
738 		*buf = kmalloc(length, GFP_KERNEL);
739 		if (*buf == NULL)
740 			return -ENOMEM;
741 		memcpy(*buf, buff + hdr_size, length);
742 		kfree(buff);
743 
744 		if (err_type == ERR_TYPE_KERNEL_PANIC_GZ) {
745 			big_buff = kmalloc(big_oops_buf_sz, GFP_KERNEL);
746 			if (!big_buff)
747 				return -ENOMEM;
748 
749 			unzipped_len = nvram_decompress(*buf, big_buff,
750 						length, big_oops_buf_sz);
751 
752 			if (unzipped_len < 0) {
753 				pr_err("nvram: decompression failed, returned "
754 					"rc %d\n", unzipped_len);
755 				kfree(big_buff);
756 			} else {
757 				*buf = big_buff;
758 				length = unzipped_len;
759 			}
760 		}
761 		return length;
762 	}
763 
764 	*buf = buff;
765 	return part->size;
766 }
767 
768 static struct pstore_info nvram_pstore_info = {
769 	.owner = THIS_MODULE,
770 	.name = "nvram",
771 	.open = nvram_pstore_open,
772 	.read = nvram_pstore_read,
773 	.write = nvram_pstore_write,
774 };
775 
776 static int nvram_pstore_init(void)
777 {
778 	int rc = 0;
779 
780 	if (big_oops_buf) {
781 		nvram_pstore_info.buf = big_oops_buf;
782 		nvram_pstore_info.bufsize = big_oops_buf_sz;
783 	} else {
784 		nvram_pstore_info.buf = oops_data;
785 		nvram_pstore_info.bufsize = oops_data_sz;
786 	}
787 
788 	rc = pstore_register(&nvram_pstore_info);
789 	if (rc != 0)
790 		pr_err("nvram: pstore_register() failed, defaults to "
791 				"kmsg_dump; returned %d\n", rc);
792 
793 	return rc;
794 }
795 #else
796 static int nvram_pstore_init(void)
797 {
798 	return -1;
799 }
800 #endif
801 
802 static void __init nvram_init_oops_partition(int rtas_partition_exists)
803 {
804 	int rc;
805 	size_t size;
806 
807 	rc = pseries_nvram_init_os_partition(&oops_log_partition);
808 	if (rc != 0) {
809 		if (!rtas_partition_exists)
810 			return;
811 		pr_notice("nvram: Using %s partition to log both"
812 			" RTAS errors and oops/panic reports\n",
813 			rtas_log_partition.name);
814 		memcpy(&oops_log_partition, &rtas_log_partition,
815 						sizeof(rtas_log_partition));
816 	}
817 	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
818 	if (!oops_buf) {
819 		pr_err("nvram: No memory for %s partition\n",
820 						oops_log_partition.name);
821 		return;
822 	}
823 	oops_data = oops_buf + sizeof(struct oops_log_info);
824 	oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
825 
826 	/*
827 	 * Figure compression (preceded by elimination of each line's <n>
828 	 * severity prefix) will reduce the oops/panic report to at most
829 	 * 45% of its original size.
830 	 */
831 	big_oops_buf_sz = (oops_data_sz * 100) / 45;
832 	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
833 	if (big_oops_buf) {
834 		size = max(zlib_deflate_workspacesize(WINDOW_BITS, MEM_LEVEL),
835 			zlib_inflate_workspacesize());
836 		stream.workspace = kmalloc(size, GFP_KERNEL);
837 		if (!stream.workspace) {
838 			pr_err("nvram: No memory for compression workspace; "
839 				"skipping compression of %s partition data\n",
840 				oops_log_partition.name);
841 			kfree(big_oops_buf);
842 			big_oops_buf = NULL;
843 		}
844 	} else {
845 		pr_err("No memory for uncompressed %s data; "
846 			"skipping compression\n", oops_log_partition.name);
847 		stream.workspace = NULL;
848 	}
849 
850 	rc = nvram_pstore_init();
851 
852 	if (!rc)
853 		return;
854 
855 	rc = kmsg_dump_register(&nvram_kmsg_dumper);
856 	if (rc != 0) {
857 		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
858 		kfree(oops_buf);
859 		kfree(big_oops_buf);
860 		kfree(stream.workspace);
861 	}
862 }
863 
864 static int __init pseries_nvram_init_log_partitions(void)
865 {
866 	int rc;
867 
868 	rc = pseries_nvram_init_os_partition(&rtas_log_partition);
869 	nvram_init_oops_partition(rc == 0);
870 	return 0;
871 }
872 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
873 
874 int __init pSeries_nvram_init(void)
875 {
876 	struct device_node *nvram;
877 	const unsigned int *nbytes_p;
878 	unsigned int proplen;
879 
880 	nvram = of_find_node_by_type(NULL, "nvram");
881 	if (nvram == NULL)
882 		return -ENODEV;
883 
884 	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
885 	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
886 		of_node_put(nvram);
887 		return -EIO;
888 	}
889 
890 	nvram_size = *nbytes_p;
891 
892 	nvram_fetch = rtas_token("nvram-fetch");
893 	nvram_store = rtas_token("nvram-store");
894 	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
895 	of_node_put(nvram);
896 
897 	ppc_md.nvram_read	= pSeries_nvram_read;
898 	ppc_md.nvram_write	= pSeries_nvram_write;
899 	ppc_md.nvram_size	= pSeries_nvram_get_size;
900 
901 	return 0;
902 }
903 
904 
905 /*
906  * This is our kmsg_dump callback, called after an oops or panic report
907  * has been written to the printk buffer.  We want to capture as much
908  * of the printk buffer as possible.  First, capture as much as we can
909  * that we think will compress sufficiently to fit in the lnx,oops-log
910  * partition.  If that's too much, go back and capture uncompressed text.
911  */
912 static void oops_to_nvram(struct kmsg_dumper *dumper,
913 			  enum kmsg_dump_reason reason)
914 {
915 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
916 	static unsigned int oops_count = 0;
917 	static bool panicking = false;
918 	static DEFINE_SPINLOCK(lock);
919 	unsigned long flags;
920 	size_t text_len;
921 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
922 	int rc = -1;
923 
924 	switch (reason) {
925 	case KMSG_DUMP_RESTART:
926 	case KMSG_DUMP_HALT:
927 	case KMSG_DUMP_POWEROFF:
928 		/* These are almost always orderly shutdowns. */
929 		return;
930 	case KMSG_DUMP_OOPS:
931 		break;
932 	case KMSG_DUMP_PANIC:
933 		panicking = true;
934 		break;
935 	case KMSG_DUMP_EMERG:
936 		if (panicking)
937 			/* Panic report already captured. */
938 			return;
939 		break;
940 	default:
941 		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
942 						__FUNCTION__, (int) reason);
943 		return;
944 	}
945 
946 	if (clobbering_unread_rtas_event())
947 		return;
948 
949 	if (!spin_trylock_irqsave(&lock, flags))
950 		return;
951 
952 	if (big_oops_buf) {
953 		kmsg_dump_get_buffer(dumper, false,
954 				     big_oops_buf, big_oops_buf_sz, &text_len);
955 		rc = zip_oops(text_len);
956 	}
957 	if (rc != 0) {
958 		kmsg_dump_rewind(dumper);
959 		kmsg_dump_get_buffer(dumper, false,
960 				     oops_data, oops_data_sz, &text_len);
961 		err_type = ERR_TYPE_KERNEL_PANIC;
962 		oops_hdr->version = OOPS_HDR_VERSION;
963 		oops_hdr->report_length = (u16) text_len;
964 		oops_hdr->timestamp = get_seconds();
965 	}
966 
967 	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
968 		(int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
969 		++oops_count);
970 
971 	spin_unlock_irqrestore(&lock, flags);
972 }
973