1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 LPAR Configuration Information Driver 4 * 5 * Dave Engebretsen engebret@us.ibm.com 6 * Copyright (c) 2003 Dave Engebretsen 7 * Will Schmidt willschm@us.ibm.com 8 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation. 9 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation. 10 * Nathan Lynch nathanl@austin.ibm.com 11 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation. 12 * 13 * This driver creates a proc file at /proc/ppc64/lparcfg which contains 14 * keyword - value pairs that specify the configuration of the partition. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/types.h> 19 #include <linux/errno.h> 20 #include <linux/proc_fs.h> 21 #include <linux/init.h> 22 #include <linux/seq_file.h> 23 #include <linux/slab.h> 24 #include <linux/uaccess.h> 25 #include <linux/hugetlb.h> 26 #include <asm/lppaca.h> 27 #include <asm/hvcall.h> 28 #include <asm/firmware.h> 29 #include <asm/rtas.h> 30 #include <asm/time.h> 31 #include <asm/prom.h> 32 #include <asm/vdso_datapage.h> 33 #include <asm/vio.h> 34 #include <asm/mmu.h> 35 #include <asm/machdep.h> 36 #include <asm/drmem.h> 37 38 #include "pseries.h" 39 40 /* 41 * This isn't a module but we expose that to userspace 42 * via /proc so leave the definitions here 43 */ 44 #define MODULE_VERS "1.9" 45 #define MODULE_NAME "lparcfg" 46 47 /* #define LPARCFG_DEBUG */ 48 49 /* 50 * Track sum of all purrs across all processors. This is used to further 51 * calculate usage values by different applications 52 */ 53 static void cpu_get_purr(void *arg) 54 { 55 atomic64_t *sum = arg; 56 57 atomic64_add(mfspr(SPRN_PURR), sum); 58 } 59 60 static unsigned long get_purr(void) 61 { 62 atomic64_t purr = ATOMIC64_INIT(0); 63 64 on_each_cpu(cpu_get_purr, &purr, 1); 65 66 return atomic64_read(&purr); 67 } 68 69 /* 70 * Methods used to fetch LPAR data when running on a pSeries platform. 71 */ 72 73 struct hvcall_ppp_data { 74 u64 entitlement; 75 u64 unallocated_entitlement; 76 u16 group_num; 77 u16 pool_num; 78 u8 capped; 79 u8 weight; 80 u8 unallocated_weight; 81 u16 active_procs_in_pool; 82 u16 active_system_procs; 83 u16 phys_platform_procs; 84 u32 max_proc_cap_avail; 85 u32 entitled_proc_cap_avail; 86 }; 87 88 /* 89 * H_GET_PPP hcall returns info in 4 parms. 90 * entitled_capacity,unallocated_capacity, 91 * aggregation, resource_capability). 92 * 93 * R4 = Entitled Processor Capacity Percentage. 94 * R5 = Unallocated Processor Capacity Percentage. 95 * R6 (AABBCCDDEEFFGGHH). 96 * XXXX - reserved (0) 97 * XXXX - reserved (0) 98 * XXXX - Group Number 99 * XXXX - Pool Number. 100 * R7 (IIJJKKLLMMNNOOPP). 101 * XX - reserved. (0) 102 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator. 103 * XX - variable processor Capacity Weight 104 * XX - Unallocated Variable Processor Capacity Weight. 105 * XXXX - Active processors in Physical Processor Pool. 106 * XXXX - Processors active on platform. 107 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1 108 * XXXX - Physical platform procs allocated to virtualization. 109 * XXXXXX - Max procs capacity % available to the partitions pool. 110 * XXXXXX - Entitled procs capacity % available to the 111 * partitions pool. 112 */ 113 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data) 114 { 115 unsigned long rc; 116 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 117 118 rc = plpar_hcall9(H_GET_PPP, retbuf); 119 120 ppp_data->entitlement = retbuf[0]; 121 ppp_data->unallocated_entitlement = retbuf[1]; 122 123 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 124 ppp_data->pool_num = retbuf[2] & 0xffff; 125 126 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01; 127 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff; 128 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff; 129 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff; 130 ppp_data->active_system_procs = retbuf[3] & 0xffff; 131 132 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8; 133 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff; 134 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff; 135 136 return rc; 137 } 138 139 static unsigned h_pic(unsigned long *pool_idle_time, 140 unsigned long *num_procs) 141 { 142 unsigned long rc; 143 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 144 145 rc = plpar_hcall(H_PIC, retbuf); 146 147 *pool_idle_time = retbuf[0]; 148 *num_procs = retbuf[1]; 149 150 return rc; 151 } 152 153 /* 154 * parse_ppp_data 155 * Parse out the data returned from h_get_ppp and h_pic 156 */ 157 static void parse_ppp_data(struct seq_file *m) 158 { 159 struct hvcall_ppp_data ppp_data; 160 struct device_node *root; 161 const __be32 *perf_level; 162 int rc; 163 164 rc = h_get_ppp(&ppp_data); 165 if (rc) 166 return; 167 168 seq_printf(m, "partition_entitled_capacity=%lld\n", 169 ppp_data.entitlement); 170 seq_printf(m, "group=%d\n", ppp_data.group_num); 171 seq_printf(m, "system_active_processors=%d\n", 172 ppp_data.active_system_procs); 173 174 /* pool related entries are appropriate for shared configs */ 175 if (lppaca_shared_proc(get_lppaca())) { 176 unsigned long pool_idle_time, pool_procs; 177 178 seq_printf(m, "pool=%d\n", ppp_data.pool_num); 179 180 /* report pool_capacity in percentage */ 181 seq_printf(m, "pool_capacity=%d\n", 182 ppp_data.active_procs_in_pool * 100); 183 184 h_pic(&pool_idle_time, &pool_procs); 185 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time); 186 seq_printf(m, "pool_num_procs=%ld\n", pool_procs); 187 } 188 189 seq_printf(m, "unallocated_capacity_weight=%d\n", 190 ppp_data.unallocated_weight); 191 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight); 192 seq_printf(m, "capped=%d\n", ppp_data.capped); 193 seq_printf(m, "unallocated_capacity=%lld\n", 194 ppp_data.unallocated_entitlement); 195 196 /* The last bits of information returned from h_get_ppp are only 197 * valid if the ibm,partition-performance-parameters-level 198 * property is >= 1. 199 */ 200 root = of_find_node_by_path("/"); 201 if (root) { 202 perf_level = of_get_property(root, 203 "ibm,partition-performance-parameters-level", 204 NULL); 205 if (perf_level && (be32_to_cpup(perf_level) >= 1)) { 206 seq_printf(m, 207 "physical_procs_allocated_to_virtualization=%d\n", 208 ppp_data.phys_platform_procs); 209 seq_printf(m, "max_proc_capacity_available=%d\n", 210 ppp_data.max_proc_cap_avail); 211 seq_printf(m, "entitled_proc_capacity_available=%d\n", 212 ppp_data.entitled_proc_cap_avail); 213 } 214 215 of_node_put(root); 216 } 217 } 218 219 /** 220 * parse_mpp_data 221 * Parse out data returned from h_get_mpp 222 */ 223 static void parse_mpp_data(struct seq_file *m) 224 { 225 struct hvcall_mpp_data mpp_data; 226 int rc; 227 228 rc = h_get_mpp(&mpp_data); 229 if (rc) 230 return; 231 232 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem); 233 234 if (mpp_data.mapped_mem != -1) 235 seq_printf(m, "mapped_entitled_memory=%ld\n", 236 mpp_data.mapped_mem); 237 238 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num); 239 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num); 240 241 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight); 242 seq_printf(m, "unallocated_entitled_memory_weight=%d\n", 243 mpp_data.unallocated_mem_weight); 244 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n", 245 mpp_data.unallocated_entitlement); 246 247 if (mpp_data.pool_size != -1) 248 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n", 249 mpp_data.pool_size); 250 251 seq_printf(m, "entitled_memory_loan_request=%ld\n", 252 mpp_data.loan_request); 253 254 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem); 255 } 256 257 /** 258 * parse_mpp_x_data 259 * Parse out data returned from h_get_mpp_x 260 */ 261 static void parse_mpp_x_data(struct seq_file *m) 262 { 263 struct hvcall_mpp_x_data mpp_x_data; 264 265 if (!firmware_has_feature(FW_FEATURE_XCMO)) 266 return; 267 if (h_get_mpp_x(&mpp_x_data)) 268 return; 269 270 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes); 271 272 if (mpp_x_data.pool_coalesced_bytes) 273 seq_printf(m, "pool_coalesced_bytes=%ld\n", 274 mpp_x_data.pool_coalesced_bytes); 275 if (mpp_x_data.pool_purr_cycles) 276 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles); 277 if (mpp_x_data.pool_spurr_cycles) 278 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles); 279 } 280 281 #define SPLPAR_CHARACTERISTICS_TOKEN 20 282 #define SPLPAR_MAXLENGTH 1026*(sizeof(char)) 283 284 /* 285 * parse_system_parameter_string() 286 * Retrieve the potential_processors, max_entitled_capacity and friends 287 * through the get-system-parameter rtas call. Replace keyword strings as 288 * necessary. 289 */ 290 static void parse_system_parameter_string(struct seq_file *m) 291 { 292 int call_status; 293 294 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); 295 if (!local_buffer) { 296 printk(KERN_ERR "%s %s kmalloc failure at line %d\n", 297 __FILE__, __func__, __LINE__); 298 return; 299 } 300 301 spin_lock(&rtas_data_buf_lock); 302 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH); 303 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 304 NULL, 305 SPLPAR_CHARACTERISTICS_TOKEN, 306 __pa(rtas_data_buf), 307 RTAS_DATA_BUF_SIZE); 308 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH); 309 local_buffer[SPLPAR_MAXLENGTH - 1] = '\0'; 310 spin_unlock(&rtas_data_buf_lock); 311 312 if (call_status != 0) { 313 printk(KERN_INFO 314 "%s %s Error calling get-system-parameter (0x%x)\n", 315 __FILE__, __func__, call_status); 316 } else { 317 int splpar_strlen; 318 int idx, w_idx; 319 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); 320 if (!workbuffer) { 321 printk(KERN_ERR "%s %s kmalloc failure at line %d\n", 322 __FILE__, __func__, __LINE__); 323 kfree(local_buffer); 324 return; 325 } 326 #ifdef LPARCFG_DEBUG 327 printk(KERN_INFO "success calling get-system-parameter\n"); 328 #endif 329 splpar_strlen = local_buffer[0] * 256 + local_buffer[1]; 330 local_buffer += 2; /* step over strlen value */ 331 332 w_idx = 0; 333 idx = 0; 334 while ((*local_buffer) && (idx < splpar_strlen)) { 335 workbuffer[w_idx++] = local_buffer[idx++]; 336 if ((local_buffer[idx] == ',') 337 || (local_buffer[idx] == '\0')) { 338 workbuffer[w_idx] = '\0'; 339 if (w_idx) { 340 /* avoid the empty string */ 341 seq_printf(m, "%s\n", workbuffer); 342 } 343 memset(workbuffer, 0, SPLPAR_MAXLENGTH); 344 idx++; /* skip the comma */ 345 w_idx = 0; 346 } else if (local_buffer[idx] == '=') { 347 /* code here to replace workbuffer contents 348 with different keyword strings */ 349 if (0 == strcmp(workbuffer, "MaxEntCap")) { 350 strcpy(workbuffer, 351 "partition_max_entitled_capacity"); 352 w_idx = strlen(workbuffer); 353 } 354 if (0 == strcmp(workbuffer, "MaxPlatProcs")) { 355 strcpy(workbuffer, 356 "system_potential_processors"); 357 w_idx = strlen(workbuffer); 358 } 359 } 360 } 361 kfree(workbuffer); 362 local_buffer -= 2; /* back up over strlen value */ 363 } 364 kfree(local_buffer); 365 } 366 367 /* Return the number of processors in the system. 368 * This function reads through the device tree and counts 369 * the virtual processors, this does not include threads. 370 */ 371 static int lparcfg_count_active_processors(void) 372 { 373 struct device_node *cpus_dn; 374 int count = 0; 375 376 for_each_node_by_type(cpus_dn, "cpu") { 377 #ifdef LPARCFG_DEBUG 378 printk(KERN_ERR "cpus_dn %p\n", cpus_dn); 379 #endif 380 count++; 381 } 382 return count; 383 } 384 385 static void pseries_cmo_data(struct seq_file *m) 386 { 387 int cpu; 388 unsigned long cmo_faults = 0; 389 unsigned long cmo_fault_time = 0; 390 391 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO)); 392 393 if (!firmware_has_feature(FW_FEATURE_CMO)) 394 return; 395 396 for_each_possible_cpu(cpu) { 397 cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults); 398 cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time); 399 } 400 401 seq_printf(m, "cmo_faults=%lu\n", cmo_faults); 402 seq_printf(m, "cmo_fault_time_usec=%lu\n", 403 cmo_fault_time / tb_ticks_per_usec); 404 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp()); 405 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp()); 406 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size()); 407 } 408 409 static void splpar_dispatch_data(struct seq_file *m) 410 { 411 int cpu; 412 unsigned long dispatches = 0; 413 unsigned long dispatch_dispersions = 0; 414 415 for_each_possible_cpu(cpu) { 416 dispatches += be32_to_cpu(lppaca_of(cpu).yield_count); 417 dispatch_dispersions += 418 be32_to_cpu(lppaca_of(cpu).dispersion_count); 419 } 420 421 seq_printf(m, "dispatches=%lu\n", dispatches); 422 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions); 423 } 424 425 static void parse_em_data(struct seq_file *m) 426 { 427 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 428 429 if (firmware_has_feature(FW_FEATURE_LPAR) && 430 plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS) 431 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]); 432 } 433 434 static void maxmem_data(struct seq_file *m) 435 { 436 unsigned long maxmem = 0; 437 438 maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size; 439 maxmem += hugetlb_total_pages() * PAGE_SIZE; 440 441 seq_printf(m, "MaxMem=%lu\n", maxmem); 442 } 443 444 static int pseries_lparcfg_data(struct seq_file *m, void *v) 445 { 446 int partition_potential_processors; 447 int partition_active_processors; 448 struct device_node *rtas_node; 449 const __be32 *lrdrp = NULL; 450 451 rtas_node = of_find_node_by_path("/rtas"); 452 if (rtas_node) 453 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL); 454 455 if (lrdrp == NULL) { 456 partition_potential_processors = vdso_data->processorCount; 457 } else { 458 partition_potential_processors = be32_to_cpup(lrdrp + 4); 459 } 460 of_node_put(rtas_node); 461 462 partition_active_processors = lparcfg_count_active_processors(); 463 464 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 465 /* this call handles the ibm,get-system-parameter contents */ 466 parse_system_parameter_string(m); 467 parse_ppp_data(m); 468 parse_mpp_data(m); 469 parse_mpp_x_data(m); 470 pseries_cmo_data(m); 471 splpar_dispatch_data(m); 472 473 seq_printf(m, "purr=%ld\n", get_purr()); 474 seq_printf(m, "tbr=%ld\n", mftb()); 475 } else { /* non SPLPAR case */ 476 477 seq_printf(m, "system_active_processors=%d\n", 478 partition_potential_processors); 479 480 seq_printf(m, "system_potential_processors=%d\n", 481 partition_potential_processors); 482 483 seq_printf(m, "partition_max_entitled_capacity=%d\n", 484 partition_potential_processors * 100); 485 486 seq_printf(m, "partition_entitled_capacity=%d\n", 487 partition_active_processors * 100); 488 } 489 490 seq_printf(m, "partition_active_processors=%d\n", 491 partition_active_processors); 492 493 seq_printf(m, "partition_potential_processors=%d\n", 494 partition_potential_processors); 495 496 seq_printf(m, "shared_processor_mode=%d\n", 497 lppaca_shared_proc(get_lppaca())); 498 499 #ifdef CONFIG_PPC_BOOK3S_64 500 seq_printf(m, "slb_size=%d\n", mmu_slb_size); 501 #endif 502 parse_em_data(m); 503 maxmem_data(m); 504 505 return 0; 506 } 507 508 static ssize_t update_ppp(u64 *entitlement, u8 *weight) 509 { 510 struct hvcall_ppp_data ppp_data; 511 u8 new_weight; 512 u64 new_entitled; 513 ssize_t retval; 514 515 /* Get our current parameters */ 516 retval = h_get_ppp(&ppp_data); 517 if (retval) 518 return retval; 519 520 if (entitlement) { 521 new_weight = ppp_data.weight; 522 new_entitled = *entitlement; 523 } else if (weight) { 524 new_weight = *weight; 525 new_entitled = ppp_data.entitlement; 526 } else 527 return -EINVAL; 528 529 pr_debug("%s: current_entitled = %llu, current_weight = %u\n", 530 __func__, ppp_data.entitlement, ppp_data.weight); 531 532 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 533 __func__, new_entitled, new_weight); 534 535 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight); 536 return retval; 537 } 538 539 /** 540 * update_mpp 541 * 542 * Update the memory entitlement and weight for the partition. Caller must 543 * specify either a new entitlement or weight, not both, to be updated 544 * since the h_set_mpp call takes both entitlement and weight as parameters. 545 */ 546 static ssize_t update_mpp(u64 *entitlement, u8 *weight) 547 { 548 struct hvcall_mpp_data mpp_data; 549 u64 new_entitled; 550 u8 new_weight; 551 ssize_t rc; 552 553 if (entitlement) { 554 /* Check with vio to ensure the new memory entitlement 555 * can be handled. 556 */ 557 rc = vio_cmo_entitlement_update(*entitlement); 558 if (rc) 559 return rc; 560 } 561 562 rc = h_get_mpp(&mpp_data); 563 if (rc) 564 return rc; 565 566 if (entitlement) { 567 new_weight = mpp_data.mem_weight; 568 new_entitled = *entitlement; 569 } else if (weight) { 570 new_weight = *weight; 571 new_entitled = mpp_data.entitled_mem; 572 } else 573 return -EINVAL; 574 575 pr_debug("%s: current_entitled = %lu, current_weight = %u\n", 576 __func__, mpp_data.entitled_mem, mpp_data.mem_weight); 577 578 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 579 __func__, new_entitled, new_weight); 580 581 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight); 582 return rc; 583 } 584 585 /* 586 * Interface for changing system parameters (variable capacity weight 587 * and entitled capacity). Format of input is "param_name=value"; 588 * anything after value is ignored. Valid parameters at this time are 589 * "partition_entitled_capacity" and "capacity_weight". We use 590 * H_SET_PPP to alter parameters. 591 * 592 * This function should be invoked only on systems with 593 * FW_FEATURE_SPLPAR. 594 */ 595 static ssize_t lparcfg_write(struct file *file, const char __user * buf, 596 size_t count, loff_t * off) 597 { 598 char kbuf[64]; 599 char *tmp; 600 u64 new_entitled, *new_entitled_ptr = &new_entitled; 601 u8 new_weight, *new_weight_ptr = &new_weight; 602 ssize_t retval; 603 604 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 605 return -EINVAL; 606 607 if (count > sizeof(kbuf)) 608 return -EINVAL; 609 610 if (copy_from_user(kbuf, buf, count)) 611 return -EFAULT; 612 613 kbuf[count - 1] = '\0'; 614 tmp = strchr(kbuf, '='); 615 if (!tmp) 616 return -EINVAL; 617 618 *tmp++ = '\0'; 619 620 if (!strcmp(kbuf, "partition_entitled_capacity")) { 621 char *endp; 622 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 623 if (endp == tmp) 624 return -EINVAL; 625 626 retval = update_ppp(new_entitled_ptr, NULL); 627 } else if (!strcmp(kbuf, "capacity_weight")) { 628 char *endp; 629 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 630 if (endp == tmp) 631 return -EINVAL; 632 633 retval = update_ppp(NULL, new_weight_ptr); 634 } else if (!strcmp(kbuf, "entitled_memory")) { 635 char *endp; 636 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 637 if (endp == tmp) 638 return -EINVAL; 639 640 retval = update_mpp(new_entitled_ptr, NULL); 641 } else if (!strcmp(kbuf, "entitled_memory_weight")) { 642 char *endp; 643 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 644 if (endp == tmp) 645 return -EINVAL; 646 647 retval = update_mpp(NULL, new_weight_ptr); 648 } else 649 return -EINVAL; 650 651 if (retval == H_SUCCESS || retval == H_CONSTRAINED) { 652 retval = count; 653 } else if (retval == H_BUSY) { 654 retval = -EBUSY; 655 } else if (retval == H_HARDWARE) { 656 retval = -EIO; 657 } else if (retval == H_PARAMETER) { 658 retval = -EINVAL; 659 } 660 661 return retval; 662 } 663 664 static int lparcfg_data(struct seq_file *m, void *v) 665 { 666 struct device_node *rootdn; 667 const char *model = ""; 668 const char *system_id = ""; 669 const char *tmp; 670 const __be32 *lp_index_ptr; 671 unsigned int lp_index = 0; 672 673 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS); 674 675 rootdn = of_find_node_by_path("/"); 676 if (rootdn) { 677 tmp = of_get_property(rootdn, "model", NULL); 678 if (tmp) 679 model = tmp; 680 tmp = of_get_property(rootdn, "system-id", NULL); 681 if (tmp) 682 system_id = tmp; 683 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no", 684 NULL); 685 if (lp_index_ptr) 686 lp_index = be32_to_cpup(lp_index_ptr); 687 of_node_put(rootdn); 688 } 689 seq_printf(m, "serial_number=%s\n", system_id); 690 seq_printf(m, "system_type=%s\n", model); 691 seq_printf(m, "partition_id=%d\n", (int)lp_index); 692 693 return pseries_lparcfg_data(m, v); 694 } 695 696 static int lparcfg_open(struct inode *inode, struct file *file) 697 { 698 return single_open(file, lparcfg_data, NULL); 699 } 700 701 static const struct proc_ops lparcfg_proc_ops = { 702 .proc_read = seq_read, 703 .proc_write = lparcfg_write, 704 .proc_open = lparcfg_open, 705 .proc_release = single_release, 706 .proc_lseek = seq_lseek, 707 }; 708 709 static int __init lparcfg_init(void) 710 { 711 umode_t mode = 0444; 712 713 /* Allow writing if we have FW_FEATURE_SPLPAR */ 714 if (firmware_has_feature(FW_FEATURE_SPLPAR)) 715 mode |= 0200; 716 717 if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) { 718 printk(KERN_ERR "Failed to create powerpc/lparcfg\n"); 719 return -EIO; 720 } 721 return 0; 722 } 723 machine_device_initcall(pseries, lparcfg_init); 724