1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 LPAR Configuration Information Driver
4  *
5  * Dave Engebretsen engebret@us.ibm.com
6  *    Copyright (c) 2003 Dave Engebretsen
7  * Will Schmidt willschm@us.ibm.com
8  *    SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
9  *    seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
10  * Nathan Lynch nathanl@austin.ibm.com
11  *    Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
12  *
13  * This driver creates a proc file at /proc/ppc64/lparcfg which contains
14  * keyword - value pairs that specify the configuration of the partition.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/proc_fs.h>
21 #include <linux/init.h>
22 #include <linux/seq_file.h>
23 #include <linux/slab.h>
24 #include <linux/uaccess.h>
25 #include <linux/hugetlb.h>
26 #include <asm/lppaca.h>
27 #include <asm/hvcall.h>
28 #include <asm/firmware.h>
29 #include <asm/rtas.h>
30 #include <asm/time.h>
31 #include <asm/vdso_datapage.h>
32 #include <asm/vio.h>
33 #include <asm/mmu.h>
34 #include <asm/machdep.h>
35 #include <asm/drmem.h>
36 
37 #include "pseries.h"
38 
39 /*
40  * This isn't a module but we expose that to userspace
41  * via /proc so leave the definitions here
42  */
43 #define MODULE_VERS "1.9"
44 #define MODULE_NAME "lparcfg"
45 
46 /* #define LPARCFG_DEBUG */
47 
48 /*
49  * Track sum of all purrs across all processors. This is used to further
50  * calculate usage values by different applications
51  */
52 static void cpu_get_purr(void *arg)
53 {
54 	atomic64_t *sum = arg;
55 
56 	atomic64_add(mfspr(SPRN_PURR), sum);
57 }
58 
59 static unsigned long get_purr(void)
60 {
61 	atomic64_t purr = ATOMIC64_INIT(0);
62 
63 	on_each_cpu(cpu_get_purr, &purr, 1);
64 
65 	return atomic64_read(&purr);
66 }
67 
68 /*
69  * Methods used to fetch LPAR data when running on a pSeries platform.
70  */
71 
72 struct hvcall_ppp_data {
73 	u64	entitlement;
74 	u64	unallocated_entitlement;
75 	u16	group_num;
76 	u16	pool_num;
77 	u8	capped;
78 	u8	weight;
79 	u8	unallocated_weight;
80 	u16	active_procs_in_pool;
81 	u16	active_system_procs;
82 	u16	phys_platform_procs;
83 	u32	max_proc_cap_avail;
84 	u32	entitled_proc_cap_avail;
85 };
86 
87 /*
88  * H_GET_PPP hcall returns info in 4 parms.
89  *  entitled_capacity,unallocated_capacity,
90  *  aggregation, resource_capability).
91  *
92  *  R4 = Entitled Processor Capacity Percentage.
93  *  R5 = Unallocated Processor Capacity Percentage.
94  *  R6 (AABBCCDDEEFFGGHH).
95  *      XXXX - reserved (0)
96  *          XXXX - reserved (0)
97  *              XXXX - Group Number
98  *                  XXXX - Pool Number.
99  *  R7 (IIJJKKLLMMNNOOPP).
100  *      XX - reserved. (0)
101  *        XX - bit 0-6 reserved (0).   bit 7 is Capped indicator.
102  *          XX - variable processor Capacity Weight
103  *            XX - Unallocated Variable Processor Capacity Weight.
104  *              XXXX - Active processors in Physical Processor Pool.
105  *                  XXXX  - Processors active on platform.
106  *  R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
107  *	XXXX - Physical platform procs allocated to virtualization.
108  *	    XXXXXX - Max procs capacity % available to the partitions pool.
109  *	          XXXXXX - Entitled procs capacity % available to the
110  *			   partitions pool.
111  */
112 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
113 {
114 	unsigned long rc;
115 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
116 
117 	rc = plpar_hcall9(H_GET_PPP, retbuf);
118 
119 	ppp_data->entitlement = retbuf[0];
120 	ppp_data->unallocated_entitlement = retbuf[1];
121 
122 	ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
123 	ppp_data->pool_num = retbuf[2] & 0xffff;
124 
125 	ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
126 	ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
127 	ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
128 	ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
129 	ppp_data->active_system_procs = retbuf[3] & 0xffff;
130 
131 	ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
132 	ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
133 	ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
134 
135 	return rc;
136 }
137 
138 static void show_gpci_data(struct seq_file *m)
139 {
140 	struct hv_gpci_request_buffer *buf;
141 	unsigned int affinity_score;
142 	long ret;
143 
144 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
145 	if (buf == NULL)
146 		return;
147 
148 	/*
149 	 * Show the local LPAR's affinity score.
150 	 *
151 	 * 0xB1 selects the Affinity_Domain_Info_By_Partition subcall.
152 	 * The score is at byte 0xB in the output buffer.
153 	 */
154 	memset(&buf->params, 0, sizeof(buf->params));
155 	buf->params.counter_request = cpu_to_be32(0xB1);
156 	buf->params.starting_index = cpu_to_be32(-1);	/* local LPAR */
157 	buf->params.counter_info_version_in = 0x5;	/* v5+ for score */
158 	ret = plpar_hcall_norets(H_GET_PERF_COUNTER_INFO, virt_to_phys(buf),
159 				 sizeof(*buf));
160 	if (ret != H_SUCCESS) {
161 		pr_debug("hcall failed: H_GET_PERF_COUNTER_INFO: %ld, %x\n",
162 			 ret, be32_to_cpu(buf->params.detail_rc));
163 		goto out;
164 	}
165 	affinity_score = buf->bytes[0xB];
166 	seq_printf(m, "partition_affinity_score=%u\n", affinity_score);
167 out:
168 	kfree(buf);
169 }
170 
171 static unsigned h_pic(unsigned long *pool_idle_time,
172 		      unsigned long *num_procs)
173 {
174 	unsigned long rc;
175 	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
176 
177 	rc = plpar_hcall(H_PIC, retbuf);
178 
179 	*pool_idle_time = retbuf[0];
180 	*num_procs = retbuf[1];
181 
182 	return rc;
183 }
184 
185 /*
186  * parse_ppp_data
187  * Parse out the data returned from h_get_ppp and h_pic
188  */
189 static void parse_ppp_data(struct seq_file *m)
190 {
191 	struct hvcall_ppp_data ppp_data;
192 	struct device_node *root;
193 	const __be32 *perf_level;
194 	int rc;
195 
196 	rc = h_get_ppp(&ppp_data);
197 	if (rc)
198 		return;
199 
200 	seq_printf(m, "partition_entitled_capacity=%lld\n",
201 	           ppp_data.entitlement);
202 	seq_printf(m, "group=%d\n", ppp_data.group_num);
203 	seq_printf(m, "system_active_processors=%d\n",
204 	           ppp_data.active_system_procs);
205 
206 	/* pool related entries are appropriate for shared configs */
207 	if (lppaca_shared_proc(get_lppaca())) {
208 		unsigned long pool_idle_time, pool_procs;
209 
210 		seq_printf(m, "pool=%d\n", ppp_data.pool_num);
211 
212 		/* report pool_capacity in percentage */
213 		seq_printf(m, "pool_capacity=%d\n",
214 			   ppp_data.active_procs_in_pool * 100);
215 
216 		h_pic(&pool_idle_time, &pool_procs);
217 		seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
218 		seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
219 	}
220 
221 	seq_printf(m, "unallocated_capacity_weight=%d\n",
222 		   ppp_data.unallocated_weight);
223 	seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
224 	seq_printf(m, "capped=%d\n", ppp_data.capped);
225 	seq_printf(m, "unallocated_capacity=%lld\n",
226 		   ppp_data.unallocated_entitlement);
227 
228 	/* The last bits of information returned from h_get_ppp are only
229 	 * valid if the ibm,partition-performance-parameters-level
230 	 * property is >= 1.
231 	 */
232 	root = of_find_node_by_path("/");
233 	if (root) {
234 		perf_level = of_get_property(root,
235 				"ibm,partition-performance-parameters-level",
236 					     NULL);
237 		if (perf_level && (be32_to_cpup(perf_level) >= 1)) {
238 			seq_printf(m,
239 			    "physical_procs_allocated_to_virtualization=%d\n",
240 				   ppp_data.phys_platform_procs);
241 			seq_printf(m, "max_proc_capacity_available=%d\n",
242 				   ppp_data.max_proc_cap_avail);
243 			seq_printf(m, "entitled_proc_capacity_available=%d\n",
244 				   ppp_data.entitled_proc_cap_avail);
245 		}
246 
247 		of_node_put(root);
248 	}
249 }
250 
251 /**
252  * parse_mpp_data
253  * Parse out data returned from h_get_mpp
254  */
255 static void parse_mpp_data(struct seq_file *m)
256 {
257 	struct hvcall_mpp_data mpp_data;
258 	int rc;
259 
260 	rc = h_get_mpp(&mpp_data);
261 	if (rc)
262 		return;
263 
264 	seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
265 
266 	if (mpp_data.mapped_mem != -1)
267 		seq_printf(m, "mapped_entitled_memory=%ld\n",
268 		           mpp_data.mapped_mem);
269 
270 	seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
271 	seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
272 
273 	seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
274 	seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
275 	           mpp_data.unallocated_mem_weight);
276 	seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
277 	           mpp_data.unallocated_entitlement);
278 
279 	if (mpp_data.pool_size != -1)
280 		seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
281 		           mpp_data.pool_size);
282 
283 	seq_printf(m, "entitled_memory_loan_request=%ld\n",
284 	           mpp_data.loan_request);
285 
286 	seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
287 }
288 
289 /**
290  * parse_mpp_x_data
291  * Parse out data returned from h_get_mpp_x
292  */
293 static void parse_mpp_x_data(struct seq_file *m)
294 {
295 	struct hvcall_mpp_x_data mpp_x_data;
296 
297 	if (!firmware_has_feature(FW_FEATURE_XCMO))
298 		return;
299 	if (h_get_mpp_x(&mpp_x_data))
300 		return;
301 
302 	seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
303 
304 	if (mpp_x_data.pool_coalesced_bytes)
305 		seq_printf(m, "pool_coalesced_bytes=%ld\n",
306 			   mpp_x_data.pool_coalesced_bytes);
307 	if (mpp_x_data.pool_purr_cycles)
308 		seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
309 	if (mpp_x_data.pool_spurr_cycles)
310 		seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
311 }
312 
313 /*
314  * PAPR defines, in section "7.3.16 System Parameters Option", the token 55 to
315  * read the LPAR name, and the largest output data to 4000 + 2 bytes length.
316  */
317 #define SPLPAR_LPAR_NAME_TOKEN	55
318 #define GET_SYS_PARM_BUF_SIZE	4002
319 #if GET_SYS_PARM_BUF_SIZE > RTAS_DATA_BUF_SIZE
320 #error "GET_SYS_PARM_BUF_SIZE is larger than RTAS_DATA_BUF_SIZE"
321 #endif
322 
323 /*
324  * Read the lpar name using the RTAS ibm,get-system-parameter call.
325  *
326  * The name read through this call is updated if changes are made by the end
327  * user on the hypervisor side.
328  *
329  * Some hypervisor (like Qemu) may not provide this value. In that case, a non
330  * null value is returned.
331  */
332 static int read_rtas_lpar_name(struct seq_file *m)
333 {
334 	int rc, len, token;
335 	union {
336 		char raw_buffer[GET_SYS_PARM_BUF_SIZE];
337 		struct {
338 			__be16 len;
339 			char name[GET_SYS_PARM_BUF_SIZE-2];
340 		};
341 	} *local_buffer;
342 
343 	token = rtas_token("ibm,get-system-parameter");
344 	if (token == RTAS_UNKNOWN_SERVICE)
345 		return -EINVAL;
346 
347 	local_buffer = kmalloc(sizeof(*local_buffer), GFP_KERNEL);
348 	if (!local_buffer)
349 		return -ENOMEM;
350 
351 	do {
352 		spin_lock(&rtas_data_buf_lock);
353 		memset(rtas_data_buf, 0, sizeof(*local_buffer));
354 		rc = rtas_call(token, 3, 1, NULL, SPLPAR_LPAR_NAME_TOKEN,
355 			       __pa(rtas_data_buf), sizeof(*local_buffer));
356 		if (!rc)
357 			memcpy(local_buffer->raw_buffer, rtas_data_buf,
358 			       sizeof(local_buffer->raw_buffer));
359 		spin_unlock(&rtas_data_buf_lock);
360 	} while (rtas_busy_delay(rc));
361 
362 	if (!rc) {
363 		/* Force end of string */
364 		len = min((int) be16_to_cpu(local_buffer->len),
365 			  (int) sizeof(local_buffer->name)-1);
366 		local_buffer->name[len] = '\0';
367 
368 		seq_printf(m, "partition_name=%s\n", local_buffer->name);
369 	} else
370 		rc = -ENODATA;
371 
372 	kfree(local_buffer);
373 	return rc;
374 }
375 
376 /*
377  * Read the LPAR name from the Device Tree.
378  *
379  * The value read in the DT is not updated if the end-user is touching the LPAR
380  * name on the hypervisor side.
381  */
382 static int read_dt_lpar_name(struct seq_file *m)
383 {
384 	const char *name;
385 
386 	if (of_property_read_string(of_root, "ibm,partition-name", &name))
387 		return -ENOENT;
388 
389 	seq_printf(m, "partition_name=%s\n", name);
390 	return 0;
391 }
392 
393 static void read_lpar_name(struct seq_file *m)
394 {
395 	if (read_rtas_lpar_name(m) && read_dt_lpar_name(m))
396 		pr_err_once("Error can't get the LPAR name");
397 }
398 
399 #define SPLPAR_CHARACTERISTICS_TOKEN 20
400 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
401 
402 /*
403  * parse_system_parameter_string()
404  * Retrieve the potential_processors, max_entitled_capacity and friends
405  * through the get-system-parameter rtas call.  Replace keyword strings as
406  * necessary.
407  */
408 static void parse_system_parameter_string(struct seq_file *m)
409 {
410 	int call_status;
411 
412 	unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
413 	if (!local_buffer) {
414 		printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
415 		       __FILE__, __func__, __LINE__);
416 		return;
417 	}
418 
419 	spin_lock(&rtas_data_buf_lock);
420 	memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
421 	call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
422 				NULL,
423 				SPLPAR_CHARACTERISTICS_TOKEN,
424 				__pa(rtas_data_buf),
425 				RTAS_DATA_BUF_SIZE);
426 	memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
427 	local_buffer[SPLPAR_MAXLENGTH - 1] = '\0';
428 	spin_unlock(&rtas_data_buf_lock);
429 
430 	if (call_status != 0) {
431 		printk(KERN_INFO
432 		       "%s %s Error calling get-system-parameter (0x%x)\n",
433 		       __FILE__, __func__, call_status);
434 	} else {
435 		int splpar_strlen;
436 		int idx, w_idx;
437 		char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
438 		if (!workbuffer) {
439 			printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
440 			       __FILE__, __func__, __LINE__);
441 			kfree(local_buffer);
442 			return;
443 		}
444 #ifdef LPARCFG_DEBUG
445 		printk(KERN_INFO "success calling get-system-parameter\n");
446 #endif
447 		splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
448 		local_buffer += 2;	/* step over strlen value */
449 
450 		w_idx = 0;
451 		idx = 0;
452 		while ((*local_buffer) && (idx < splpar_strlen)) {
453 			workbuffer[w_idx++] = local_buffer[idx++];
454 			if ((local_buffer[idx] == ',')
455 			    || (local_buffer[idx] == '\0')) {
456 				workbuffer[w_idx] = '\0';
457 				if (w_idx) {
458 					/* avoid the empty string */
459 					seq_printf(m, "%s\n", workbuffer);
460 				}
461 				memset(workbuffer, 0, SPLPAR_MAXLENGTH);
462 				idx++;	/* skip the comma */
463 				w_idx = 0;
464 			} else if (local_buffer[idx] == '=') {
465 				/* code here to replace workbuffer contents
466 				   with different keyword strings */
467 				if (0 == strcmp(workbuffer, "MaxEntCap")) {
468 					strcpy(workbuffer,
469 					       "partition_max_entitled_capacity");
470 					w_idx = strlen(workbuffer);
471 				}
472 				if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
473 					strcpy(workbuffer,
474 					       "system_potential_processors");
475 					w_idx = strlen(workbuffer);
476 				}
477 			}
478 		}
479 		kfree(workbuffer);
480 		local_buffer -= 2;	/* back up over strlen value */
481 	}
482 	kfree(local_buffer);
483 }
484 
485 /* Return the number of processors in the system.
486  * This function reads through the device tree and counts
487  * the virtual processors, this does not include threads.
488  */
489 static int lparcfg_count_active_processors(void)
490 {
491 	struct device_node *cpus_dn;
492 	int count = 0;
493 
494 	for_each_node_by_type(cpus_dn, "cpu") {
495 #ifdef LPARCFG_DEBUG
496 		printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
497 #endif
498 		count++;
499 	}
500 	return count;
501 }
502 
503 static void pseries_cmo_data(struct seq_file *m)
504 {
505 	int cpu;
506 	unsigned long cmo_faults = 0;
507 	unsigned long cmo_fault_time = 0;
508 
509 	seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
510 
511 	if (!firmware_has_feature(FW_FEATURE_CMO))
512 		return;
513 
514 	for_each_possible_cpu(cpu) {
515 		cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults);
516 		cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time);
517 	}
518 
519 	seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
520 	seq_printf(m, "cmo_fault_time_usec=%lu\n",
521 		   cmo_fault_time / tb_ticks_per_usec);
522 	seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
523 	seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
524 	seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
525 }
526 
527 static void splpar_dispatch_data(struct seq_file *m)
528 {
529 	int cpu;
530 	unsigned long dispatches = 0;
531 	unsigned long dispatch_dispersions = 0;
532 
533 	for_each_possible_cpu(cpu) {
534 		dispatches += be32_to_cpu(lppaca_of(cpu).yield_count);
535 		dispatch_dispersions +=
536 			be32_to_cpu(lppaca_of(cpu).dispersion_count);
537 	}
538 
539 	seq_printf(m, "dispatches=%lu\n", dispatches);
540 	seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
541 }
542 
543 static void parse_em_data(struct seq_file *m)
544 {
545 	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
546 
547 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
548 	    plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
549 		seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
550 }
551 
552 static void maxmem_data(struct seq_file *m)
553 {
554 	unsigned long maxmem = 0;
555 
556 	maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size;
557 	maxmem += hugetlb_total_pages() * PAGE_SIZE;
558 
559 	seq_printf(m, "MaxMem=%lu\n", maxmem);
560 }
561 
562 static int pseries_lparcfg_data(struct seq_file *m, void *v)
563 {
564 	int partition_potential_processors;
565 	int partition_active_processors;
566 	struct device_node *rtas_node;
567 	const __be32 *lrdrp = NULL;
568 
569 	rtas_node = of_find_node_by_path("/rtas");
570 	if (rtas_node)
571 		lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
572 
573 	if (lrdrp == NULL) {
574 		partition_potential_processors = vdso_data->processorCount;
575 	} else {
576 		partition_potential_processors = be32_to_cpup(lrdrp + 4);
577 	}
578 	of_node_put(rtas_node);
579 
580 	partition_active_processors = lparcfg_count_active_processors();
581 
582 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
583 		/* this call handles the ibm,get-system-parameter contents */
584 		read_lpar_name(m);
585 		parse_system_parameter_string(m);
586 		parse_ppp_data(m);
587 		parse_mpp_data(m);
588 		parse_mpp_x_data(m);
589 		pseries_cmo_data(m);
590 		splpar_dispatch_data(m);
591 
592 		seq_printf(m, "purr=%ld\n", get_purr());
593 		seq_printf(m, "tbr=%ld\n", mftb());
594 	} else {		/* non SPLPAR case */
595 
596 		seq_printf(m, "system_active_processors=%d\n",
597 			   partition_potential_processors);
598 
599 		seq_printf(m, "system_potential_processors=%d\n",
600 			   partition_potential_processors);
601 
602 		seq_printf(m, "partition_max_entitled_capacity=%d\n",
603 			   partition_potential_processors * 100);
604 
605 		seq_printf(m, "partition_entitled_capacity=%d\n",
606 			   partition_active_processors * 100);
607 	}
608 
609 	show_gpci_data(m);
610 
611 	seq_printf(m, "partition_active_processors=%d\n",
612 		   partition_active_processors);
613 
614 	seq_printf(m, "partition_potential_processors=%d\n",
615 		   partition_potential_processors);
616 
617 	seq_printf(m, "shared_processor_mode=%d\n",
618 		   lppaca_shared_proc(get_lppaca()));
619 
620 #ifdef CONFIG_PPC_64S_HASH_MMU
621 	if (!radix_enabled())
622 		seq_printf(m, "slb_size=%d\n", mmu_slb_size);
623 #endif
624 	parse_em_data(m);
625 	maxmem_data(m);
626 
627 	seq_printf(m, "security_flavor=%u\n", pseries_security_flavor);
628 
629 	return 0;
630 }
631 
632 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
633 {
634 	struct hvcall_ppp_data ppp_data;
635 	u8 new_weight;
636 	u64 new_entitled;
637 	ssize_t retval;
638 
639 	/* Get our current parameters */
640 	retval = h_get_ppp(&ppp_data);
641 	if (retval)
642 		return retval;
643 
644 	if (entitlement) {
645 		new_weight = ppp_data.weight;
646 		new_entitled = *entitlement;
647 	} else if (weight) {
648 		new_weight = *weight;
649 		new_entitled = ppp_data.entitlement;
650 	} else
651 		return -EINVAL;
652 
653 	pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
654 		 __func__, ppp_data.entitlement, ppp_data.weight);
655 
656 	pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
657 		 __func__, new_entitled, new_weight);
658 
659 	retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
660 	return retval;
661 }
662 
663 /**
664  * update_mpp
665  *
666  * Update the memory entitlement and weight for the partition.  Caller must
667  * specify either a new entitlement or weight, not both, to be updated
668  * since the h_set_mpp call takes both entitlement and weight as parameters.
669  */
670 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
671 {
672 	struct hvcall_mpp_data mpp_data;
673 	u64 new_entitled;
674 	u8 new_weight;
675 	ssize_t rc;
676 
677 	if (entitlement) {
678 		/* Check with vio to ensure the new memory entitlement
679 		 * can be handled.
680 		 */
681 		rc = vio_cmo_entitlement_update(*entitlement);
682 		if (rc)
683 			return rc;
684 	}
685 
686 	rc = h_get_mpp(&mpp_data);
687 	if (rc)
688 		return rc;
689 
690 	if (entitlement) {
691 		new_weight = mpp_data.mem_weight;
692 		new_entitled = *entitlement;
693 	} else if (weight) {
694 		new_weight = *weight;
695 		new_entitled = mpp_data.entitled_mem;
696 	} else
697 		return -EINVAL;
698 
699 	pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
700 	         __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
701 
702 	pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
703 		 __func__, new_entitled, new_weight);
704 
705 	rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
706 	return rc;
707 }
708 
709 /*
710  * Interface for changing system parameters (variable capacity weight
711  * and entitled capacity).  Format of input is "param_name=value";
712  * anything after value is ignored.  Valid parameters at this time are
713  * "partition_entitled_capacity" and "capacity_weight".  We use
714  * H_SET_PPP to alter parameters.
715  *
716  * This function should be invoked only on systems with
717  * FW_FEATURE_SPLPAR.
718  */
719 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
720 			     size_t count, loff_t * off)
721 {
722 	char kbuf[64];
723 	char *tmp;
724 	u64 new_entitled, *new_entitled_ptr = &new_entitled;
725 	u8 new_weight, *new_weight_ptr = &new_weight;
726 	ssize_t retval;
727 
728 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
729 		return -EINVAL;
730 
731 	if (count > sizeof(kbuf))
732 		return -EINVAL;
733 
734 	if (copy_from_user(kbuf, buf, count))
735 		return -EFAULT;
736 
737 	kbuf[count - 1] = '\0';
738 	tmp = strchr(kbuf, '=');
739 	if (!tmp)
740 		return -EINVAL;
741 
742 	*tmp++ = '\0';
743 
744 	if (!strcmp(kbuf, "partition_entitled_capacity")) {
745 		char *endp;
746 		*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
747 		if (endp == tmp)
748 			return -EINVAL;
749 
750 		retval = update_ppp(new_entitled_ptr, NULL);
751 	} else if (!strcmp(kbuf, "capacity_weight")) {
752 		char *endp;
753 		*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
754 		if (endp == tmp)
755 			return -EINVAL;
756 
757 		retval = update_ppp(NULL, new_weight_ptr);
758 	} else if (!strcmp(kbuf, "entitled_memory")) {
759 		char *endp;
760 		*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
761 		if (endp == tmp)
762 			return -EINVAL;
763 
764 		retval = update_mpp(new_entitled_ptr, NULL);
765 	} else if (!strcmp(kbuf, "entitled_memory_weight")) {
766 		char *endp;
767 		*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
768 		if (endp == tmp)
769 			return -EINVAL;
770 
771 		retval = update_mpp(NULL, new_weight_ptr);
772 	} else
773 		return -EINVAL;
774 
775 	if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
776 		retval = count;
777 	} else if (retval == H_BUSY) {
778 		retval = -EBUSY;
779 	} else if (retval == H_HARDWARE) {
780 		retval = -EIO;
781 	} else if (retval == H_PARAMETER) {
782 		retval = -EINVAL;
783 	}
784 
785 	return retval;
786 }
787 
788 static int lparcfg_data(struct seq_file *m, void *v)
789 {
790 	struct device_node *rootdn;
791 	const char *model = "";
792 	const char *system_id = "";
793 	const char *tmp;
794 	const __be32 *lp_index_ptr;
795 	unsigned int lp_index = 0;
796 
797 	seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
798 
799 	rootdn = of_find_node_by_path("/");
800 	if (rootdn) {
801 		tmp = of_get_property(rootdn, "model", NULL);
802 		if (tmp)
803 			model = tmp;
804 		tmp = of_get_property(rootdn, "system-id", NULL);
805 		if (tmp)
806 			system_id = tmp;
807 		lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
808 					NULL);
809 		if (lp_index_ptr)
810 			lp_index = be32_to_cpup(lp_index_ptr);
811 		of_node_put(rootdn);
812 	}
813 	seq_printf(m, "serial_number=%s\n", system_id);
814 	seq_printf(m, "system_type=%s\n", model);
815 	seq_printf(m, "partition_id=%d\n", (int)lp_index);
816 
817 	return pseries_lparcfg_data(m, v);
818 }
819 
820 static int lparcfg_open(struct inode *inode, struct file *file)
821 {
822 	return single_open(file, lparcfg_data, NULL);
823 }
824 
825 static const struct proc_ops lparcfg_proc_ops = {
826 	.proc_read	= seq_read,
827 	.proc_write	= lparcfg_write,
828 	.proc_open	= lparcfg_open,
829 	.proc_release	= single_release,
830 	.proc_lseek	= seq_lseek,
831 };
832 
833 static int __init lparcfg_init(void)
834 {
835 	umode_t mode = 0444;
836 
837 	/* Allow writing if we have FW_FEATURE_SPLPAR */
838 	if (firmware_has_feature(FW_FEATURE_SPLPAR))
839 		mode |= 0200;
840 
841 	if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) {
842 		printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
843 		return -EIO;
844 	}
845 	return 0;
846 }
847 machine_device_initcall(pseries, lparcfg_init);
848