1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 LPAR Configuration Information Driver 4 * 5 * Dave Engebretsen engebret@us.ibm.com 6 * Copyright (c) 2003 Dave Engebretsen 7 * Will Schmidt willschm@us.ibm.com 8 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation. 9 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation. 10 * Nathan Lynch nathanl@austin.ibm.com 11 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation. 12 * 13 * This driver creates a proc file at /proc/ppc64/lparcfg which contains 14 * keyword - value pairs that specify the configuration of the partition. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/types.h> 19 #include <linux/errno.h> 20 #include <linux/proc_fs.h> 21 #include <linux/init.h> 22 #include <asm/papr-sysparm.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 #include <linux/uaccess.h> 26 #include <linux/hugetlb.h> 27 #include <asm/lppaca.h> 28 #include <asm/hvcall.h> 29 #include <asm/firmware.h> 30 #include <asm/rtas.h> 31 #include <asm/time.h> 32 #include <asm/vdso_datapage.h> 33 #include <asm/vio.h> 34 #include <asm/mmu.h> 35 #include <asm/machdep.h> 36 #include <asm/drmem.h> 37 38 #include "pseries.h" 39 #include "vas.h" /* pseries_vas_dlpar_cpu() */ 40 41 /* 42 * This isn't a module but we expose that to userspace 43 * via /proc so leave the definitions here 44 */ 45 #define MODULE_VERS "1.9" 46 #define MODULE_NAME "lparcfg" 47 48 /* #define LPARCFG_DEBUG */ 49 50 /* 51 * Track sum of all purrs across all processors. This is used to further 52 * calculate usage values by different applications 53 */ 54 static void cpu_get_purr(void *arg) 55 { 56 atomic64_t *sum = arg; 57 58 atomic64_add(mfspr(SPRN_PURR), sum); 59 } 60 61 static unsigned long get_purr(void) 62 { 63 atomic64_t purr = ATOMIC64_INIT(0); 64 65 on_each_cpu(cpu_get_purr, &purr, 1); 66 67 return atomic64_read(&purr); 68 } 69 70 /* 71 * Methods used to fetch LPAR data when running on a pSeries platform. 72 */ 73 74 struct hvcall_ppp_data { 75 u64 entitlement; 76 u64 unallocated_entitlement; 77 u16 group_num; 78 u16 pool_num; 79 u8 capped; 80 u8 weight; 81 u8 unallocated_weight; 82 u16 active_procs_in_pool; 83 u16 active_system_procs; 84 u16 phys_platform_procs; 85 u32 max_proc_cap_avail; 86 u32 entitled_proc_cap_avail; 87 }; 88 89 /* 90 * H_GET_PPP hcall returns info in 4 parms. 91 * entitled_capacity,unallocated_capacity, 92 * aggregation, resource_capability). 93 * 94 * R4 = Entitled Processor Capacity Percentage. 95 * R5 = Unallocated Processor Capacity Percentage. 96 * R6 (AABBCCDDEEFFGGHH). 97 * XXXX - reserved (0) 98 * XXXX - reserved (0) 99 * XXXX - Group Number 100 * XXXX - Pool Number. 101 * R7 (IIJJKKLLMMNNOOPP). 102 * XX - reserved. (0) 103 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator. 104 * XX - variable processor Capacity Weight 105 * XX - Unallocated Variable Processor Capacity Weight. 106 * XXXX - Active processors in Physical Processor Pool. 107 * XXXX - Processors active on platform. 108 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1 109 * XXXX - Physical platform procs allocated to virtualization. 110 * XXXXXX - Max procs capacity % available to the partitions pool. 111 * XXXXXX - Entitled procs capacity % available to the 112 * partitions pool. 113 */ 114 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data) 115 { 116 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 117 long rc; 118 119 rc = plpar_hcall9(H_GET_PPP, retbuf); 120 121 ppp_data->entitlement = retbuf[0]; 122 ppp_data->unallocated_entitlement = retbuf[1]; 123 124 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 125 ppp_data->pool_num = retbuf[2] & 0xffff; 126 127 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01; 128 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff; 129 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff; 130 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff; 131 ppp_data->active_system_procs = retbuf[3] & 0xffff; 132 133 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8; 134 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff; 135 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff; 136 137 return rc; 138 } 139 140 static void show_gpci_data(struct seq_file *m) 141 { 142 struct hv_gpci_request_buffer *buf; 143 unsigned int affinity_score; 144 long ret; 145 146 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 147 if (buf == NULL) 148 return; 149 150 /* 151 * Show the local LPAR's affinity score. 152 * 153 * 0xB1 selects the Affinity_Domain_Info_By_Partition subcall. 154 * The score is at byte 0xB in the output buffer. 155 */ 156 memset(&buf->params, 0, sizeof(buf->params)); 157 buf->params.counter_request = cpu_to_be32(0xB1); 158 buf->params.starting_index = cpu_to_be32(-1); /* local LPAR */ 159 buf->params.counter_info_version_in = 0x5; /* v5+ for score */ 160 ret = plpar_hcall_norets(H_GET_PERF_COUNTER_INFO, virt_to_phys(buf), 161 sizeof(*buf)); 162 if (ret != H_SUCCESS) { 163 pr_debug("hcall failed: H_GET_PERF_COUNTER_INFO: %ld, %x\n", 164 ret, be32_to_cpu(buf->params.detail_rc)); 165 goto out; 166 } 167 affinity_score = buf->bytes[0xB]; 168 seq_printf(m, "partition_affinity_score=%u\n", affinity_score); 169 out: 170 kfree(buf); 171 } 172 173 static unsigned h_pic(unsigned long *pool_idle_time, 174 unsigned long *num_procs) 175 { 176 unsigned long rc; 177 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 178 179 rc = plpar_hcall(H_PIC, retbuf); 180 181 *pool_idle_time = retbuf[0]; 182 *num_procs = retbuf[1]; 183 184 return rc; 185 } 186 187 /* 188 * parse_ppp_data 189 * Parse out the data returned from h_get_ppp and h_pic 190 */ 191 static void parse_ppp_data(struct seq_file *m) 192 { 193 struct hvcall_ppp_data ppp_data; 194 struct device_node *root; 195 const __be32 *perf_level; 196 long rc; 197 198 rc = h_get_ppp(&ppp_data); 199 if (rc) 200 return; 201 202 seq_printf(m, "partition_entitled_capacity=%lld\n", 203 ppp_data.entitlement); 204 seq_printf(m, "group=%d\n", ppp_data.group_num); 205 seq_printf(m, "system_active_processors=%d\n", 206 ppp_data.active_system_procs); 207 208 /* pool related entries are appropriate for shared configs */ 209 if (lppaca_shared_proc()) { 210 unsigned long pool_idle_time, pool_procs; 211 212 seq_printf(m, "pool=%d\n", ppp_data.pool_num); 213 214 /* report pool_capacity in percentage */ 215 seq_printf(m, "pool_capacity=%d\n", 216 ppp_data.active_procs_in_pool * 100); 217 218 h_pic(&pool_idle_time, &pool_procs); 219 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time); 220 seq_printf(m, "pool_num_procs=%ld\n", pool_procs); 221 } 222 223 seq_printf(m, "unallocated_capacity_weight=%d\n", 224 ppp_data.unallocated_weight); 225 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight); 226 seq_printf(m, "capped=%d\n", ppp_data.capped); 227 seq_printf(m, "unallocated_capacity=%lld\n", 228 ppp_data.unallocated_entitlement); 229 230 /* The last bits of information returned from h_get_ppp are only 231 * valid if the ibm,partition-performance-parameters-level 232 * property is >= 1. 233 */ 234 root = of_find_node_by_path("/"); 235 if (root) { 236 perf_level = of_get_property(root, 237 "ibm,partition-performance-parameters-level", 238 NULL); 239 if (perf_level && (be32_to_cpup(perf_level) >= 1)) { 240 seq_printf(m, 241 "physical_procs_allocated_to_virtualization=%d\n", 242 ppp_data.phys_platform_procs); 243 seq_printf(m, "max_proc_capacity_available=%d\n", 244 ppp_data.max_proc_cap_avail); 245 seq_printf(m, "entitled_proc_capacity_available=%d\n", 246 ppp_data.entitled_proc_cap_avail); 247 } 248 249 of_node_put(root); 250 } 251 } 252 253 /** 254 * parse_mpp_data 255 * Parse out data returned from h_get_mpp 256 */ 257 static void parse_mpp_data(struct seq_file *m) 258 { 259 struct hvcall_mpp_data mpp_data; 260 int rc; 261 262 rc = h_get_mpp(&mpp_data); 263 if (rc) 264 return; 265 266 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem); 267 268 if (mpp_data.mapped_mem != -1) 269 seq_printf(m, "mapped_entitled_memory=%ld\n", 270 mpp_data.mapped_mem); 271 272 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num); 273 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num); 274 275 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight); 276 seq_printf(m, "unallocated_entitled_memory_weight=%d\n", 277 mpp_data.unallocated_mem_weight); 278 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n", 279 mpp_data.unallocated_entitlement); 280 281 if (mpp_data.pool_size != -1) 282 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n", 283 mpp_data.pool_size); 284 285 seq_printf(m, "entitled_memory_loan_request=%ld\n", 286 mpp_data.loan_request); 287 288 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem); 289 } 290 291 /** 292 * parse_mpp_x_data 293 * Parse out data returned from h_get_mpp_x 294 */ 295 static void parse_mpp_x_data(struct seq_file *m) 296 { 297 struct hvcall_mpp_x_data mpp_x_data; 298 299 if (!firmware_has_feature(FW_FEATURE_XCMO)) 300 return; 301 if (h_get_mpp_x(&mpp_x_data)) 302 return; 303 304 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes); 305 306 if (mpp_x_data.pool_coalesced_bytes) 307 seq_printf(m, "pool_coalesced_bytes=%ld\n", 308 mpp_x_data.pool_coalesced_bytes); 309 if (mpp_x_data.pool_purr_cycles) 310 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles); 311 if (mpp_x_data.pool_spurr_cycles) 312 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles); 313 } 314 315 /* 316 * Read the lpar name using the RTAS ibm,get-system-parameter call. 317 * 318 * The name read through this call is updated if changes are made by the end 319 * user on the hypervisor side. 320 * 321 * Some hypervisor (like Qemu) may not provide this value. In that case, a non 322 * null value is returned. 323 */ 324 static int read_rtas_lpar_name(struct seq_file *m) 325 { 326 struct papr_sysparm_buf *buf; 327 int err; 328 329 buf = papr_sysparm_buf_alloc(); 330 if (!buf) 331 return -ENOMEM; 332 333 err = papr_sysparm_get(PAPR_SYSPARM_LPAR_NAME, buf); 334 if (!err) 335 seq_printf(m, "partition_name=%s\n", buf->val); 336 337 papr_sysparm_buf_free(buf); 338 return err; 339 } 340 341 /* 342 * Read the LPAR name from the Device Tree. 343 * 344 * The value read in the DT is not updated if the end-user is touching the LPAR 345 * name on the hypervisor side. 346 */ 347 static int read_dt_lpar_name(struct seq_file *m) 348 { 349 const char *name; 350 351 if (of_property_read_string(of_root, "ibm,partition-name", &name)) 352 return -ENOENT; 353 354 seq_printf(m, "partition_name=%s\n", name); 355 return 0; 356 } 357 358 static void read_lpar_name(struct seq_file *m) 359 { 360 if (read_rtas_lpar_name(m)) 361 read_dt_lpar_name(m); 362 } 363 364 #define SPLPAR_MAXLENGTH 1026*(sizeof(char)) 365 366 /* 367 * parse_system_parameter_string() 368 * Retrieve the potential_processors, max_entitled_capacity and friends 369 * through the get-system-parameter rtas call. Replace keyword strings as 370 * necessary. 371 */ 372 static void parse_system_parameter_string(struct seq_file *m) 373 { 374 struct papr_sysparm_buf *buf; 375 376 buf = papr_sysparm_buf_alloc(); 377 if (!buf) 378 return; 379 380 if (papr_sysparm_get(PAPR_SYSPARM_SHARED_PROC_LPAR_ATTRS, buf)) { 381 goto out_free; 382 } else { 383 const char *local_buffer; 384 int splpar_strlen; 385 int idx, w_idx; 386 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); 387 388 if (!workbuffer) 389 goto out_free; 390 391 splpar_strlen = be16_to_cpu(buf->len); 392 local_buffer = buf->val; 393 394 w_idx = 0; 395 idx = 0; 396 while ((*local_buffer) && (idx < splpar_strlen)) { 397 workbuffer[w_idx++] = local_buffer[idx++]; 398 if ((local_buffer[idx] == ',') 399 || (local_buffer[idx] == '\0')) { 400 workbuffer[w_idx] = '\0'; 401 if (w_idx) { 402 /* avoid the empty string */ 403 seq_printf(m, "%s\n", workbuffer); 404 } 405 memset(workbuffer, 0, SPLPAR_MAXLENGTH); 406 idx++; /* skip the comma */ 407 w_idx = 0; 408 } else if (local_buffer[idx] == '=') { 409 /* code here to replace workbuffer contents 410 with different keyword strings */ 411 if (0 == strcmp(workbuffer, "MaxEntCap")) { 412 strcpy(workbuffer, 413 "partition_max_entitled_capacity"); 414 w_idx = strlen(workbuffer); 415 } 416 if (0 == strcmp(workbuffer, "MaxPlatProcs")) { 417 strcpy(workbuffer, 418 "system_potential_processors"); 419 w_idx = strlen(workbuffer); 420 } 421 } 422 } 423 kfree(workbuffer); 424 local_buffer -= 2; /* back up over strlen value */ 425 } 426 out_free: 427 papr_sysparm_buf_free(buf); 428 } 429 430 /* Return the number of processors in the system. 431 * This function reads through the device tree and counts 432 * the virtual processors, this does not include threads. 433 */ 434 static int lparcfg_count_active_processors(void) 435 { 436 struct device_node *cpus_dn; 437 int count = 0; 438 439 for_each_node_by_type(cpus_dn, "cpu") { 440 #ifdef LPARCFG_DEBUG 441 printk(KERN_ERR "cpus_dn %p\n", cpus_dn); 442 #endif 443 count++; 444 } 445 return count; 446 } 447 448 static void pseries_cmo_data(struct seq_file *m) 449 { 450 int cpu; 451 unsigned long cmo_faults = 0; 452 unsigned long cmo_fault_time = 0; 453 454 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO)); 455 456 if (!firmware_has_feature(FW_FEATURE_CMO)) 457 return; 458 459 for_each_possible_cpu(cpu) { 460 cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults); 461 cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time); 462 } 463 464 seq_printf(m, "cmo_faults=%lu\n", cmo_faults); 465 seq_printf(m, "cmo_fault_time_usec=%lu\n", 466 cmo_fault_time / tb_ticks_per_usec); 467 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp()); 468 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp()); 469 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size()); 470 } 471 472 static void splpar_dispatch_data(struct seq_file *m) 473 { 474 int cpu; 475 unsigned long dispatches = 0; 476 unsigned long dispatch_dispersions = 0; 477 478 for_each_possible_cpu(cpu) { 479 dispatches += be32_to_cpu(lppaca_of(cpu).yield_count); 480 dispatch_dispersions += 481 be32_to_cpu(lppaca_of(cpu).dispersion_count); 482 } 483 484 seq_printf(m, "dispatches=%lu\n", dispatches); 485 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions); 486 } 487 488 static void parse_em_data(struct seq_file *m) 489 { 490 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 491 492 if (firmware_has_feature(FW_FEATURE_LPAR) && 493 plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS) 494 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]); 495 } 496 497 static void maxmem_data(struct seq_file *m) 498 { 499 unsigned long maxmem = 0; 500 501 maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size; 502 maxmem += hugetlb_total_pages() * PAGE_SIZE; 503 504 seq_printf(m, "MaxMem=%lu\n", maxmem); 505 } 506 507 static int pseries_lparcfg_data(struct seq_file *m, void *v) 508 { 509 int partition_potential_processors; 510 int partition_active_processors; 511 struct device_node *rtas_node; 512 const __be32 *lrdrp = NULL; 513 514 rtas_node = of_find_node_by_path("/rtas"); 515 if (rtas_node) 516 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL); 517 518 if (lrdrp == NULL) { 519 partition_potential_processors = vdso_data->processorCount; 520 } else { 521 partition_potential_processors = be32_to_cpup(lrdrp + 4); 522 } 523 of_node_put(rtas_node); 524 525 partition_active_processors = lparcfg_count_active_processors(); 526 527 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 528 /* this call handles the ibm,get-system-parameter contents */ 529 read_lpar_name(m); 530 parse_system_parameter_string(m); 531 parse_ppp_data(m); 532 parse_mpp_data(m); 533 parse_mpp_x_data(m); 534 pseries_cmo_data(m); 535 splpar_dispatch_data(m); 536 537 seq_printf(m, "purr=%ld\n", get_purr()); 538 seq_printf(m, "tbr=%ld\n", mftb()); 539 } else { /* non SPLPAR case */ 540 541 seq_printf(m, "system_active_processors=%d\n", 542 partition_potential_processors); 543 544 seq_printf(m, "system_potential_processors=%d\n", 545 partition_potential_processors); 546 547 seq_printf(m, "partition_max_entitled_capacity=%d\n", 548 partition_potential_processors * 100); 549 550 seq_printf(m, "partition_entitled_capacity=%d\n", 551 partition_active_processors * 100); 552 } 553 554 show_gpci_data(m); 555 556 seq_printf(m, "partition_active_processors=%d\n", 557 partition_active_processors); 558 559 seq_printf(m, "partition_potential_processors=%d\n", 560 partition_potential_processors); 561 562 seq_printf(m, "shared_processor_mode=%d\n", 563 lppaca_shared_proc()); 564 565 #ifdef CONFIG_PPC_64S_HASH_MMU 566 if (!radix_enabled()) 567 seq_printf(m, "slb_size=%d\n", mmu_slb_size); 568 #endif 569 parse_em_data(m); 570 maxmem_data(m); 571 572 seq_printf(m, "security_flavor=%u\n", pseries_security_flavor); 573 574 return 0; 575 } 576 577 static ssize_t update_ppp(u64 *entitlement, u8 *weight) 578 { 579 struct hvcall_ppp_data ppp_data; 580 u8 new_weight; 581 u64 new_entitled; 582 ssize_t retval; 583 584 /* Get our current parameters */ 585 retval = h_get_ppp(&ppp_data); 586 if (retval) 587 return retval; 588 589 if (entitlement) { 590 new_weight = ppp_data.weight; 591 new_entitled = *entitlement; 592 } else if (weight) { 593 new_weight = *weight; 594 new_entitled = ppp_data.entitlement; 595 } else 596 return -EINVAL; 597 598 pr_debug("%s: current_entitled = %llu, current_weight = %u\n", 599 __func__, ppp_data.entitlement, ppp_data.weight); 600 601 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 602 __func__, new_entitled, new_weight); 603 604 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight); 605 return retval; 606 } 607 608 /** 609 * update_mpp 610 * 611 * Update the memory entitlement and weight for the partition. Caller must 612 * specify either a new entitlement or weight, not both, to be updated 613 * since the h_set_mpp call takes both entitlement and weight as parameters. 614 */ 615 static ssize_t update_mpp(u64 *entitlement, u8 *weight) 616 { 617 struct hvcall_mpp_data mpp_data; 618 u64 new_entitled; 619 u8 new_weight; 620 ssize_t rc; 621 622 if (entitlement) { 623 /* Check with vio to ensure the new memory entitlement 624 * can be handled. 625 */ 626 rc = vio_cmo_entitlement_update(*entitlement); 627 if (rc) 628 return rc; 629 } 630 631 rc = h_get_mpp(&mpp_data); 632 if (rc) 633 return rc; 634 635 if (entitlement) { 636 new_weight = mpp_data.mem_weight; 637 new_entitled = *entitlement; 638 } else if (weight) { 639 new_weight = *weight; 640 new_entitled = mpp_data.entitled_mem; 641 } else 642 return -EINVAL; 643 644 pr_debug("%s: current_entitled = %lu, current_weight = %u\n", 645 __func__, mpp_data.entitled_mem, mpp_data.mem_weight); 646 647 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 648 __func__, new_entitled, new_weight); 649 650 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight); 651 return rc; 652 } 653 654 /* 655 * Interface for changing system parameters (variable capacity weight 656 * and entitled capacity). Format of input is "param_name=value"; 657 * anything after value is ignored. Valid parameters at this time are 658 * "partition_entitled_capacity" and "capacity_weight". We use 659 * H_SET_PPP to alter parameters. 660 * 661 * This function should be invoked only on systems with 662 * FW_FEATURE_SPLPAR. 663 */ 664 static ssize_t lparcfg_write(struct file *file, const char __user * buf, 665 size_t count, loff_t * off) 666 { 667 char kbuf[64]; 668 char *tmp; 669 u64 new_entitled, *new_entitled_ptr = &new_entitled; 670 u8 new_weight, *new_weight_ptr = &new_weight; 671 ssize_t retval; 672 673 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 674 return -EINVAL; 675 676 if (count > sizeof(kbuf)) 677 return -EINVAL; 678 679 if (copy_from_user(kbuf, buf, count)) 680 return -EFAULT; 681 682 kbuf[count - 1] = '\0'; 683 tmp = strchr(kbuf, '='); 684 if (!tmp) 685 return -EINVAL; 686 687 *tmp++ = '\0'; 688 689 if (!strcmp(kbuf, "partition_entitled_capacity")) { 690 char *endp; 691 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 692 if (endp == tmp) 693 return -EINVAL; 694 695 retval = update_ppp(new_entitled_ptr, NULL); 696 697 if (retval == H_SUCCESS || retval == H_CONSTRAINED) { 698 /* 699 * The hypervisor assigns VAS resources based 700 * on entitled capacity for shared mode. 701 * Reconfig VAS windows based on DLPAR CPU events. 702 */ 703 if (pseries_vas_dlpar_cpu() != 0) 704 retval = H_HARDWARE; 705 } 706 } else if (!strcmp(kbuf, "capacity_weight")) { 707 char *endp; 708 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 709 if (endp == tmp) 710 return -EINVAL; 711 712 retval = update_ppp(NULL, new_weight_ptr); 713 } else if (!strcmp(kbuf, "entitled_memory")) { 714 char *endp; 715 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 716 if (endp == tmp) 717 return -EINVAL; 718 719 retval = update_mpp(new_entitled_ptr, NULL); 720 } else if (!strcmp(kbuf, "entitled_memory_weight")) { 721 char *endp; 722 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 723 if (endp == tmp) 724 return -EINVAL; 725 726 retval = update_mpp(NULL, new_weight_ptr); 727 } else 728 return -EINVAL; 729 730 if (retval == H_SUCCESS || retval == H_CONSTRAINED) { 731 retval = count; 732 } else if (retval == H_BUSY) { 733 retval = -EBUSY; 734 } else if (retval == H_HARDWARE) { 735 retval = -EIO; 736 } else if (retval == H_PARAMETER) { 737 retval = -EINVAL; 738 } 739 740 return retval; 741 } 742 743 static int lparcfg_data(struct seq_file *m, void *v) 744 { 745 struct device_node *rootdn; 746 const char *model = ""; 747 const char *system_id = ""; 748 const char *tmp; 749 const __be32 *lp_index_ptr; 750 unsigned int lp_index = 0; 751 752 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS); 753 754 rootdn = of_find_node_by_path("/"); 755 if (rootdn) { 756 tmp = of_get_property(rootdn, "model", NULL); 757 if (tmp) 758 model = tmp; 759 tmp = of_get_property(rootdn, "system-id", NULL); 760 if (tmp) 761 system_id = tmp; 762 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no", 763 NULL); 764 if (lp_index_ptr) 765 lp_index = be32_to_cpup(lp_index_ptr); 766 of_node_put(rootdn); 767 } 768 seq_printf(m, "serial_number=%s\n", system_id); 769 seq_printf(m, "system_type=%s\n", model); 770 seq_printf(m, "partition_id=%d\n", (int)lp_index); 771 772 return pseries_lparcfg_data(m, v); 773 } 774 775 static int lparcfg_open(struct inode *inode, struct file *file) 776 { 777 return single_open(file, lparcfg_data, NULL); 778 } 779 780 static const struct proc_ops lparcfg_proc_ops = { 781 .proc_read = seq_read, 782 .proc_write = lparcfg_write, 783 .proc_open = lparcfg_open, 784 .proc_release = single_release, 785 .proc_lseek = seq_lseek, 786 }; 787 788 static int __init lparcfg_init(void) 789 { 790 umode_t mode = 0444; 791 792 /* Allow writing if we have FW_FEATURE_SPLPAR */ 793 if (firmware_has_feature(FW_FEATURE_SPLPAR)) 794 mode |= 0200; 795 796 if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) { 797 printk(KERN_ERR "Failed to create powerpc/lparcfg\n"); 798 return -EIO; 799 } 800 return 0; 801 } 802 machine_device_initcall(pseries, lparcfg_init); 803