1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  */
13 
14 
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <asm/uaccess.h>
22 #include <asm/nvram.h>
23 #include <asm/rtas.h>
24 #include <asm/prom.h>
25 #include <asm/machdep.h>
26 
27 /* Max bytes to read/write in one go */
28 #define NVRW_CNT 0x20
29 
30 static unsigned int nvram_size;
31 static int nvram_fetch, nvram_store;
32 static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
33 static DEFINE_SPINLOCK(nvram_lock);
34 
35 struct err_log_info {
36 	int error_type;
37 	unsigned int seq_num;
38 };
39 
40 struct nvram_os_partition {
41 	const char *name;
42 	int req_size;	/* desired size, in bytes */
43 	int min_size;	/* minimum acceptable size (0 means req_size) */
44 	long size;	/* size of data portion (excluding err_log_info) */
45 	long index;	/* offset of data portion of partition */
46 };
47 
48 static struct nvram_os_partition rtas_log_partition = {
49 	.name = "ibm,rtas-log",
50 	.req_size = 2079,
51 	.min_size = 1055,
52 	.index = -1
53 };
54 
55 static struct nvram_os_partition oops_log_partition = {
56 	.name = "lnx,oops-log",
57 	.req_size = 4000,
58 	.min_size = 2000,
59 	.index = -1
60 };
61 
62 static const char *pseries_nvram_os_partitions[] = {
63 	"ibm,rtas-log",
64 	"lnx,oops-log",
65 	NULL
66 };
67 
68 static void oops_to_nvram(struct kmsg_dumper *dumper,
69 		enum kmsg_dump_reason reason,
70 		const char *old_msgs, unsigned long old_len,
71 		const char *new_msgs, unsigned long new_len);
72 
73 static struct kmsg_dumper nvram_kmsg_dumper = {
74 	.dump = oops_to_nvram
75 };
76 
77 /* See clobbering_unread_rtas_event() */
78 #define NVRAM_RTAS_READ_TIMEOUT 5		/* seconds */
79 static unsigned long last_unread_rtas_event;	/* timestamp */
80 
81 /* We preallocate oops_buf during init to avoid kmalloc during oops/panic. */
82 static char *oops_buf;
83 
84 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
85 {
86 	unsigned int i;
87 	unsigned long len;
88 	int done;
89 	unsigned long flags;
90 	char *p = buf;
91 
92 
93 	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
94 		return -ENODEV;
95 
96 	if (*index >= nvram_size)
97 		return 0;
98 
99 	i = *index;
100 	if (i + count > nvram_size)
101 		count = nvram_size - i;
102 
103 	spin_lock_irqsave(&nvram_lock, flags);
104 
105 	for (; count != 0; count -= len) {
106 		len = count;
107 		if (len > NVRW_CNT)
108 			len = NVRW_CNT;
109 
110 		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
111 			       len) != 0) || len != done) {
112 			spin_unlock_irqrestore(&nvram_lock, flags);
113 			return -EIO;
114 		}
115 
116 		memcpy(p, nvram_buf, len);
117 
118 		p += len;
119 		i += len;
120 	}
121 
122 	spin_unlock_irqrestore(&nvram_lock, flags);
123 
124 	*index = i;
125 	return p - buf;
126 }
127 
128 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
129 {
130 	unsigned int i;
131 	unsigned long len;
132 	int done;
133 	unsigned long flags;
134 	const char *p = buf;
135 
136 	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
137 		return -ENODEV;
138 
139 	if (*index >= nvram_size)
140 		return 0;
141 
142 	i = *index;
143 	if (i + count > nvram_size)
144 		count = nvram_size - i;
145 
146 	spin_lock_irqsave(&nvram_lock, flags);
147 
148 	for (; count != 0; count -= len) {
149 		len = count;
150 		if (len > NVRW_CNT)
151 			len = NVRW_CNT;
152 
153 		memcpy(nvram_buf, p, len);
154 
155 		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
156 			       len) != 0) || len != done) {
157 			spin_unlock_irqrestore(&nvram_lock, flags);
158 			return -EIO;
159 		}
160 
161 		p += len;
162 		i += len;
163 	}
164 	spin_unlock_irqrestore(&nvram_lock, flags);
165 
166 	*index = i;
167 	return p - buf;
168 }
169 
170 static ssize_t pSeries_nvram_get_size(void)
171 {
172 	return nvram_size ? nvram_size : -ENODEV;
173 }
174 
175 
176 /* nvram_write_os_partition, nvram_write_error_log
177  *
178  * We need to buffer the error logs into nvram to ensure that we have
179  * the failure information to decode.  If we have a severe error there
180  * is no way to guarantee that the OS or the machine is in a state to
181  * get back to user land and write the error to disk.  For example if
182  * the SCSI device driver causes a Machine Check by writing to a bad
183  * IO address, there is no way of guaranteeing that the device driver
184  * is in any state that is would also be able to write the error data
185  * captured to disk, thus we buffer it in NVRAM for analysis on the
186  * next boot.
187  *
188  * In NVRAM the partition containing the error log buffer will looks like:
189  * Header (in bytes):
190  * +-----------+----------+--------+------------+------------------+
191  * | signature | checksum | length | name       | data             |
192  * |0          |1         |2      3|4         15|16        length-1|
193  * +-----------+----------+--------+------------+------------------+
194  *
195  * The 'data' section would look like (in bytes):
196  * +--------------+------------+-----------------------------------+
197  * | event_logged | sequence # | error log                         |
198  * |0            3|4          7|8                  error_log_size-1|
199  * +--------------+------------+-----------------------------------+
200  *
201  * event_logged: 0 if event has not been logged to syslog, 1 if it has
202  * sequence #: The unique sequence # for each event. (until it wraps)
203  * error log: The error log from event_scan
204  */
205 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
206 		int length, unsigned int err_type, unsigned int error_log_cnt)
207 {
208 	int rc;
209 	loff_t tmp_index;
210 	struct err_log_info info;
211 
212 	if (part->index == -1) {
213 		return -ESPIPE;
214 	}
215 
216 	if (length > part->size) {
217 		length = part->size;
218 	}
219 
220 	info.error_type = err_type;
221 	info.seq_num = error_log_cnt;
222 
223 	tmp_index = part->index;
224 
225 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
226 	if (rc <= 0) {
227 		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
228 		return rc;
229 	}
230 
231 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
232 	if (rc <= 0) {
233 		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
234 		return rc;
235 	}
236 
237 	return 0;
238 }
239 
240 int nvram_write_error_log(char * buff, int length,
241                           unsigned int err_type, unsigned int error_log_cnt)
242 {
243 	int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
244 						err_type, error_log_cnt);
245 	if (!rc)
246 		last_unread_rtas_event = get_seconds();
247 	return rc;
248 }
249 
250 /* nvram_read_error_log
251  *
252  * Reads nvram for error log for at most 'length'
253  */
254 int nvram_read_error_log(char * buff, int length,
255                          unsigned int * err_type, unsigned int * error_log_cnt)
256 {
257 	int rc;
258 	loff_t tmp_index;
259 	struct err_log_info info;
260 
261 	if (rtas_log_partition.index == -1)
262 		return -1;
263 
264 	if (length > rtas_log_partition.size)
265 		length = rtas_log_partition.size;
266 
267 	tmp_index = rtas_log_partition.index;
268 
269 	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
270 	if (rc <= 0) {
271 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
272 		return rc;
273 	}
274 
275 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
276 	if (rc <= 0) {
277 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
278 		return rc;
279 	}
280 
281 	*error_log_cnt = info.seq_num;
282 	*err_type = info.error_type;
283 
284 	return 0;
285 }
286 
287 /* This doesn't actually zero anything, but it sets the event_logged
288  * word to tell that this event is safely in syslog.
289  */
290 int nvram_clear_error_log(void)
291 {
292 	loff_t tmp_index;
293 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
294 	int rc;
295 
296 	if (rtas_log_partition.index == -1)
297 		return -1;
298 
299 	tmp_index = rtas_log_partition.index;
300 
301 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
302 	if (rc <= 0) {
303 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
304 		return rc;
305 	}
306 	last_unread_rtas_event = 0;
307 
308 	return 0;
309 }
310 
311 /* pseries_nvram_init_os_partition
312  *
313  * This sets up a partition with an "OS" signature.
314  *
315  * The general strategy is the following:
316  * 1.) If a partition with the indicated name already exists...
317  *	- If it's large enough, use it.
318  *	- Otherwise, recycle it and keep going.
319  * 2.) Search for a free partition that is large enough.
320  * 3.) If there's not a free partition large enough, recycle any obsolete
321  * OS partitions and try again.
322  * 4.) Will first try getting a chunk that will satisfy the requested size.
323  * 5.) If a chunk of the requested size cannot be allocated, then try finding
324  * a chunk that will satisfy the minum needed.
325  *
326  * Returns 0 on success, else -1.
327  */
328 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
329 									*part)
330 {
331 	loff_t p;
332 	int size;
333 
334 	/* Scan nvram for partitions */
335 	nvram_scan_partitions();
336 
337 	/* Look for ours */
338 	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
339 
340 	/* Found one but too small, remove it */
341 	if (p && size < part->min_size) {
342 		pr_info("nvram: Found too small %s partition,"
343 					" removing it...\n", part->name);
344 		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
345 		p = 0;
346 	}
347 
348 	/* Create one if we didn't find */
349 	if (!p) {
350 		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
351 					part->req_size, part->min_size);
352 		if (p == -ENOSPC) {
353 			pr_info("nvram: No room to create %s partition, "
354 				"deleting any obsolete OS partitions...\n",
355 				part->name);
356 			nvram_remove_partition(NULL, NVRAM_SIG_OS,
357 						pseries_nvram_os_partitions);
358 			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
359 					part->req_size, part->min_size);
360 		}
361 	}
362 
363 	if (p <= 0) {
364 		pr_err("nvram: Failed to find or create %s"
365 		       " partition, err %d\n", part->name, (int)p);
366 		return -1;
367 	}
368 
369 	part->index = p;
370 	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
371 
372 	return 0;
373 }
374 
375 static void __init nvram_init_oops_partition(int rtas_partition_exists)
376 {
377 	int rc;
378 
379 	rc = pseries_nvram_init_os_partition(&oops_log_partition);
380 	if (rc != 0) {
381 		if (!rtas_partition_exists)
382 			return;
383 		pr_notice("nvram: Using %s partition to log both"
384 			" RTAS errors and oops/panic reports\n",
385 			rtas_log_partition.name);
386 		memcpy(&oops_log_partition, &rtas_log_partition,
387 						sizeof(rtas_log_partition));
388 	}
389 	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
390 	rc = kmsg_dump_register(&nvram_kmsg_dumper);
391 	if (rc != 0) {
392 		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
393 		kfree(oops_buf);
394 		return;
395 	}
396 }
397 
398 static int __init pseries_nvram_init_log_partitions(void)
399 {
400 	int rc;
401 
402 	rc = pseries_nvram_init_os_partition(&rtas_log_partition);
403 	nvram_init_oops_partition(rc == 0);
404 	return 0;
405 }
406 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
407 
408 int __init pSeries_nvram_init(void)
409 {
410 	struct device_node *nvram;
411 	const unsigned int *nbytes_p;
412 	unsigned int proplen;
413 
414 	nvram = of_find_node_by_type(NULL, "nvram");
415 	if (nvram == NULL)
416 		return -ENODEV;
417 
418 	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
419 	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
420 		of_node_put(nvram);
421 		return -EIO;
422 	}
423 
424 	nvram_size = *nbytes_p;
425 
426 	nvram_fetch = rtas_token("nvram-fetch");
427 	nvram_store = rtas_token("nvram-store");
428 	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
429 	of_node_put(nvram);
430 
431 	ppc_md.nvram_read	= pSeries_nvram_read;
432 	ppc_md.nvram_write	= pSeries_nvram_write;
433 	ppc_md.nvram_size	= pSeries_nvram_get_size;
434 
435 	return 0;
436 }
437 
438 /*
439  * Try to capture the last capture_len bytes of the printk buffer.  Return
440  * the amount actually captured.
441  */
442 static size_t capture_last_msgs(const char *old_msgs, size_t old_len,
443 				const char *new_msgs, size_t new_len,
444 				char *captured, size_t capture_len)
445 {
446 	if (new_len >= capture_len) {
447 		memcpy(captured, new_msgs + (new_len - capture_len),
448 								capture_len);
449 		return capture_len;
450 	} else {
451 		/* Grab the end of old_msgs. */
452 		size_t old_tail_len = min(old_len, capture_len - new_len);
453 		memcpy(captured, old_msgs + (old_len - old_tail_len),
454 								old_tail_len);
455 		memcpy(captured + old_tail_len, new_msgs, new_len);
456 		return old_tail_len + new_len;
457 	}
458 }
459 
460 /*
461  * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
462  * would logging this oops/panic overwrite an RTAS event that rtas_errd
463  * hasn't had a chance to read and process?  Return 1 if so, else 0.
464  *
465  * We assume that if rtas_errd hasn't read the RTAS event in
466  * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
467  */
468 static int clobbering_unread_rtas_event(void)
469 {
470 	return (oops_log_partition.index == rtas_log_partition.index
471 		&& last_unread_rtas_event
472 		&& get_seconds() - last_unread_rtas_event <=
473 						NVRAM_RTAS_READ_TIMEOUT);
474 }
475 
476 /* our kmsg_dump callback */
477 static void oops_to_nvram(struct kmsg_dumper *dumper,
478 		enum kmsg_dump_reason reason,
479 		const char *old_msgs, unsigned long old_len,
480 		const char *new_msgs, unsigned long new_len)
481 {
482 	static unsigned int oops_count = 0;
483 	size_t text_len;
484 
485 	if (clobbering_unread_rtas_event())
486 		return;
487 
488 	text_len = capture_last_msgs(old_msgs, old_len, new_msgs, new_len,
489 					oops_buf, oops_log_partition.size);
490 	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
491 		(int) text_len, ERR_TYPE_KERNEL_PANIC, ++oops_count);
492 }
493