1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 LPAR Configuration Information Driver 4 * 5 * Dave Engebretsen engebret@us.ibm.com 6 * Copyright (c) 2003 Dave Engebretsen 7 * Will Schmidt willschm@us.ibm.com 8 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation. 9 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation. 10 * Nathan Lynch nathanl@austin.ibm.com 11 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation. 12 * 13 * This driver creates a proc file at /proc/ppc64/lparcfg which contains 14 * keyword - value pairs that specify the configuration of the partition. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/types.h> 19 #include <linux/errno.h> 20 #include <linux/proc_fs.h> 21 #include <linux/init.h> 22 #include <linux/seq_file.h> 23 #include <linux/slab.h> 24 #include <linux/uaccess.h> 25 #include <linux/hugetlb.h> 26 #include <asm/lppaca.h> 27 #include <asm/hvcall.h> 28 #include <asm/firmware.h> 29 #include <asm/rtas.h> 30 #include <asm/time.h> 31 #include <asm/prom.h> 32 #include <asm/vdso_datapage.h> 33 #include <asm/vio.h> 34 #include <asm/mmu.h> 35 #include <asm/machdep.h> 36 #include <asm/drmem.h> 37 38 #include "pseries.h" 39 40 /* 41 * This isn't a module but we expose that to userspace 42 * via /proc so leave the definitions here 43 */ 44 #define MODULE_VERS "1.9" 45 #define MODULE_NAME "lparcfg" 46 47 /* #define LPARCFG_DEBUG */ 48 49 /* 50 * Track sum of all purrs across all processors. This is used to further 51 * calculate usage values by different applications 52 */ 53 static void cpu_get_purr(void *arg) 54 { 55 atomic64_t *sum = arg; 56 57 atomic64_add(mfspr(SPRN_PURR), sum); 58 } 59 60 static unsigned long get_purr(void) 61 { 62 atomic64_t purr = ATOMIC64_INIT(0); 63 64 on_each_cpu(cpu_get_purr, &purr, 1); 65 66 return atomic64_read(&purr); 67 } 68 69 /* 70 * Methods used to fetch LPAR data when running on a pSeries platform. 71 */ 72 73 struct hvcall_ppp_data { 74 u64 entitlement; 75 u64 unallocated_entitlement; 76 u16 group_num; 77 u16 pool_num; 78 u8 capped; 79 u8 weight; 80 u8 unallocated_weight; 81 u16 active_procs_in_pool; 82 u16 active_system_procs; 83 u16 phys_platform_procs; 84 u32 max_proc_cap_avail; 85 u32 entitled_proc_cap_avail; 86 }; 87 88 /* 89 * H_GET_PPP hcall returns info in 4 parms. 90 * entitled_capacity,unallocated_capacity, 91 * aggregation, resource_capability). 92 * 93 * R4 = Entitled Processor Capacity Percentage. 94 * R5 = Unallocated Processor Capacity Percentage. 95 * R6 (AABBCCDDEEFFGGHH). 96 * XXXX - reserved (0) 97 * XXXX - reserved (0) 98 * XXXX - Group Number 99 * XXXX - Pool Number. 100 * R7 (IIJJKKLLMMNNOOPP). 101 * XX - reserved. (0) 102 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator. 103 * XX - variable processor Capacity Weight 104 * XX - Unallocated Variable Processor Capacity Weight. 105 * XXXX - Active processors in Physical Processor Pool. 106 * XXXX - Processors active on platform. 107 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1 108 * XXXX - Physical platform procs allocated to virtualization. 109 * XXXXXX - Max procs capacity % available to the partitions pool. 110 * XXXXXX - Entitled procs capacity % available to the 111 * partitions pool. 112 */ 113 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data) 114 { 115 unsigned long rc; 116 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 117 118 rc = plpar_hcall9(H_GET_PPP, retbuf); 119 120 ppp_data->entitlement = retbuf[0]; 121 ppp_data->unallocated_entitlement = retbuf[1]; 122 123 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 124 ppp_data->pool_num = retbuf[2] & 0xffff; 125 126 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01; 127 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff; 128 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff; 129 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff; 130 ppp_data->active_system_procs = retbuf[3] & 0xffff; 131 132 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8; 133 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff; 134 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff; 135 136 return rc; 137 } 138 139 static void show_gpci_data(struct seq_file *m) 140 { 141 struct hv_gpci_request_buffer *buf; 142 unsigned int affinity_score; 143 long ret; 144 145 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 146 if (buf == NULL) 147 return; 148 149 /* 150 * Show the local LPAR's affinity score. 151 * 152 * 0xB1 selects the Affinity_Domain_Info_By_Partition subcall. 153 * The score is at byte 0xB in the output buffer. 154 */ 155 memset(&buf->params, 0, sizeof(buf->params)); 156 buf->params.counter_request = cpu_to_be32(0xB1); 157 buf->params.starting_index = cpu_to_be32(-1); /* local LPAR */ 158 buf->params.counter_info_version_in = 0x5; /* v5+ for score */ 159 ret = plpar_hcall_norets(H_GET_PERF_COUNTER_INFO, virt_to_phys(buf), 160 sizeof(*buf)); 161 if (ret != H_SUCCESS) { 162 pr_debug("hcall failed: H_GET_PERF_COUNTER_INFO: %ld, %x\n", 163 ret, be32_to_cpu(buf->params.detail_rc)); 164 goto out; 165 } 166 affinity_score = buf->bytes[0xB]; 167 seq_printf(m, "partition_affinity_score=%u\n", affinity_score); 168 out: 169 kfree(buf); 170 } 171 172 static unsigned h_pic(unsigned long *pool_idle_time, 173 unsigned long *num_procs) 174 { 175 unsigned long rc; 176 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 177 178 rc = plpar_hcall(H_PIC, retbuf); 179 180 *pool_idle_time = retbuf[0]; 181 *num_procs = retbuf[1]; 182 183 return rc; 184 } 185 186 /* 187 * parse_ppp_data 188 * Parse out the data returned from h_get_ppp and h_pic 189 */ 190 static void parse_ppp_data(struct seq_file *m) 191 { 192 struct hvcall_ppp_data ppp_data; 193 struct device_node *root; 194 const __be32 *perf_level; 195 int rc; 196 197 rc = h_get_ppp(&ppp_data); 198 if (rc) 199 return; 200 201 seq_printf(m, "partition_entitled_capacity=%lld\n", 202 ppp_data.entitlement); 203 seq_printf(m, "group=%d\n", ppp_data.group_num); 204 seq_printf(m, "system_active_processors=%d\n", 205 ppp_data.active_system_procs); 206 207 /* pool related entries are appropriate for shared configs */ 208 if (lppaca_shared_proc(get_lppaca())) { 209 unsigned long pool_idle_time, pool_procs; 210 211 seq_printf(m, "pool=%d\n", ppp_data.pool_num); 212 213 /* report pool_capacity in percentage */ 214 seq_printf(m, "pool_capacity=%d\n", 215 ppp_data.active_procs_in_pool * 100); 216 217 h_pic(&pool_idle_time, &pool_procs); 218 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time); 219 seq_printf(m, "pool_num_procs=%ld\n", pool_procs); 220 } 221 222 seq_printf(m, "unallocated_capacity_weight=%d\n", 223 ppp_data.unallocated_weight); 224 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight); 225 seq_printf(m, "capped=%d\n", ppp_data.capped); 226 seq_printf(m, "unallocated_capacity=%lld\n", 227 ppp_data.unallocated_entitlement); 228 229 /* The last bits of information returned from h_get_ppp are only 230 * valid if the ibm,partition-performance-parameters-level 231 * property is >= 1. 232 */ 233 root = of_find_node_by_path("/"); 234 if (root) { 235 perf_level = of_get_property(root, 236 "ibm,partition-performance-parameters-level", 237 NULL); 238 if (perf_level && (be32_to_cpup(perf_level) >= 1)) { 239 seq_printf(m, 240 "physical_procs_allocated_to_virtualization=%d\n", 241 ppp_data.phys_platform_procs); 242 seq_printf(m, "max_proc_capacity_available=%d\n", 243 ppp_data.max_proc_cap_avail); 244 seq_printf(m, "entitled_proc_capacity_available=%d\n", 245 ppp_data.entitled_proc_cap_avail); 246 } 247 248 of_node_put(root); 249 } 250 } 251 252 /** 253 * parse_mpp_data 254 * Parse out data returned from h_get_mpp 255 */ 256 static void parse_mpp_data(struct seq_file *m) 257 { 258 struct hvcall_mpp_data mpp_data; 259 int rc; 260 261 rc = h_get_mpp(&mpp_data); 262 if (rc) 263 return; 264 265 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem); 266 267 if (mpp_data.mapped_mem != -1) 268 seq_printf(m, "mapped_entitled_memory=%ld\n", 269 mpp_data.mapped_mem); 270 271 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num); 272 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num); 273 274 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight); 275 seq_printf(m, "unallocated_entitled_memory_weight=%d\n", 276 mpp_data.unallocated_mem_weight); 277 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n", 278 mpp_data.unallocated_entitlement); 279 280 if (mpp_data.pool_size != -1) 281 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n", 282 mpp_data.pool_size); 283 284 seq_printf(m, "entitled_memory_loan_request=%ld\n", 285 mpp_data.loan_request); 286 287 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem); 288 } 289 290 /** 291 * parse_mpp_x_data 292 * Parse out data returned from h_get_mpp_x 293 */ 294 static void parse_mpp_x_data(struct seq_file *m) 295 { 296 struct hvcall_mpp_x_data mpp_x_data; 297 298 if (!firmware_has_feature(FW_FEATURE_XCMO)) 299 return; 300 if (h_get_mpp_x(&mpp_x_data)) 301 return; 302 303 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes); 304 305 if (mpp_x_data.pool_coalesced_bytes) 306 seq_printf(m, "pool_coalesced_bytes=%ld\n", 307 mpp_x_data.pool_coalesced_bytes); 308 if (mpp_x_data.pool_purr_cycles) 309 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles); 310 if (mpp_x_data.pool_spurr_cycles) 311 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles); 312 } 313 314 #define SPLPAR_CHARACTERISTICS_TOKEN 20 315 #define SPLPAR_MAXLENGTH 1026*(sizeof(char)) 316 317 /* 318 * parse_system_parameter_string() 319 * Retrieve the potential_processors, max_entitled_capacity and friends 320 * through the get-system-parameter rtas call. Replace keyword strings as 321 * necessary. 322 */ 323 static void parse_system_parameter_string(struct seq_file *m) 324 { 325 int call_status; 326 327 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); 328 if (!local_buffer) { 329 printk(KERN_ERR "%s %s kmalloc failure at line %d\n", 330 __FILE__, __func__, __LINE__); 331 return; 332 } 333 334 spin_lock(&rtas_data_buf_lock); 335 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH); 336 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 337 NULL, 338 SPLPAR_CHARACTERISTICS_TOKEN, 339 __pa(rtas_data_buf), 340 RTAS_DATA_BUF_SIZE); 341 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH); 342 local_buffer[SPLPAR_MAXLENGTH - 1] = '\0'; 343 spin_unlock(&rtas_data_buf_lock); 344 345 if (call_status != 0) { 346 printk(KERN_INFO 347 "%s %s Error calling get-system-parameter (0x%x)\n", 348 __FILE__, __func__, call_status); 349 } else { 350 int splpar_strlen; 351 int idx, w_idx; 352 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); 353 if (!workbuffer) { 354 printk(KERN_ERR "%s %s kmalloc failure at line %d\n", 355 __FILE__, __func__, __LINE__); 356 kfree(local_buffer); 357 return; 358 } 359 #ifdef LPARCFG_DEBUG 360 printk(KERN_INFO "success calling get-system-parameter\n"); 361 #endif 362 splpar_strlen = local_buffer[0] * 256 + local_buffer[1]; 363 local_buffer += 2; /* step over strlen value */ 364 365 w_idx = 0; 366 idx = 0; 367 while ((*local_buffer) && (idx < splpar_strlen)) { 368 workbuffer[w_idx++] = local_buffer[idx++]; 369 if ((local_buffer[idx] == ',') 370 || (local_buffer[idx] == '\0')) { 371 workbuffer[w_idx] = '\0'; 372 if (w_idx) { 373 /* avoid the empty string */ 374 seq_printf(m, "%s\n", workbuffer); 375 } 376 memset(workbuffer, 0, SPLPAR_MAXLENGTH); 377 idx++; /* skip the comma */ 378 w_idx = 0; 379 } else if (local_buffer[idx] == '=') { 380 /* code here to replace workbuffer contents 381 with different keyword strings */ 382 if (0 == strcmp(workbuffer, "MaxEntCap")) { 383 strcpy(workbuffer, 384 "partition_max_entitled_capacity"); 385 w_idx = strlen(workbuffer); 386 } 387 if (0 == strcmp(workbuffer, "MaxPlatProcs")) { 388 strcpy(workbuffer, 389 "system_potential_processors"); 390 w_idx = strlen(workbuffer); 391 } 392 } 393 } 394 kfree(workbuffer); 395 local_buffer -= 2; /* back up over strlen value */ 396 } 397 kfree(local_buffer); 398 } 399 400 /* Return the number of processors in the system. 401 * This function reads through the device tree and counts 402 * the virtual processors, this does not include threads. 403 */ 404 static int lparcfg_count_active_processors(void) 405 { 406 struct device_node *cpus_dn; 407 int count = 0; 408 409 for_each_node_by_type(cpus_dn, "cpu") { 410 #ifdef LPARCFG_DEBUG 411 printk(KERN_ERR "cpus_dn %p\n", cpus_dn); 412 #endif 413 count++; 414 } 415 return count; 416 } 417 418 static void pseries_cmo_data(struct seq_file *m) 419 { 420 int cpu; 421 unsigned long cmo_faults = 0; 422 unsigned long cmo_fault_time = 0; 423 424 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO)); 425 426 if (!firmware_has_feature(FW_FEATURE_CMO)) 427 return; 428 429 for_each_possible_cpu(cpu) { 430 cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults); 431 cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time); 432 } 433 434 seq_printf(m, "cmo_faults=%lu\n", cmo_faults); 435 seq_printf(m, "cmo_fault_time_usec=%lu\n", 436 cmo_fault_time / tb_ticks_per_usec); 437 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp()); 438 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp()); 439 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size()); 440 } 441 442 static void splpar_dispatch_data(struct seq_file *m) 443 { 444 int cpu; 445 unsigned long dispatches = 0; 446 unsigned long dispatch_dispersions = 0; 447 448 for_each_possible_cpu(cpu) { 449 dispatches += be32_to_cpu(lppaca_of(cpu).yield_count); 450 dispatch_dispersions += 451 be32_to_cpu(lppaca_of(cpu).dispersion_count); 452 } 453 454 seq_printf(m, "dispatches=%lu\n", dispatches); 455 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions); 456 } 457 458 static void parse_em_data(struct seq_file *m) 459 { 460 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 461 462 if (firmware_has_feature(FW_FEATURE_LPAR) && 463 plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS) 464 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]); 465 } 466 467 static void maxmem_data(struct seq_file *m) 468 { 469 unsigned long maxmem = 0; 470 471 maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size; 472 maxmem += hugetlb_total_pages() * PAGE_SIZE; 473 474 seq_printf(m, "MaxMem=%lu\n", maxmem); 475 } 476 477 static int pseries_lparcfg_data(struct seq_file *m, void *v) 478 { 479 int partition_potential_processors; 480 int partition_active_processors; 481 struct device_node *rtas_node; 482 const __be32 *lrdrp = NULL; 483 484 rtas_node = of_find_node_by_path("/rtas"); 485 if (rtas_node) 486 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL); 487 488 if (lrdrp == NULL) { 489 partition_potential_processors = vdso_data->processorCount; 490 } else { 491 partition_potential_processors = be32_to_cpup(lrdrp + 4); 492 } 493 of_node_put(rtas_node); 494 495 partition_active_processors = lparcfg_count_active_processors(); 496 497 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 498 /* this call handles the ibm,get-system-parameter contents */ 499 parse_system_parameter_string(m); 500 parse_ppp_data(m); 501 parse_mpp_data(m); 502 parse_mpp_x_data(m); 503 pseries_cmo_data(m); 504 splpar_dispatch_data(m); 505 506 seq_printf(m, "purr=%ld\n", get_purr()); 507 seq_printf(m, "tbr=%ld\n", mftb()); 508 } else { /* non SPLPAR case */ 509 510 seq_printf(m, "system_active_processors=%d\n", 511 partition_potential_processors); 512 513 seq_printf(m, "system_potential_processors=%d\n", 514 partition_potential_processors); 515 516 seq_printf(m, "partition_max_entitled_capacity=%d\n", 517 partition_potential_processors * 100); 518 519 seq_printf(m, "partition_entitled_capacity=%d\n", 520 partition_active_processors * 100); 521 } 522 523 show_gpci_data(m); 524 525 seq_printf(m, "partition_active_processors=%d\n", 526 partition_active_processors); 527 528 seq_printf(m, "partition_potential_processors=%d\n", 529 partition_potential_processors); 530 531 seq_printf(m, "shared_processor_mode=%d\n", 532 lppaca_shared_proc(get_lppaca())); 533 534 #ifdef CONFIG_PPC_BOOK3S_64 535 seq_printf(m, "slb_size=%d\n", mmu_slb_size); 536 #endif 537 parse_em_data(m); 538 maxmem_data(m); 539 540 seq_printf(m, "security_flavor=%u\n", pseries_security_flavor); 541 542 return 0; 543 } 544 545 static ssize_t update_ppp(u64 *entitlement, u8 *weight) 546 { 547 struct hvcall_ppp_data ppp_data; 548 u8 new_weight; 549 u64 new_entitled; 550 ssize_t retval; 551 552 /* Get our current parameters */ 553 retval = h_get_ppp(&ppp_data); 554 if (retval) 555 return retval; 556 557 if (entitlement) { 558 new_weight = ppp_data.weight; 559 new_entitled = *entitlement; 560 } else if (weight) { 561 new_weight = *weight; 562 new_entitled = ppp_data.entitlement; 563 } else 564 return -EINVAL; 565 566 pr_debug("%s: current_entitled = %llu, current_weight = %u\n", 567 __func__, ppp_data.entitlement, ppp_data.weight); 568 569 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 570 __func__, new_entitled, new_weight); 571 572 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight); 573 return retval; 574 } 575 576 /** 577 * update_mpp 578 * 579 * Update the memory entitlement and weight for the partition. Caller must 580 * specify either a new entitlement or weight, not both, to be updated 581 * since the h_set_mpp call takes both entitlement and weight as parameters. 582 */ 583 static ssize_t update_mpp(u64 *entitlement, u8 *weight) 584 { 585 struct hvcall_mpp_data mpp_data; 586 u64 new_entitled; 587 u8 new_weight; 588 ssize_t rc; 589 590 if (entitlement) { 591 /* Check with vio to ensure the new memory entitlement 592 * can be handled. 593 */ 594 rc = vio_cmo_entitlement_update(*entitlement); 595 if (rc) 596 return rc; 597 } 598 599 rc = h_get_mpp(&mpp_data); 600 if (rc) 601 return rc; 602 603 if (entitlement) { 604 new_weight = mpp_data.mem_weight; 605 new_entitled = *entitlement; 606 } else if (weight) { 607 new_weight = *weight; 608 new_entitled = mpp_data.entitled_mem; 609 } else 610 return -EINVAL; 611 612 pr_debug("%s: current_entitled = %lu, current_weight = %u\n", 613 __func__, mpp_data.entitled_mem, mpp_data.mem_weight); 614 615 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 616 __func__, new_entitled, new_weight); 617 618 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight); 619 return rc; 620 } 621 622 /* 623 * Interface for changing system parameters (variable capacity weight 624 * and entitled capacity). Format of input is "param_name=value"; 625 * anything after value is ignored. Valid parameters at this time are 626 * "partition_entitled_capacity" and "capacity_weight". We use 627 * H_SET_PPP to alter parameters. 628 * 629 * This function should be invoked only on systems with 630 * FW_FEATURE_SPLPAR. 631 */ 632 static ssize_t lparcfg_write(struct file *file, const char __user * buf, 633 size_t count, loff_t * off) 634 { 635 char kbuf[64]; 636 char *tmp; 637 u64 new_entitled, *new_entitled_ptr = &new_entitled; 638 u8 new_weight, *new_weight_ptr = &new_weight; 639 ssize_t retval; 640 641 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 642 return -EINVAL; 643 644 if (count > sizeof(kbuf)) 645 return -EINVAL; 646 647 if (copy_from_user(kbuf, buf, count)) 648 return -EFAULT; 649 650 kbuf[count - 1] = '\0'; 651 tmp = strchr(kbuf, '='); 652 if (!tmp) 653 return -EINVAL; 654 655 *tmp++ = '\0'; 656 657 if (!strcmp(kbuf, "partition_entitled_capacity")) { 658 char *endp; 659 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 660 if (endp == tmp) 661 return -EINVAL; 662 663 retval = update_ppp(new_entitled_ptr, NULL); 664 } else if (!strcmp(kbuf, "capacity_weight")) { 665 char *endp; 666 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 667 if (endp == tmp) 668 return -EINVAL; 669 670 retval = update_ppp(NULL, new_weight_ptr); 671 } else if (!strcmp(kbuf, "entitled_memory")) { 672 char *endp; 673 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 674 if (endp == tmp) 675 return -EINVAL; 676 677 retval = update_mpp(new_entitled_ptr, NULL); 678 } else if (!strcmp(kbuf, "entitled_memory_weight")) { 679 char *endp; 680 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 681 if (endp == tmp) 682 return -EINVAL; 683 684 retval = update_mpp(NULL, new_weight_ptr); 685 } else 686 return -EINVAL; 687 688 if (retval == H_SUCCESS || retval == H_CONSTRAINED) { 689 retval = count; 690 } else if (retval == H_BUSY) { 691 retval = -EBUSY; 692 } else if (retval == H_HARDWARE) { 693 retval = -EIO; 694 } else if (retval == H_PARAMETER) { 695 retval = -EINVAL; 696 } 697 698 return retval; 699 } 700 701 static int lparcfg_data(struct seq_file *m, void *v) 702 { 703 struct device_node *rootdn; 704 const char *model = ""; 705 const char *system_id = ""; 706 const char *tmp; 707 const __be32 *lp_index_ptr; 708 unsigned int lp_index = 0; 709 710 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS); 711 712 rootdn = of_find_node_by_path("/"); 713 if (rootdn) { 714 tmp = of_get_property(rootdn, "model", NULL); 715 if (tmp) 716 model = tmp; 717 tmp = of_get_property(rootdn, "system-id", NULL); 718 if (tmp) 719 system_id = tmp; 720 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no", 721 NULL); 722 if (lp_index_ptr) 723 lp_index = be32_to_cpup(lp_index_ptr); 724 of_node_put(rootdn); 725 } 726 seq_printf(m, "serial_number=%s\n", system_id); 727 seq_printf(m, "system_type=%s\n", model); 728 seq_printf(m, "partition_id=%d\n", (int)lp_index); 729 730 return pseries_lparcfg_data(m, v); 731 } 732 733 static int lparcfg_open(struct inode *inode, struct file *file) 734 { 735 return single_open(file, lparcfg_data, NULL); 736 } 737 738 static const struct proc_ops lparcfg_proc_ops = { 739 .proc_read = seq_read, 740 .proc_write = lparcfg_write, 741 .proc_open = lparcfg_open, 742 .proc_release = single_release, 743 .proc_lseek = seq_lseek, 744 }; 745 746 static int __init lparcfg_init(void) 747 { 748 umode_t mode = 0444; 749 750 /* Allow writing if we have FW_FEATURE_SPLPAR */ 751 if (firmware_has_feature(FW_FEATURE_SPLPAR)) 752 mode |= 0200; 753 754 if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) { 755 printk(KERN_ERR "Failed to create powerpc/lparcfg\n"); 756 return -EIO; 757 } 758 return 0; 759 } 760 machine_device_initcall(pseries, lparcfg_init); 761