1 /* 2 * c 2001 PPC 64 Team, IBM Corp 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * /dev/nvram driver for PPC64 10 * 11 * This perhaps should live in drivers/char 12 */ 13 14 15 #include <linux/types.h> 16 #include <linux/errno.h> 17 #include <linux/init.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/kmsg_dump.h> 21 #include <linux/pstore.h> 22 #include <linux/ctype.h> 23 #include <linux/zlib.h> 24 #include <asm/uaccess.h> 25 #include <asm/nvram.h> 26 #include <asm/rtas.h> 27 #include <asm/prom.h> 28 #include <asm/machdep.h> 29 30 /* Max bytes to read/write in one go */ 31 #define NVRW_CNT 0x20 32 33 /* 34 * Set oops header version to distinguish between old and new format header. 35 * lnx,oops-log partition max size is 4000, header version > 4000 will 36 * help in identifying new header. 37 */ 38 #define OOPS_HDR_VERSION 5000 39 40 static unsigned int nvram_size; 41 static int nvram_fetch, nvram_store; 42 static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */ 43 static DEFINE_SPINLOCK(nvram_lock); 44 45 struct err_log_info { 46 __be32 error_type; 47 __be32 seq_num; 48 }; 49 50 struct nvram_os_partition { 51 const char *name; 52 int req_size; /* desired size, in bytes */ 53 int min_size; /* minimum acceptable size (0 means req_size) */ 54 long size; /* size of data portion (excluding err_log_info) */ 55 long index; /* offset of data portion of partition */ 56 bool os_partition; /* partition initialized by OS, not FW */ 57 }; 58 59 static struct nvram_os_partition rtas_log_partition = { 60 .name = "ibm,rtas-log", 61 .req_size = 2079, 62 .min_size = 1055, 63 .index = -1, 64 .os_partition = true 65 }; 66 67 static struct nvram_os_partition oops_log_partition = { 68 .name = "lnx,oops-log", 69 .req_size = 4000, 70 .min_size = 2000, 71 .index = -1, 72 .os_partition = true 73 }; 74 75 static const char *pseries_nvram_os_partitions[] = { 76 "ibm,rtas-log", 77 "lnx,oops-log", 78 NULL 79 }; 80 81 struct oops_log_info { 82 __be16 version; 83 __be16 report_length; 84 __be64 timestamp; 85 } __attribute__((packed)); 86 87 static void oops_to_nvram(struct kmsg_dumper *dumper, 88 enum kmsg_dump_reason reason); 89 90 static struct kmsg_dumper nvram_kmsg_dumper = { 91 .dump = oops_to_nvram 92 }; 93 94 /* See clobbering_unread_rtas_event() */ 95 #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */ 96 static unsigned long last_unread_rtas_event; /* timestamp */ 97 98 /* 99 * For capturing and compressing an oops or panic report... 100 101 * big_oops_buf[] holds the uncompressed text we're capturing. 102 * 103 * oops_buf[] holds the compressed text, preceded by a oops header. 104 * oops header has u16 holding the version of oops header (to differentiate 105 * between old and new format header) followed by u16 holding the length of 106 * the compressed* text (*Or uncompressed, if compression fails.) and u64 107 * holding the timestamp. oops_buf[] gets written to NVRAM. 108 * 109 * oops_log_info points to the header. oops_data points to the compressed text. 110 * 111 * +- oops_buf 112 * | +- oops_data 113 * v v 114 * +-----------+-----------+-----------+------------------------+ 115 * | version | length | timestamp | text | 116 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) | 117 * +-----------+-----------+-----------+------------------------+ 118 * ^ 119 * +- oops_log_info 120 * 121 * We preallocate these buffers during init to avoid kmalloc during oops/panic. 122 */ 123 static size_t big_oops_buf_sz; 124 static char *big_oops_buf, *oops_buf; 125 static char *oops_data; 126 static size_t oops_data_sz; 127 128 /* Compression parameters */ 129 #define COMPR_LEVEL 6 130 #define WINDOW_BITS 12 131 #define MEM_LEVEL 4 132 static struct z_stream_s stream; 133 134 #ifdef CONFIG_PSTORE 135 static struct nvram_os_partition of_config_partition = { 136 .name = "of-config", 137 .index = -1, 138 .os_partition = false 139 }; 140 141 static struct nvram_os_partition common_partition = { 142 .name = "common", 143 .index = -1, 144 .os_partition = false 145 }; 146 147 static enum pstore_type_id nvram_type_ids[] = { 148 PSTORE_TYPE_DMESG, 149 PSTORE_TYPE_PPC_RTAS, 150 PSTORE_TYPE_PPC_OF, 151 PSTORE_TYPE_PPC_COMMON, 152 -1 153 }; 154 static int read_type; 155 static unsigned long last_rtas_event; 156 #endif 157 158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index) 159 { 160 unsigned int i; 161 unsigned long len; 162 int done; 163 unsigned long flags; 164 char *p = buf; 165 166 167 if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE) 168 return -ENODEV; 169 170 if (*index >= nvram_size) 171 return 0; 172 173 i = *index; 174 if (i + count > nvram_size) 175 count = nvram_size - i; 176 177 spin_lock_irqsave(&nvram_lock, flags); 178 179 for (; count != 0; count -= len) { 180 len = count; 181 if (len > NVRW_CNT) 182 len = NVRW_CNT; 183 184 if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf), 185 len) != 0) || len != done) { 186 spin_unlock_irqrestore(&nvram_lock, flags); 187 return -EIO; 188 } 189 190 memcpy(p, nvram_buf, len); 191 192 p += len; 193 i += len; 194 } 195 196 spin_unlock_irqrestore(&nvram_lock, flags); 197 198 *index = i; 199 return p - buf; 200 } 201 202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index) 203 { 204 unsigned int i; 205 unsigned long len; 206 int done; 207 unsigned long flags; 208 const char *p = buf; 209 210 if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE) 211 return -ENODEV; 212 213 if (*index >= nvram_size) 214 return 0; 215 216 i = *index; 217 if (i + count > nvram_size) 218 count = nvram_size - i; 219 220 spin_lock_irqsave(&nvram_lock, flags); 221 222 for (; count != 0; count -= len) { 223 len = count; 224 if (len > NVRW_CNT) 225 len = NVRW_CNT; 226 227 memcpy(nvram_buf, p, len); 228 229 if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf), 230 len) != 0) || len != done) { 231 spin_unlock_irqrestore(&nvram_lock, flags); 232 return -EIO; 233 } 234 235 p += len; 236 i += len; 237 } 238 spin_unlock_irqrestore(&nvram_lock, flags); 239 240 *index = i; 241 return p - buf; 242 } 243 244 static ssize_t pSeries_nvram_get_size(void) 245 { 246 return nvram_size ? nvram_size : -ENODEV; 247 } 248 249 250 /* nvram_write_os_partition, nvram_write_error_log 251 * 252 * We need to buffer the error logs into nvram to ensure that we have 253 * the failure information to decode. If we have a severe error there 254 * is no way to guarantee that the OS or the machine is in a state to 255 * get back to user land and write the error to disk. For example if 256 * the SCSI device driver causes a Machine Check by writing to a bad 257 * IO address, there is no way of guaranteeing that the device driver 258 * is in any state that is would also be able to write the error data 259 * captured to disk, thus we buffer it in NVRAM for analysis on the 260 * next boot. 261 * 262 * In NVRAM the partition containing the error log buffer will looks like: 263 * Header (in bytes): 264 * +-----------+----------+--------+------------+------------------+ 265 * | signature | checksum | length | name | data | 266 * |0 |1 |2 3|4 15|16 length-1| 267 * +-----------+----------+--------+------------+------------------+ 268 * 269 * The 'data' section would look like (in bytes): 270 * +--------------+------------+-----------------------------------+ 271 * | event_logged | sequence # | error log | 272 * |0 3|4 7|8 error_log_size-1| 273 * +--------------+------------+-----------------------------------+ 274 * 275 * event_logged: 0 if event has not been logged to syslog, 1 if it has 276 * sequence #: The unique sequence # for each event. (until it wraps) 277 * error log: The error log from event_scan 278 */ 279 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff, 280 int length, unsigned int err_type, unsigned int error_log_cnt) 281 { 282 int rc; 283 loff_t tmp_index; 284 struct err_log_info info; 285 286 if (part->index == -1) { 287 return -ESPIPE; 288 } 289 290 if (length > part->size) { 291 length = part->size; 292 } 293 294 info.error_type = cpu_to_be32(err_type); 295 info.seq_num = cpu_to_be32(error_log_cnt); 296 297 tmp_index = part->index; 298 299 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index); 300 if (rc <= 0) { 301 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 302 return rc; 303 } 304 305 rc = ppc_md.nvram_write(buff, length, &tmp_index); 306 if (rc <= 0) { 307 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 308 return rc; 309 } 310 311 return 0; 312 } 313 314 int nvram_write_error_log(char * buff, int length, 315 unsigned int err_type, unsigned int error_log_cnt) 316 { 317 int rc = nvram_write_os_partition(&rtas_log_partition, buff, length, 318 err_type, error_log_cnt); 319 if (!rc) { 320 last_unread_rtas_event = get_seconds(); 321 #ifdef CONFIG_PSTORE 322 last_rtas_event = get_seconds(); 323 #endif 324 } 325 326 return rc; 327 } 328 329 /* nvram_read_partition 330 * 331 * Reads nvram partition for at most 'length' 332 */ 333 int nvram_read_partition(struct nvram_os_partition *part, char *buff, 334 int length, unsigned int *err_type, 335 unsigned int *error_log_cnt) 336 { 337 int rc; 338 loff_t tmp_index; 339 struct err_log_info info; 340 341 if (part->index == -1) 342 return -1; 343 344 if (length > part->size) 345 length = part->size; 346 347 tmp_index = part->index; 348 349 if (part->os_partition) { 350 rc = ppc_md.nvram_read((char *)&info, 351 sizeof(struct err_log_info), 352 &tmp_index); 353 if (rc <= 0) { 354 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 355 return rc; 356 } 357 } 358 359 rc = ppc_md.nvram_read(buff, length, &tmp_index); 360 if (rc <= 0) { 361 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 362 return rc; 363 } 364 365 if (part->os_partition) { 366 *error_log_cnt = be32_to_cpu(info.seq_num); 367 *err_type = be32_to_cpu(info.error_type); 368 } 369 370 return 0; 371 } 372 373 /* nvram_read_error_log 374 * 375 * Reads nvram for error log for at most 'length' 376 */ 377 int nvram_read_error_log(char *buff, int length, 378 unsigned int *err_type, unsigned int *error_log_cnt) 379 { 380 return nvram_read_partition(&rtas_log_partition, buff, length, 381 err_type, error_log_cnt); 382 } 383 384 /* This doesn't actually zero anything, but it sets the event_logged 385 * word to tell that this event is safely in syslog. 386 */ 387 int nvram_clear_error_log(void) 388 { 389 loff_t tmp_index; 390 int clear_word = ERR_FLAG_ALREADY_LOGGED; 391 int rc; 392 393 if (rtas_log_partition.index == -1) 394 return -1; 395 396 tmp_index = rtas_log_partition.index; 397 398 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index); 399 if (rc <= 0) { 400 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc); 401 return rc; 402 } 403 last_unread_rtas_event = 0; 404 405 return 0; 406 } 407 408 /* pseries_nvram_init_os_partition 409 * 410 * This sets up a partition with an "OS" signature. 411 * 412 * The general strategy is the following: 413 * 1.) If a partition with the indicated name already exists... 414 * - If it's large enough, use it. 415 * - Otherwise, recycle it and keep going. 416 * 2.) Search for a free partition that is large enough. 417 * 3.) If there's not a free partition large enough, recycle any obsolete 418 * OS partitions and try again. 419 * 4.) Will first try getting a chunk that will satisfy the requested size. 420 * 5.) If a chunk of the requested size cannot be allocated, then try finding 421 * a chunk that will satisfy the minum needed. 422 * 423 * Returns 0 on success, else -1. 424 */ 425 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition 426 *part) 427 { 428 loff_t p; 429 int size; 430 431 /* Look for ours */ 432 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size); 433 434 /* Found one but too small, remove it */ 435 if (p && size < part->min_size) { 436 pr_info("nvram: Found too small %s partition," 437 " removing it...\n", part->name); 438 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL); 439 p = 0; 440 } 441 442 /* Create one if we didn't find */ 443 if (!p) { 444 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 445 part->req_size, part->min_size); 446 if (p == -ENOSPC) { 447 pr_info("nvram: No room to create %s partition, " 448 "deleting any obsolete OS partitions...\n", 449 part->name); 450 nvram_remove_partition(NULL, NVRAM_SIG_OS, 451 pseries_nvram_os_partitions); 452 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 453 part->req_size, part->min_size); 454 } 455 } 456 457 if (p <= 0) { 458 pr_err("nvram: Failed to find or create %s" 459 " partition, err %d\n", part->name, (int)p); 460 return -1; 461 } 462 463 part->index = p; 464 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info); 465 466 return 0; 467 } 468 469 /* 470 * Are we using the ibm,rtas-log for oops/panic reports? And if so, 471 * would logging this oops/panic overwrite an RTAS event that rtas_errd 472 * hasn't had a chance to read and process? Return 1 if so, else 0. 473 * 474 * We assume that if rtas_errd hasn't read the RTAS event in 475 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to. 476 */ 477 static int clobbering_unread_rtas_event(void) 478 { 479 return (oops_log_partition.index == rtas_log_partition.index 480 && last_unread_rtas_event 481 && get_seconds() - last_unread_rtas_event <= 482 NVRAM_RTAS_READ_TIMEOUT); 483 } 484 485 /* Derived from logfs_compress() */ 486 static int nvram_compress(const void *in, void *out, size_t inlen, 487 size_t outlen) 488 { 489 int err, ret; 490 491 ret = -EIO; 492 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS, 493 MEM_LEVEL, Z_DEFAULT_STRATEGY); 494 if (err != Z_OK) 495 goto error; 496 497 stream.next_in = in; 498 stream.avail_in = inlen; 499 stream.total_in = 0; 500 stream.next_out = out; 501 stream.avail_out = outlen; 502 stream.total_out = 0; 503 504 err = zlib_deflate(&stream, Z_FINISH); 505 if (err != Z_STREAM_END) 506 goto error; 507 508 err = zlib_deflateEnd(&stream); 509 if (err != Z_OK) 510 goto error; 511 512 if (stream.total_out >= stream.total_in) 513 goto error; 514 515 ret = stream.total_out; 516 error: 517 return ret; 518 } 519 520 /* Compress the text from big_oops_buf into oops_buf. */ 521 static int zip_oops(size_t text_len) 522 { 523 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 524 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len, 525 oops_data_sz); 526 if (zipped_len < 0) { 527 pr_err("nvram: compression failed; returned %d\n", zipped_len); 528 pr_err("nvram: logging uncompressed oops/panic report\n"); 529 return -1; 530 } 531 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 532 oops_hdr->report_length = cpu_to_be16(zipped_len); 533 oops_hdr->timestamp = cpu_to_be64(get_seconds()); 534 return 0; 535 } 536 537 #ifdef CONFIG_PSTORE 538 static int nvram_pstore_open(struct pstore_info *psi) 539 { 540 /* Reset the iterator to start reading partitions again */ 541 read_type = -1; 542 return 0; 543 } 544 545 /** 546 * nvram_pstore_write - pstore write callback for nvram 547 * @type: Type of message logged 548 * @reason: reason behind dump (oops/panic) 549 * @id: identifier to indicate the write performed 550 * @part: pstore writes data to registered buffer in parts, 551 * part number will indicate the same. 552 * @count: Indicates oops count 553 * @compressed: Flag to indicate the log is compressed 554 * @size: number of bytes written to the registered buffer 555 * @psi: registered pstore_info structure 556 * 557 * Called by pstore_dump() when an oops or panic report is logged in the 558 * printk buffer. 559 * Returns 0 on successful write. 560 */ 561 static int nvram_pstore_write(enum pstore_type_id type, 562 enum kmsg_dump_reason reason, 563 u64 *id, unsigned int part, int count, 564 bool compressed, size_t size, 565 struct pstore_info *psi) 566 { 567 int rc; 568 unsigned int err_type = ERR_TYPE_KERNEL_PANIC; 569 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf; 570 571 /* part 1 has the recent messages from printk buffer */ 572 if (part > 1 || type != PSTORE_TYPE_DMESG || 573 clobbering_unread_rtas_event()) 574 return -1; 575 576 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 577 oops_hdr->report_length = cpu_to_be16(size); 578 oops_hdr->timestamp = cpu_to_be64(get_seconds()); 579 580 if (compressed) 581 err_type = ERR_TYPE_KERNEL_PANIC_GZ; 582 583 rc = nvram_write_os_partition(&oops_log_partition, oops_buf, 584 (int) (sizeof(*oops_hdr) + size), err_type, count); 585 586 if (rc != 0) 587 return rc; 588 589 *id = part; 590 return 0; 591 } 592 593 /* 594 * Reads the oops/panic report, rtas, of-config and common partition. 595 * Returns the length of the data we read from each partition. 596 * Returns 0 if we've been called before. 597 */ 598 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type, 599 int *count, struct timespec *time, char **buf, 600 bool *compressed, struct pstore_info *psi) 601 { 602 struct oops_log_info *oops_hdr; 603 unsigned int err_type, id_no, size = 0; 604 struct nvram_os_partition *part = NULL; 605 char *buff = NULL; 606 int sig = 0; 607 loff_t p; 608 609 read_type++; 610 611 switch (nvram_type_ids[read_type]) { 612 case PSTORE_TYPE_DMESG: 613 part = &oops_log_partition; 614 *type = PSTORE_TYPE_DMESG; 615 break; 616 case PSTORE_TYPE_PPC_RTAS: 617 part = &rtas_log_partition; 618 *type = PSTORE_TYPE_PPC_RTAS; 619 time->tv_sec = last_rtas_event; 620 time->tv_nsec = 0; 621 break; 622 case PSTORE_TYPE_PPC_OF: 623 sig = NVRAM_SIG_OF; 624 part = &of_config_partition; 625 *type = PSTORE_TYPE_PPC_OF; 626 *id = PSTORE_TYPE_PPC_OF; 627 time->tv_sec = 0; 628 time->tv_nsec = 0; 629 break; 630 case PSTORE_TYPE_PPC_COMMON: 631 sig = NVRAM_SIG_SYS; 632 part = &common_partition; 633 *type = PSTORE_TYPE_PPC_COMMON; 634 *id = PSTORE_TYPE_PPC_COMMON; 635 time->tv_sec = 0; 636 time->tv_nsec = 0; 637 break; 638 default: 639 return 0; 640 } 641 642 if (!part->os_partition) { 643 p = nvram_find_partition(part->name, sig, &size); 644 if (p <= 0) { 645 pr_err("nvram: Failed to find partition %s, " 646 "err %d\n", part->name, (int)p); 647 return 0; 648 } 649 part->index = p; 650 part->size = size; 651 } 652 653 buff = kmalloc(part->size, GFP_KERNEL); 654 655 if (!buff) 656 return -ENOMEM; 657 658 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) { 659 kfree(buff); 660 return 0; 661 } 662 663 *count = 0; 664 665 if (part->os_partition) 666 *id = id_no; 667 668 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) { 669 size_t length, hdr_size; 670 671 oops_hdr = (struct oops_log_info *)buff; 672 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) { 673 /* Old format oops header had 2-byte record size */ 674 hdr_size = sizeof(u16); 675 length = be16_to_cpu(oops_hdr->version); 676 time->tv_sec = 0; 677 time->tv_nsec = 0; 678 } else { 679 hdr_size = sizeof(*oops_hdr); 680 length = be16_to_cpu(oops_hdr->report_length); 681 time->tv_sec = be64_to_cpu(oops_hdr->timestamp); 682 time->tv_nsec = 0; 683 } 684 *buf = kmalloc(length, GFP_KERNEL); 685 if (*buf == NULL) 686 return -ENOMEM; 687 memcpy(*buf, buff + hdr_size, length); 688 kfree(buff); 689 690 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ) 691 *compressed = true; 692 else 693 *compressed = false; 694 return length; 695 } 696 697 *buf = buff; 698 return part->size; 699 } 700 701 static struct pstore_info nvram_pstore_info = { 702 .owner = THIS_MODULE, 703 .name = "nvram", 704 .open = nvram_pstore_open, 705 .read = nvram_pstore_read, 706 .write = nvram_pstore_write, 707 }; 708 709 static int nvram_pstore_init(void) 710 { 711 int rc = 0; 712 713 nvram_pstore_info.buf = oops_data; 714 nvram_pstore_info.bufsize = oops_data_sz; 715 716 rc = pstore_register(&nvram_pstore_info); 717 if (rc != 0) 718 pr_err("nvram: pstore_register() failed, defaults to " 719 "kmsg_dump; returned %d\n", rc); 720 721 return rc; 722 } 723 #else 724 static int nvram_pstore_init(void) 725 { 726 return -1; 727 } 728 #endif 729 730 static void __init nvram_init_oops_partition(int rtas_partition_exists) 731 { 732 int rc; 733 734 rc = pseries_nvram_init_os_partition(&oops_log_partition); 735 if (rc != 0) { 736 if (!rtas_partition_exists) 737 return; 738 pr_notice("nvram: Using %s partition to log both" 739 " RTAS errors and oops/panic reports\n", 740 rtas_log_partition.name); 741 memcpy(&oops_log_partition, &rtas_log_partition, 742 sizeof(rtas_log_partition)); 743 } 744 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL); 745 if (!oops_buf) { 746 pr_err("nvram: No memory for %s partition\n", 747 oops_log_partition.name); 748 return; 749 } 750 oops_data = oops_buf + sizeof(struct oops_log_info); 751 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info); 752 753 rc = nvram_pstore_init(); 754 755 if (!rc) 756 return; 757 758 /* 759 * Figure compression (preceded by elimination of each line's <n> 760 * severity prefix) will reduce the oops/panic report to at most 761 * 45% of its original size. 762 */ 763 big_oops_buf_sz = (oops_data_sz * 100) / 45; 764 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL); 765 if (big_oops_buf) { 766 stream.workspace = kmalloc(zlib_deflate_workspacesize( 767 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL); 768 if (!stream.workspace) { 769 pr_err("nvram: No memory for compression workspace; " 770 "skipping compression of %s partition data\n", 771 oops_log_partition.name); 772 kfree(big_oops_buf); 773 big_oops_buf = NULL; 774 } 775 } else { 776 pr_err("No memory for uncompressed %s data; " 777 "skipping compression\n", oops_log_partition.name); 778 stream.workspace = NULL; 779 } 780 781 rc = kmsg_dump_register(&nvram_kmsg_dumper); 782 if (rc != 0) { 783 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc); 784 kfree(oops_buf); 785 kfree(big_oops_buf); 786 kfree(stream.workspace); 787 } 788 } 789 790 static int __init pseries_nvram_init_log_partitions(void) 791 { 792 int rc; 793 794 /* Scan nvram for partitions */ 795 nvram_scan_partitions(); 796 797 rc = pseries_nvram_init_os_partition(&rtas_log_partition); 798 nvram_init_oops_partition(rc == 0); 799 return 0; 800 } 801 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions); 802 803 int __init pSeries_nvram_init(void) 804 { 805 struct device_node *nvram; 806 const __be32 *nbytes_p; 807 unsigned int proplen; 808 809 nvram = of_find_node_by_type(NULL, "nvram"); 810 if (nvram == NULL) 811 return -ENODEV; 812 813 nbytes_p = of_get_property(nvram, "#bytes", &proplen); 814 if (nbytes_p == NULL || proplen != sizeof(unsigned int)) { 815 of_node_put(nvram); 816 return -EIO; 817 } 818 819 nvram_size = be32_to_cpup(nbytes_p); 820 821 nvram_fetch = rtas_token("nvram-fetch"); 822 nvram_store = rtas_token("nvram-store"); 823 printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size); 824 of_node_put(nvram); 825 826 ppc_md.nvram_read = pSeries_nvram_read; 827 ppc_md.nvram_write = pSeries_nvram_write; 828 ppc_md.nvram_size = pSeries_nvram_get_size; 829 830 return 0; 831 } 832 833 834 /* 835 * This is our kmsg_dump callback, called after an oops or panic report 836 * has been written to the printk buffer. We want to capture as much 837 * of the printk buffer as possible. First, capture as much as we can 838 * that we think will compress sufficiently to fit in the lnx,oops-log 839 * partition. If that's too much, go back and capture uncompressed text. 840 */ 841 static void oops_to_nvram(struct kmsg_dumper *dumper, 842 enum kmsg_dump_reason reason) 843 { 844 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 845 static unsigned int oops_count = 0; 846 static bool panicking = false; 847 static DEFINE_SPINLOCK(lock); 848 unsigned long flags; 849 size_t text_len; 850 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ; 851 int rc = -1; 852 853 switch (reason) { 854 case KMSG_DUMP_RESTART: 855 case KMSG_DUMP_HALT: 856 case KMSG_DUMP_POWEROFF: 857 /* These are almost always orderly shutdowns. */ 858 return; 859 case KMSG_DUMP_OOPS: 860 break; 861 case KMSG_DUMP_PANIC: 862 panicking = true; 863 break; 864 case KMSG_DUMP_EMERG: 865 if (panicking) 866 /* Panic report already captured. */ 867 return; 868 break; 869 default: 870 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n", 871 __func__, (int) reason); 872 return; 873 } 874 875 if (clobbering_unread_rtas_event()) 876 return; 877 878 if (!spin_trylock_irqsave(&lock, flags)) 879 return; 880 881 if (big_oops_buf) { 882 kmsg_dump_get_buffer(dumper, false, 883 big_oops_buf, big_oops_buf_sz, &text_len); 884 rc = zip_oops(text_len); 885 } 886 if (rc != 0) { 887 kmsg_dump_rewind(dumper); 888 kmsg_dump_get_buffer(dumper, false, 889 oops_data, oops_data_sz, &text_len); 890 err_type = ERR_TYPE_KERNEL_PANIC; 891 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 892 oops_hdr->report_length = cpu_to_be16(text_len); 893 oops_hdr->timestamp = cpu_to_be64(get_seconds()); 894 } 895 896 (void) nvram_write_os_partition(&oops_log_partition, oops_buf, 897 (int) (sizeof(*oops_hdr) + text_len), err_type, 898 ++oops_count); 899 900 spin_unlock_irqrestore(&lock, flags); 901 } 902