1 /* 2 * PowerPC64 LPAR Configuration Information Driver 3 * 4 * Dave Engebretsen engebret@us.ibm.com 5 * Copyright (c) 2003 Dave Engebretsen 6 * Will Schmidt willschm@us.ibm.com 7 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation. 8 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation. 9 * Nathan Lynch nathanl@austin.ibm.com 10 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation. 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 * 17 * This driver creates a proc file at /proc/ppc64/lparcfg which contains 18 * keyword - value pairs that specify the configuration of the partition. 19 */ 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/errno.h> 24 #include <linux/proc_fs.h> 25 #include <linux/init.h> 26 #include <linux/seq_file.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/hugetlb.h> 30 #include <asm/lppaca.h> 31 #include <asm/hvcall.h> 32 #include <asm/firmware.h> 33 #include <asm/rtas.h> 34 #include <asm/time.h> 35 #include <asm/prom.h> 36 #include <asm/vdso_datapage.h> 37 #include <asm/vio.h> 38 #include <asm/mmu.h> 39 #include <asm/machdep.h> 40 #include <asm/drmem.h> 41 42 #include "pseries.h" 43 44 /* 45 * This isn't a module but we expose that to userspace 46 * via /proc so leave the definitions here 47 */ 48 #define MODULE_VERS "1.9" 49 #define MODULE_NAME "lparcfg" 50 51 /* #define LPARCFG_DEBUG */ 52 53 /* 54 * Track sum of all purrs across all processors. This is used to further 55 * calculate usage values by different applications 56 */ 57 static void cpu_get_purr(void *arg) 58 { 59 atomic64_t *sum = arg; 60 61 atomic64_add(mfspr(SPRN_PURR), sum); 62 } 63 64 static unsigned long get_purr(void) 65 { 66 atomic64_t purr = ATOMIC64_INIT(0); 67 68 on_each_cpu(cpu_get_purr, &purr, 1); 69 70 return atomic64_read(&purr); 71 } 72 73 /* 74 * Methods used to fetch LPAR data when running on a pSeries platform. 75 */ 76 77 struct hvcall_ppp_data { 78 u64 entitlement; 79 u64 unallocated_entitlement; 80 u16 group_num; 81 u16 pool_num; 82 u8 capped; 83 u8 weight; 84 u8 unallocated_weight; 85 u16 active_procs_in_pool; 86 u16 active_system_procs; 87 u16 phys_platform_procs; 88 u32 max_proc_cap_avail; 89 u32 entitled_proc_cap_avail; 90 }; 91 92 /* 93 * H_GET_PPP hcall returns info in 4 parms. 94 * entitled_capacity,unallocated_capacity, 95 * aggregation, resource_capability). 96 * 97 * R4 = Entitled Processor Capacity Percentage. 98 * R5 = Unallocated Processor Capacity Percentage. 99 * R6 (AABBCCDDEEFFGGHH). 100 * XXXX - reserved (0) 101 * XXXX - reserved (0) 102 * XXXX - Group Number 103 * XXXX - Pool Number. 104 * R7 (IIJJKKLLMMNNOOPP). 105 * XX - reserved. (0) 106 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator. 107 * XX - variable processor Capacity Weight 108 * XX - Unallocated Variable Processor Capacity Weight. 109 * XXXX - Active processors in Physical Processor Pool. 110 * XXXX - Processors active on platform. 111 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1 112 * XXXX - Physical platform procs allocated to virtualization. 113 * XXXXXX - Max procs capacity % available to the partitions pool. 114 * XXXXXX - Entitled procs capacity % available to the 115 * partitions pool. 116 */ 117 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data) 118 { 119 unsigned long rc; 120 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 121 122 rc = plpar_hcall9(H_GET_PPP, retbuf); 123 124 ppp_data->entitlement = retbuf[0]; 125 ppp_data->unallocated_entitlement = retbuf[1]; 126 127 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 128 ppp_data->pool_num = retbuf[2] & 0xffff; 129 130 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01; 131 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff; 132 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff; 133 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff; 134 ppp_data->active_system_procs = retbuf[3] & 0xffff; 135 136 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8; 137 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff; 138 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff; 139 140 return rc; 141 } 142 143 static unsigned h_pic(unsigned long *pool_idle_time, 144 unsigned long *num_procs) 145 { 146 unsigned long rc; 147 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 148 149 rc = plpar_hcall(H_PIC, retbuf); 150 151 *pool_idle_time = retbuf[0]; 152 *num_procs = retbuf[1]; 153 154 return rc; 155 } 156 157 /* 158 * parse_ppp_data 159 * Parse out the data returned from h_get_ppp and h_pic 160 */ 161 static void parse_ppp_data(struct seq_file *m) 162 { 163 struct hvcall_ppp_data ppp_data; 164 struct device_node *root; 165 const __be32 *perf_level; 166 int rc; 167 168 rc = h_get_ppp(&ppp_data); 169 if (rc) 170 return; 171 172 seq_printf(m, "partition_entitled_capacity=%lld\n", 173 ppp_data.entitlement); 174 seq_printf(m, "group=%d\n", ppp_data.group_num); 175 seq_printf(m, "system_active_processors=%d\n", 176 ppp_data.active_system_procs); 177 178 /* pool related entries are appropriate for shared configs */ 179 if (lppaca_shared_proc(get_lppaca())) { 180 unsigned long pool_idle_time, pool_procs; 181 182 seq_printf(m, "pool=%d\n", ppp_data.pool_num); 183 184 /* report pool_capacity in percentage */ 185 seq_printf(m, "pool_capacity=%d\n", 186 ppp_data.active_procs_in_pool * 100); 187 188 h_pic(&pool_idle_time, &pool_procs); 189 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time); 190 seq_printf(m, "pool_num_procs=%ld\n", pool_procs); 191 } 192 193 seq_printf(m, "unallocated_capacity_weight=%d\n", 194 ppp_data.unallocated_weight); 195 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight); 196 seq_printf(m, "capped=%d\n", ppp_data.capped); 197 seq_printf(m, "unallocated_capacity=%lld\n", 198 ppp_data.unallocated_entitlement); 199 200 /* The last bits of information returned from h_get_ppp are only 201 * valid if the ibm,partition-performance-parameters-level 202 * property is >= 1. 203 */ 204 root = of_find_node_by_path("/"); 205 if (root) { 206 perf_level = of_get_property(root, 207 "ibm,partition-performance-parameters-level", 208 NULL); 209 if (perf_level && (be32_to_cpup(perf_level) >= 1)) { 210 seq_printf(m, 211 "physical_procs_allocated_to_virtualization=%d\n", 212 ppp_data.phys_platform_procs); 213 seq_printf(m, "max_proc_capacity_available=%d\n", 214 ppp_data.max_proc_cap_avail); 215 seq_printf(m, "entitled_proc_capacity_available=%d\n", 216 ppp_data.entitled_proc_cap_avail); 217 } 218 219 of_node_put(root); 220 } 221 } 222 223 /** 224 * parse_mpp_data 225 * Parse out data returned from h_get_mpp 226 */ 227 static void parse_mpp_data(struct seq_file *m) 228 { 229 struct hvcall_mpp_data mpp_data; 230 int rc; 231 232 rc = h_get_mpp(&mpp_data); 233 if (rc) 234 return; 235 236 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem); 237 238 if (mpp_data.mapped_mem != -1) 239 seq_printf(m, "mapped_entitled_memory=%ld\n", 240 mpp_data.mapped_mem); 241 242 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num); 243 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num); 244 245 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight); 246 seq_printf(m, "unallocated_entitled_memory_weight=%d\n", 247 mpp_data.unallocated_mem_weight); 248 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n", 249 mpp_data.unallocated_entitlement); 250 251 if (mpp_data.pool_size != -1) 252 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n", 253 mpp_data.pool_size); 254 255 seq_printf(m, "entitled_memory_loan_request=%ld\n", 256 mpp_data.loan_request); 257 258 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem); 259 } 260 261 /** 262 * parse_mpp_x_data 263 * Parse out data returned from h_get_mpp_x 264 */ 265 static void parse_mpp_x_data(struct seq_file *m) 266 { 267 struct hvcall_mpp_x_data mpp_x_data; 268 269 if (!firmware_has_feature(FW_FEATURE_XCMO)) 270 return; 271 if (h_get_mpp_x(&mpp_x_data)) 272 return; 273 274 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes); 275 276 if (mpp_x_data.pool_coalesced_bytes) 277 seq_printf(m, "pool_coalesced_bytes=%ld\n", 278 mpp_x_data.pool_coalesced_bytes); 279 if (mpp_x_data.pool_purr_cycles) 280 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles); 281 if (mpp_x_data.pool_spurr_cycles) 282 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles); 283 } 284 285 #define SPLPAR_CHARACTERISTICS_TOKEN 20 286 #define SPLPAR_MAXLENGTH 1026*(sizeof(char)) 287 288 /* 289 * parse_system_parameter_string() 290 * Retrieve the potential_processors, max_entitled_capacity and friends 291 * through the get-system-parameter rtas call. Replace keyword strings as 292 * necessary. 293 */ 294 static void parse_system_parameter_string(struct seq_file *m) 295 { 296 int call_status; 297 298 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); 299 if (!local_buffer) { 300 printk(KERN_ERR "%s %s kmalloc failure at line %d\n", 301 __FILE__, __func__, __LINE__); 302 return; 303 } 304 305 spin_lock(&rtas_data_buf_lock); 306 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH); 307 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 308 NULL, 309 SPLPAR_CHARACTERISTICS_TOKEN, 310 __pa(rtas_data_buf), 311 RTAS_DATA_BUF_SIZE); 312 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH); 313 local_buffer[SPLPAR_MAXLENGTH - 1] = '\0'; 314 spin_unlock(&rtas_data_buf_lock); 315 316 if (call_status != 0) { 317 printk(KERN_INFO 318 "%s %s Error calling get-system-parameter (0x%x)\n", 319 __FILE__, __func__, call_status); 320 } else { 321 int splpar_strlen; 322 int idx, w_idx; 323 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); 324 if (!workbuffer) { 325 printk(KERN_ERR "%s %s kmalloc failure at line %d\n", 326 __FILE__, __func__, __LINE__); 327 kfree(local_buffer); 328 return; 329 } 330 #ifdef LPARCFG_DEBUG 331 printk(KERN_INFO "success calling get-system-parameter\n"); 332 #endif 333 splpar_strlen = local_buffer[0] * 256 + local_buffer[1]; 334 local_buffer += 2; /* step over strlen value */ 335 336 w_idx = 0; 337 idx = 0; 338 while ((*local_buffer) && (idx < splpar_strlen)) { 339 workbuffer[w_idx++] = local_buffer[idx++]; 340 if ((local_buffer[idx] == ',') 341 || (local_buffer[idx] == '\0')) { 342 workbuffer[w_idx] = '\0'; 343 if (w_idx) { 344 /* avoid the empty string */ 345 seq_printf(m, "%s\n", workbuffer); 346 } 347 memset(workbuffer, 0, SPLPAR_MAXLENGTH); 348 idx++; /* skip the comma */ 349 w_idx = 0; 350 } else if (local_buffer[idx] == '=') { 351 /* code here to replace workbuffer contents 352 with different keyword strings */ 353 if (0 == strcmp(workbuffer, "MaxEntCap")) { 354 strcpy(workbuffer, 355 "partition_max_entitled_capacity"); 356 w_idx = strlen(workbuffer); 357 } 358 if (0 == strcmp(workbuffer, "MaxPlatProcs")) { 359 strcpy(workbuffer, 360 "system_potential_processors"); 361 w_idx = strlen(workbuffer); 362 } 363 } 364 } 365 kfree(workbuffer); 366 local_buffer -= 2; /* back up over strlen value */ 367 } 368 kfree(local_buffer); 369 } 370 371 /* Return the number of processors in the system. 372 * This function reads through the device tree and counts 373 * the virtual processors, this does not include threads. 374 */ 375 static int lparcfg_count_active_processors(void) 376 { 377 struct device_node *cpus_dn; 378 int count = 0; 379 380 for_each_node_by_type(cpus_dn, "cpu") { 381 #ifdef LPARCFG_DEBUG 382 printk(KERN_ERR "cpus_dn %p\n", cpus_dn); 383 #endif 384 count++; 385 } 386 return count; 387 } 388 389 static void pseries_cmo_data(struct seq_file *m) 390 { 391 int cpu; 392 unsigned long cmo_faults = 0; 393 unsigned long cmo_fault_time = 0; 394 395 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO)); 396 397 if (!firmware_has_feature(FW_FEATURE_CMO)) 398 return; 399 400 for_each_possible_cpu(cpu) { 401 cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults); 402 cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time); 403 } 404 405 seq_printf(m, "cmo_faults=%lu\n", cmo_faults); 406 seq_printf(m, "cmo_fault_time_usec=%lu\n", 407 cmo_fault_time / tb_ticks_per_usec); 408 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp()); 409 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp()); 410 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size()); 411 } 412 413 static void splpar_dispatch_data(struct seq_file *m) 414 { 415 int cpu; 416 unsigned long dispatches = 0; 417 unsigned long dispatch_dispersions = 0; 418 419 for_each_possible_cpu(cpu) { 420 dispatches += be32_to_cpu(lppaca_of(cpu).yield_count); 421 dispatch_dispersions += 422 be32_to_cpu(lppaca_of(cpu).dispersion_count); 423 } 424 425 seq_printf(m, "dispatches=%lu\n", dispatches); 426 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions); 427 } 428 429 static void parse_em_data(struct seq_file *m) 430 { 431 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 432 433 if (firmware_has_feature(FW_FEATURE_LPAR) && 434 plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS) 435 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]); 436 } 437 438 static void maxmem_data(struct seq_file *m) 439 { 440 unsigned long maxmem = 0; 441 442 maxmem += drmem_info->n_lmbs * drmem_info->lmb_size; 443 maxmem += hugetlb_total_pages() * PAGE_SIZE; 444 445 seq_printf(m, "MaxMem=%ld\n", maxmem); 446 } 447 448 static int pseries_lparcfg_data(struct seq_file *m, void *v) 449 { 450 int partition_potential_processors; 451 int partition_active_processors; 452 struct device_node *rtas_node; 453 const __be32 *lrdrp = NULL; 454 455 rtas_node = of_find_node_by_path("/rtas"); 456 if (rtas_node) 457 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL); 458 459 if (lrdrp == NULL) { 460 partition_potential_processors = vdso_data->processorCount; 461 } else { 462 partition_potential_processors = be32_to_cpup(lrdrp + 4); 463 } 464 of_node_put(rtas_node); 465 466 partition_active_processors = lparcfg_count_active_processors(); 467 468 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 469 /* this call handles the ibm,get-system-parameter contents */ 470 parse_system_parameter_string(m); 471 parse_ppp_data(m); 472 parse_mpp_data(m); 473 parse_mpp_x_data(m); 474 pseries_cmo_data(m); 475 splpar_dispatch_data(m); 476 477 seq_printf(m, "purr=%ld\n", get_purr()); 478 } else { /* non SPLPAR case */ 479 480 seq_printf(m, "system_active_processors=%d\n", 481 partition_potential_processors); 482 483 seq_printf(m, "system_potential_processors=%d\n", 484 partition_potential_processors); 485 486 seq_printf(m, "partition_max_entitled_capacity=%d\n", 487 partition_potential_processors * 100); 488 489 seq_printf(m, "partition_entitled_capacity=%d\n", 490 partition_active_processors * 100); 491 } 492 493 seq_printf(m, "partition_active_processors=%d\n", 494 partition_active_processors); 495 496 seq_printf(m, "partition_potential_processors=%d\n", 497 partition_potential_processors); 498 499 seq_printf(m, "shared_processor_mode=%d\n", 500 lppaca_shared_proc(get_lppaca())); 501 502 #ifdef CONFIG_PPC_BOOK3S_64 503 seq_printf(m, "slb_size=%d\n", mmu_slb_size); 504 #endif 505 parse_em_data(m); 506 maxmem_data(m); 507 508 return 0; 509 } 510 511 static ssize_t update_ppp(u64 *entitlement, u8 *weight) 512 { 513 struct hvcall_ppp_data ppp_data; 514 u8 new_weight; 515 u64 new_entitled; 516 ssize_t retval; 517 518 /* Get our current parameters */ 519 retval = h_get_ppp(&ppp_data); 520 if (retval) 521 return retval; 522 523 if (entitlement) { 524 new_weight = ppp_data.weight; 525 new_entitled = *entitlement; 526 } else if (weight) { 527 new_weight = *weight; 528 new_entitled = ppp_data.entitlement; 529 } else 530 return -EINVAL; 531 532 pr_debug("%s: current_entitled = %llu, current_weight = %u\n", 533 __func__, ppp_data.entitlement, ppp_data.weight); 534 535 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 536 __func__, new_entitled, new_weight); 537 538 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight); 539 return retval; 540 } 541 542 /** 543 * update_mpp 544 * 545 * Update the memory entitlement and weight for the partition. Caller must 546 * specify either a new entitlement or weight, not both, to be updated 547 * since the h_set_mpp call takes both entitlement and weight as parameters. 548 */ 549 static ssize_t update_mpp(u64 *entitlement, u8 *weight) 550 { 551 struct hvcall_mpp_data mpp_data; 552 u64 new_entitled; 553 u8 new_weight; 554 ssize_t rc; 555 556 if (entitlement) { 557 /* Check with vio to ensure the new memory entitlement 558 * can be handled. 559 */ 560 rc = vio_cmo_entitlement_update(*entitlement); 561 if (rc) 562 return rc; 563 } 564 565 rc = h_get_mpp(&mpp_data); 566 if (rc) 567 return rc; 568 569 if (entitlement) { 570 new_weight = mpp_data.mem_weight; 571 new_entitled = *entitlement; 572 } else if (weight) { 573 new_weight = *weight; 574 new_entitled = mpp_data.entitled_mem; 575 } else 576 return -EINVAL; 577 578 pr_debug("%s: current_entitled = %lu, current_weight = %u\n", 579 __func__, mpp_data.entitled_mem, mpp_data.mem_weight); 580 581 pr_debug("%s: new_entitled = %llu, new_weight = %u\n", 582 __func__, new_entitled, new_weight); 583 584 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight); 585 return rc; 586 } 587 588 /* 589 * Interface for changing system parameters (variable capacity weight 590 * and entitled capacity). Format of input is "param_name=value"; 591 * anything after value is ignored. Valid parameters at this time are 592 * "partition_entitled_capacity" and "capacity_weight". We use 593 * H_SET_PPP to alter parameters. 594 * 595 * This function should be invoked only on systems with 596 * FW_FEATURE_SPLPAR. 597 */ 598 static ssize_t lparcfg_write(struct file *file, const char __user * buf, 599 size_t count, loff_t * off) 600 { 601 char kbuf[64]; 602 char *tmp; 603 u64 new_entitled, *new_entitled_ptr = &new_entitled; 604 u8 new_weight, *new_weight_ptr = &new_weight; 605 ssize_t retval; 606 607 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 608 return -EINVAL; 609 610 if (count > sizeof(kbuf)) 611 return -EINVAL; 612 613 if (copy_from_user(kbuf, buf, count)) 614 return -EFAULT; 615 616 kbuf[count - 1] = '\0'; 617 tmp = strchr(kbuf, '='); 618 if (!tmp) 619 return -EINVAL; 620 621 *tmp++ = '\0'; 622 623 if (!strcmp(kbuf, "partition_entitled_capacity")) { 624 char *endp; 625 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 626 if (endp == tmp) 627 return -EINVAL; 628 629 retval = update_ppp(new_entitled_ptr, NULL); 630 } else if (!strcmp(kbuf, "capacity_weight")) { 631 char *endp; 632 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 633 if (endp == tmp) 634 return -EINVAL; 635 636 retval = update_ppp(NULL, new_weight_ptr); 637 } else if (!strcmp(kbuf, "entitled_memory")) { 638 char *endp; 639 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); 640 if (endp == tmp) 641 return -EINVAL; 642 643 retval = update_mpp(new_entitled_ptr, NULL); 644 } else if (!strcmp(kbuf, "entitled_memory_weight")) { 645 char *endp; 646 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); 647 if (endp == tmp) 648 return -EINVAL; 649 650 retval = update_mpp(NULL, new_weight_ptr); 651 } else 652 return -EINVAL; 653 654 if (retval == H_SUCCESS || retval == H_CONSTRAINED) { 655 retval = count; 656 } else if (retval == H_BUSY) { 657 retval = -EBUSY; 658 } else if (retval == H_HARDWARE) { 659 retval = -EIO; 660 } else if (retval == H_PARAMETER) { 661 retval = -EINVAL; 662 } 663 664 return retval; 665 } 666 667 static int lparcfg_data(struct seq_file *m, void *v) 668 { 669 struct device_node *rootdn; 670 const char *model = ""; 671 const char *system_id = ""; 672 const char *tmp; 673 const __be32 *lp_index_ptr; 674 unsigned int lp_index = 0; 675 676 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS); 677 678 rootdn = of_find_node_by_path("/"); 679 if (rootdn) { 680 tmp = of_get_property(rootdn, "model", NULL); 681 if (tmp) 682 model = tmp; 683 tmp = of_get_property(rootdn, "system-id", NULL); 684 if (tmp) 685 system_id = tmp; 686 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no", 687 NULL); 688 if (lp_index_ptr) 689 lp_index = be32_to_cpup(lp_index_ptr); 690 of_node_put(rootdn); 691 } 692 seq_printf(m, "serial_number=%s\n", system_id); 693 seq_printf(m, "system_type=%s\n", model); 694 seq_printf(m, "partition_id=%d\n", (int)lp_index); 695 696 return pseries_lparcfg_data(m, v); 697 } 698 699 static int lparcfg_open(struct inode *inode, struct file *file) 700 { 701 return single_open(file, lparcfg_data, NULL); 702 } 703 704 static const struct file_operations lparcfg_fops = { 705 .read = seq_read, 706 .write = lparcfg_write, 707 .open = lparcfg_open, 708 .release = single_release, 709 .llseek = seq_lseek, 710 }; 711 712 static int __init lparcfg_init(void) 713 { 714 umode_t mode = 0444; 715 716 /* Allow writing if we have FW_FEATURE_SPLPAR */ 717 if (firmware_has_feature(FW_FEATURE_SPLPAR)) 718 mode |= 0200; 719 720 if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops)) { 721 printk(KERN_ERR "Failed to create powerpc/lparcfg\n"); 722 return -EIO; 723 } 724 return 0; 725 } 726 machine_device_initcall(pseries, lparcfg_init); 727