1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 LPAR Configuration Information Driver
4  *
5  * Dave Engebretsen engebret@us.ibm.com
6  *    Copyright (c) 2003 Dave Engebretsen
7  * Will Schmidt willschm@us.ibm.com
8  *    SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
9  *    seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
10  * Nathan Lynch nathanl@austin.ibm.com
11  *    Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
12  *
13  * This driver creates a proc file at /proc/ppc64/lparcfg which contains
14  * keyword - value pairs that specify the configuration of the partition.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/proc_fs.h>
21 #include <linux/init.h>
22 #include <linux/seq_file.h>
23 #include <linux/slab.h>
24 #include <linux/uaccess.h>
25 #include <linux/hugetlb.h>
26 #include <asm/lppaca.h>
27 #include <asm/hvcall.h>
28 #include <asm/firmware.h>
29 #include <asm/rtas.h>
30 #include <asm/time.h>
31 #include <asm/prom.h>
32 #include <asm/vdso_datapage.h>
33 #include <asm/vio.h>
34 #include <asm/mmu.h>
35 #include <asm/machdep.h>
36 #include <asm/drmem.h>
37 
38 #include "pseries.h"
39 
40 /*
41  * This isn't a module but we expose that to userspace
42  * via /proc so leave the definitions here
43  */
44 #define MODULE_VERS "1.9"
45 #define MODULE_NAME "lparcfg"
46 
47 /* #define LPARCFG_DEBUG */
48 
49 /*
50  * Track sum of all purrs across all processors. This is used to further
51  * calculate usage values by different applications
52  */
53 static void cpu_get_purr(void *arg)
54 {
55 	atomic64_t *sum = arg;
56 
57 	atomic64_add(mfspr(SPRN_PURR), sum);
58 }
59 
60 static unsigned long get_purr(void)
61 {
62 	atomic64_t purr = ATOMIC64_INIT(0);
63 
64 	on_each_cpu(cpu_get_purr, &purr, 1);
65 
66 	return atomic64_read(&purr);
67 }
68 
69 /*
70  * Methods used to fetch LPAR data when running on a pSeries platform.
71  */
72 
73 struct hvcall_ppp_data {
74 	u64	entitlement;
75 	u64	unallocated_entitlement;
76 	u16	group_num;
77 	u16	pool_num;
78 	u8	capped;
79 	u8	weight;
80 	u8	unallocated_weight;
81 	u16	active_procs_in_pool;
82 	u16	active_system_procs;
83 	u16	phys_platform_procs;
84 	u32	max_proc_cap_avail;
85 	u32	entitled_proc_cap_avail;
86 };
87 
88 /*
89  * H_GET_PPP hcall returns info in 4 parms.
90  *  entitled_capacity,unallocated_capacity,
91  *  aggregation, resource_capability).
92  *
93  *  R4 = Entitled Processor Capacity Percentage.
94  *  R5 = Unallocated Processor Capacity Percentage.
95  *  R6 (AABBCCDDEEFFGGHH).
96  *      XXXX - reserved (0)
97  *          XXXX - reserved (0)
98  *              XXXX - Group Number
99  *                  XXXX - Pool Number.
100  *  R7 (IIJJKKLLMMNNOOPP).
101  *      XX - reserved. (0)
102  *        XX - bit 0-6 reserved (0).   bit 7 is Capped indicator.
103  *          XX - variable processor Capacity Weight
104  *            XX - Unallocated Variable Processor Capacity Weight.
105  *              XXXX - Active processors in Physical Processor Pool.
106  *                  XXXX  - Processors active on platform.
107  *  R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
108  *	XXXX - Physical platform procs allocated to virtualization.
109  *	    XXXXXX - Max procs capacity % available to the partitions pool.
110  *	          XXXXXX - Entitled procs capacity % available to the
111  *			   partitions pool.
112  */
113 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
114 {
115 	unsigned long rc;
116 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
117 
118 	rc = plpar_hcall9(H_GET_PPP, retbuf);
119 
120 	ppp_data->entitlement = retbuf[0];
121 	ppp_data->unallocated_entitlement = retbuf[1];
122 
123 	ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
124 	ppp_data->pool_num = retbuf[2] & 0xffff;
125 
126 	ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
127 	ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
128 	ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
129 	ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
130 	ppp_data->active_system_procs = retbuf[3] & 0xffff;
131 
132 	ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
133 	ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
134 	ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
135 
136 	return rc;
137 }
138 
139 static unsigned h_pic(unsigned long *pool_idle_time,
140 		      unsigned long *num_procs)
141 {
142 	unsigned long rc;
143 	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
144 
145 	rc = plpar_hcall(H_PIC, retbuf);
146 
147 	*pool_idle_time = retbuf[0];
148 	*num_procs = retbuf[1];
149 
150 	return rc;
151 }
152 
153 /*
154  * parse_ppp_data
155  * Parse out the data returned from h_get_ppp and h_pic
156  */
157 static void parse_ppp_data(struct seq_file *m)
158 {
159 	struct hvcall_ppp_data ppp_data;
160 	struct device_node *root;
161 	const __be32 *perf_level;
162 	int rc;
163 
164 	rc = h_get_ppp(&ppp_data);
165 	if (rc)
166 		return;
167 
168 	seq_printf(m, "partition_entitled_capacity=%lld\n",
169 	           ppp_data.entitlement);
170 	seq_printf(m, "group=%d\n", ppp_data.group_num);
171 	seq_printf(m, "system_active_processors=%d\n",
172 	           ppp_data.active_system_procs);
173 
174 	/* pool related entries are appropriate for shared configs */
175 	if (lppaca_shared_proc(get_lppaca())) {
176 		unsigned long pool_idle_time, pool_procs;
177 
178 		seq_printf(m, "pool=%d\n", ppp_data.pool_num);
179 
180 		/* report pool_capacity in percentage */
181 		seq_printf(m, "pool_capacity=%d\n",
182 			   ppp_data.active_procs_in_pool * 100);
183 
184 		h_pic(&pool_idle_time, &pool_procs);
185 		seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
186 		seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
187 	}
188 
189 	seq_printf(m, "unallocated_capacity_weight=%d\n",
190 		   ppp_data.unallocated_weight);
191 	seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
192 	seq_printf(m, "capped=%d\n", ppp_data.capped);
193 	seq_printf(m, "unallocated_capacity=%lld\n",
194 		   ppp_data.unallocated_entitlement);
195 
196 	/* The last bits of information returned from h_get_ppp are only
197 	 * valid if the ibm,partition-performance-parameters-level
198 	 * property is >= 1.
199 	 */
200 	root = of_find_node_by_path("/");
201 	if (root) {
202 		perf_level = of_get_property(root,
203 				"ibm,partition-performance-parameters-level",
204 					     NULL);
205 		if (perf_level && (be32_to_cpup(perf_level) >= 1)) {
206 			seq_printf(m,
207 			    "physical_procs_allocated_to_virtualization=%d\n",
208 				   ppp_data.phys_platform_procs);
209 			seq_printf(m, "max_proc_capacity_available=%d\n",
210 				   ppp_data.max_proc_cap_avail);
211 			seq_printf(m, "entitled_proc_capacity_available=%d\n",
212 				   ppp_data.entitled_proc_cap_avail);
213 		}
214 
215 		of_node_put(root);
216 	}
217 }
218 
219 /**
220  * parse_mpp_data
221  * Parse out data returned from h_get_mpp
222  */
223 static void parse_mpp_data(struct seq_file *m)
224 {
225 	struct hvcall_mpp_data mpp_data;
226 	int rc;
227 
228 	rc = h_get_mpp(&mpp_data);
229 	if (rc)
230 		return;
231 
232 	seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
233 
234 	if (mpp_data.mapped_mem != -1)
235 		seq_printf(m, "mapped_entitled_memory=%ld\n",
236 		           mpp_data.mapped_mem);
237 
238 	seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
239 	seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
240 
241 	seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
242 	seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
243 	           mpp_data.unallocated_mem_weight);
244 	seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
245 	           mpp_data.unallocated_entitlement);
246 
247 	if (mpp_data.pool_size != -1)
248 		seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
249 		           mpp_data.pool_size);
250 
251 	seq_printf(m, "entitled_memory_loan_request=%ld\n",
252 	           mpp_data.loan_request);
253 
254 	seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
255 }
256 
257 /**
258  * parse_mpp_x_data
259  * Parse out data returned from h_get_mpp_x
260  */
261 static void parse_mpp_x_data(struct seq_file *m)
262 {
263 	struct hvcall_mpp_x_data mpp_x_data;
264 
265 	if (!firmware_has_feature(FW_FEATURE_XCMO))
266 		return;
267 	if (h_get_mpp_x(&mpp_x_data))
268 		return;
269 
270 	seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
271 
272 	if (mpp_x_data.pool_coalesced_bytes)
273 		seq_printf(m, "pool_coalesced_bytes=%ld\n",
274 			   mpp_x_data.pool_coalesced_bytes);
275 	if (mpp_x_data.pool_purr_cycles)
276 		seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
277 	if (mpp_x_data.pool_spurr_cycles)
278 		seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
279 }
280 
281 #define SPLPAR_CHARACTERISTICS_TOKEN 20
282 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
283 
284 /*
285  * parse_system_parameter_string()
286  * Retrieve the potential_processors, max_entitled_capacity and friends
287  * through the get-system-parameter rtas call.  Replace keyword strings as
288  * necessary.
289  */
290 static void parse_system_parameter_string(struct seq_file *m)
291 {
292 	int call_status;
293 
294 	unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
295 	if (!local_buffer) {
296 		printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
297 		       __FILE__, __func__, __LINE__);
298 		return;
299 	}
300 
301 	spin_lock(&rtas_data_buf_lock);
302 	memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
303 	call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
304 				NULL,
305 				SPLPAR_CHARACTERISTICS_TOKEN,
306 				__pa(rtas_data_buf),
307 				RTAS_DATA_BUF_SIZE);
308 	memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
309 	local_buffer[SPLPAR_MAXLENGTH - 1] = '\0';
310 	spin_unlock(&rtas_data_buf_lock);
311 
312 	if (call_status != 0) {
313 		printk(KERN_INFO
314 		       "%s %s Error calling get-system-parameter (0x%x)\n",
315 		       __FILE__, __func__, call_status);
316 	} else {
317 		int splpar_strlen;
318 		int idx, w_idx;
319 		char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
320 		if (!workbuffer) {
321 			printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
322 			       __FILE__, __func__, __LINE__);
323 			kfree(local_buffer);
324 			return;
325 		}
326 #ifdef LPARCFG_DEBUG
327 		printk(KERN_INFO "success calling get-system-parameter\n");
328 #endif
329 		splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
330 		local_buffer += 2;	/* step over strlen value */
331 
332 		w_idx = 0;
333 		idx = 0;
334 		while ((*local_buffer) && (idx < splpar_strlen)) {
335 			workbuffer[w_idx++] = local_buffer[idx++];
336 			if ((local_buffer[idx] == ',')
337 			    || (local_buffer[idx] == '\0')) {
338 				workbuffer[w_idx] = '\0';
339 				if (w_idx) {
340 					/* avoid the empty string */
341 					seq_printf(m, "%s\n", workbuffer);
342 				}
343 				memset(workbuffer, 0, SPLPAR_MAXLENGTH);
344 				idx++;	/* skip the comma */
345 				w_idx = 0;
346 			} else if (local_buffer[idx] == '=') {
347 				/* code here to replace workbuffer contents
348 				   with different keyword strings */
349 				if (0 == strcmp(workbuffer, "MaxEntCap")) {
350 					strcpy(workbuffer,
351 					       "partition_max_entitled_capacity");
352 					w_idx = strlen(workbuffer);
353 				}
354 				if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
355 					strcpy(workbuffer,
356 					       "system_potential_processors");
357 					w_idx = strlen(workbuffer);
358 				}
359 			}
360 		}
361 		kfree(workbuffer);
362 		local_buffer -= 2;	/* back up over strlen value */
363 	}
364 	kfree(local_buffer);
365 }
366 
367 /* Return the number of processors in the system.
368  * This function reads through the device tree and counts
369  * the virtual processors, this does not include threads.
370  */
371 static int lparcfg_count_active_processors(void)
372 {
373 	struct device_node *cpus_dn;
374 	int count = 0;
375 
376 	for_each_node_by_type(cpus_dn, "cpu") {
377 #ifdef LPARCFG_DEBUG
378 		printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
379 #endif
380 		count++;
381 	}
382 	return count;
383 }
384 
385 static void pseries_cmo_data(struct seq_file *m)
386 {
387 	int cpu;
388 	unsigned long cmo_faults = 0;
389 	unsigned long cmo_fault_time = 0;
390 
391 	seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
392 
393 	if (!firmware_has_feature(FW_FEATURE_CMO))
394 		return;
395 
396 	for_each_possible_cpu(cpu) {
397 		cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults);
398 		cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time);
399 	}
400 
401 	seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
402 	seq_printf(m, "cmo_fault_time_usec=%lu\n",
403 		   cmo_fault_time / tb_ticks_per_usec);
404 	seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
405 	seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
406 	seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
407 }
408 
409 static void splpar_dispatch_data(struct seq_file *m)
410 {
411 	int cpu;
412 	unsigned long dispatches = 0;
413 	unsigned long dispatch_dispersions = 0;
414 
415 	for_each_possible_cpu(cpu) {
416 		dispatches += be32_to_cpu(lppaca_of(cpu).yield_count);
417 		dispatch_dispersions +=
418 			be32_to_cpu(lppaca_of(cpu).dispersion_count);
419 	}
420 
421 	seq_printf(m, "dispatches=%lu\n", dispatches);
422 	seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
423 }
424 
425 static void parse_em_data(struct seq_file *m)
426 {
427 	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
428 
429 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
430 	    plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
431 		seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
432 }
433 
434 static void maxmem_data(struct seq_file *m)
435 {
436 	unsigned long maxmem = 0;
437 
438 	maxmem += drmem_info->n_lmbs * drmem_info->lmb_size;
439 	maxmem += hugetlb_total_pages() * PAGE_SIZE;
440 
441 	seq_printf(m, "MaxMem=%ld\n", maxmem);
442 }
443 
444 static int pseries_lparcfg_data(struct seq_file *m, void *v)
445 {
446 	int partition_potential_processors;
447 	int partition_active_processors;
448 	struct device_node *rtas_node;
449 	const __be32 *lrdrp = NULL;
450 
451 	rtas_node = of_find_node_by_path("/rtas");
452 	if (rtas_node)
453 		lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
454 
455 	if (lrdrp == NULL) {
456 		partition_potential_processors = vdso_data->processorCount;
457 	} else {
458 		partition_potential_processors = be32_to_cpup(lrdrp + 4);
459 	}
460 	of_node_put(rtas_node);
461 
462 	partition_active_processors = lparcfg_count_active_processors();
463 
464 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
465 		/* this call handles the ibm,get-system-parameter contents */
466 		parse_system_parameter_string(m);
467 		parse_ppp_data(m);
468 		parse_mpp_data(m);
469 		parse_mpp_x_data(m);
470 		pseries_cmo_data(m);
471 		splpar_dispatch_data(m);
472 
473 		seq_printf(m, "purr=%ld\n", get_purr());
474 		seq_printf(m, "tbr=%ld\n", mftb());
475 	} else {		/* non SPLPAR case */
476 
477 		seq_printf(m, "system_active_processors=%d\n",
478 			   partition_potential_processors);
479 
480 		seq_printf(m, "system_potential_processors=%d\n",
481 			   partition_potential_processors);
482 
483 		seq_printf(m, "partition_max_entitled_capacity=%d\n",
484 			   partition_potential_processors * 100);
485 
486 		seq_printf(m, "partition_entitled_capacity=%d\n",
487 			   partition_active_processors * 100);
488 	}
489 
490 	seq_printf(m, "partition_active_processors=%d\n",
491 		   partition_active_processors);
492 
493 	seq_printf(m, "partition_potential_processors=%d\n",
494 		   partition_potential_processors);
495 
496 	seq_printf(m, "shared_processor_mode=%d\n",
497 		   lppaca_shared_proc(get_lppaca()));
498 
499 #ifdef CONFIG_PPC_BOOK3S_64
500 	seq_printf(m, "slb_size=%d\n", mmu_slb_size);
501 #endif
502 	parse_em_data(m);
503 	maxmem_data(m);
504 
505 	return 0;
506 }
507 
508 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
509 {
510 	struct hvcall_ppp_data ppp_data;
511 	u8 new_weight;
512 	u64 new_entitled;
513 	ssize_t retval;
514 
515 	/* Get our current parameters */
516 	retval = h_get_ppp(&ppp_data);
517 	if (retval)
518 		return retval;
519 
520 	if (entitlement) {
521 		new_weight = ppp_data.weight;
522 		new_entitled = *entitlement;
523 	} else if (weight) {
524 		new_weight = *weight;
525 		new_entitled = ppp_data.entitlement;
526 	} else
527 		return -EINVAL;
528 
529 	pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
530 		 __func__, ppp_data.entitlement, ppp_data.weight);
531 
532 	pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
533 		 __func__, new_entitled, new_weight);
534 
535 	retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
536 	return retval;
537 }
538 
539 /**
540  * update_mpp
541  *
542  * Update the memory entitlement and weight for the partition.  Caller must
543  * specify either a new entitlement or weight, not both, to be updated
544  * since the h_set_mpp call takes both entitlement and weight as parameters.
545  */
546 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
547 {
548 	struct hvcall_mpp_data mpp_data;
549 	u64 new_entitled;
550 	u8 new_weight;
551 	ssize_t rc;
552 
553 	if (entitlement) {
554 		/* Check with vio to ensure the new memory entitlement
555 		 * can be handled.
556 		 */
557 		rc = vio_cmo_entitlement_update(*entitlement);
558 		if (rc)
559 			return rc;
560 	}
561 
562 	rc = h_get_mpp(&mpp_data);
563 	if (rc)
564 		return rc;
565 
566 	if (entitlement) {
567 		new_weight = mpp_data.mem_weight;
568 		new_entitled = *entitlement;
569 	} else if (weight) {
570 		new_weight = *weight;
571 		new_entitled = mpp_data.entitled_mem;
572 	} else
573 		return -EINVAL;
574 
575 	pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
576 	         __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
577 
578 	pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
579 		 __func__, new_entitled, new_weight);
580 
581 	rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
582 	return rc;
583 }
584 
585 /*
586  * Interface for changing system parameters (variable capacity weight
587  * and entitled capacity).  Format of input is "param_name=value";
588  * anything after value is ignored.  Valid parameters at this time are
589  * "partition_entitled_capacity" and "capacity_weight".  We use
590  * H_SET_PPP to alter parameters.
591  *
592  * This function should be invoked only on systems with
593  * FW_FEATURE_SPLPAR.
594  */
595 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
596 			     size_t count, loff_t * off)
597 {
598 	char kbuf[64];
599 	char *tmp;
600 	u64 new_entitled, *new_entitled_ptr = &new_entitled;
601 	u8 new_weight, *new_weight_ptr = &new_weight;
602 	ssize_t retval;
603 
604 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
605 		return -EINVAL;
606 
607 	if (count > sizeof(kbuf))
608 		return -EINVAL;
609 
610 	if (copy_from_user(kbuf, buf, count))
611 		return -EFAULT;
612 
613 	kbuf[count - 1] = '\0';
614 	tmp = strchr(kbuf, '=');
615 	if (!tmp)
616 		return -EINVAL;
617 
618 	*tmp++ = '\0';
619 
620 	if (!strcmp(kbuf, "partition_entitled_capacity")) {
621 		char *endp;
622 		*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
623 		if (endp == tmp)
624 			return -EINVAL;
625 
626 		retval = update_ppp(new_entitled_ptr, NULL);
627 	} else if (!strcmp(kbuf, "capacity_weight")) {
628 		char *endp;
629 		*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
630 		if (endp == tmp)
631 			return -EINVAL;
632 
633 		retval = update_ppp(NULL, new_weight_ptr);
634 	} else if (!strcmp(kbuf, "entitled_memory")) {
635 		char *endp;
636 		*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
637 		if (endp == tmp)
638 			return -EINVAL;
639 
640 		retval = update_mpp(new_entitled_ptr, NULL);
641 	} else if (!strcmp(kbuf, "entitled_memory_weight")) {
642 		char *endp;
643 		*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
644 		if (endp == tmp)
645 			return -EINVAL;
646 
647 		retval = update_mpp(NULL, new_weight_ptr);
648 	} else
649 		return -EINVAL;
650 
651 	if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
652 		retval = count;
653 	} else if (retval == H_BUSY) {
654 		retval = -EBUSY;
655 	} else if (retval == H_HARDWARE) {
656 		retval = -EIO;
657 	} else if (retval == H_PARAMETER) {
658 		retval = -EINVAL;
659 	}
660 
661 	return retval;
662 }
663 
664 static int lparcfg_data(struct seq_file *m, void *v)
665 {
666 	struct device_node *rootdn;
667 	const char *model = "";
668 	const char *system_id = "";
669 	const char *tmp;
670 	const __be32 *lp_index_ptr;
671 	unsigned int lp_index = 0;
672 
673 	seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
674 
675 	rootdn = of_find_node_by_path("/");
676 	if (rootdn) {
677 		tmp = of_get_property(rootdn, "model", NULL);
678 		if (tmp)
679 			model = tmp;
680 		tmp = of_get_property(rootdn, "system-id", NULL);
681 		if (tmp)
682 			system_id = tmp;
683 		lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
684 					NULL);
685 		if (lp_index_ptr)
686 			lp_index = be32_to_cpup(lp_index_ptr);
687 		of_node_put(rootdn);
688 	}
689 	seq_printf(m, "serial_number=%s\n", system_id);
690 	seq_printf(m, "system_type=%s\n", model);
691 	seq_printf(m, "partition_id=%d\n", (int)lp_index);
692 
693 	return pseries_lparcfg_data(m, v);
694 }
695 
696 static int lparcfg_open(struct inode *inode, struct file *file)
697 {
698 	return single_open(file, lparcfg_data, NULL);
699 }
700 
701 static const struct file_operations lparcfg_fops = {
702 	.read		= seq_read,
703 	.write		= lparcfg_write,
704 	.open		= lparcfg_open,
705 	.release	= single_release,
706 	.llseek		= seq_lseek,
707 };
708 
709 static int __init lparcfg_init(void)
710 {
711 	umode_t mode = 0444;
712 
713 	/* Allow writing if we have FW_FEATURE_SPLPAR */
714 	if (firmware_has_feature(FW_FEATURE_SPLPAR))
715 		mode |= 0200;
716 
717 	if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops)) {
718 		printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
719 		return -EIO;
720 	}
721 	return 0;
722 }
723 machine_device_initcall(pseries, lparcfg_init);
724