1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/setup.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/cputable.h> 35 #include <asm/papr-sysparm.h> 36 #include <asm/udbg.h> 37 #include <asm/smp.h> 38 #include <asm/trace.h> 39 #include <asm/firmware.h> 40 #include <asm/plpar_wrappers.h> 41 #include <asm/kexec.h> 42 #include <asm/fadump.h> 43 #include <asm/dtl.h> 44 #include <asm/vphn.h> 45 46 #include "pseries.h" 47 48 /* Flag bits for H_BULK_REMOVE */ 49 #define HBR_REQUEST 0x4000000000000000UL 50 #define HBR_RESPONSE 0x8000000000000000UL 51 #define HBR_END 0xc000000000000000UL 52 #define HBR_AVPN 0x0200000000000000UL 53 #define HBR_ANDCOND 0x0100000000000000UL 54 55 56 /* in hvCall.S */ 57 EXPORT_SYMBOL(plpar_hcall); 58 EXPORT_SYMBOL(plpar_hcall9); 59 EXPORT_SYMBOL(plpar_hcall_norets); 60 61 #ifdef CONFIG_PPC_64S_HASH_MMU 62 /* 63 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 64 * page size is that page size. 65 * 66 * The first index is the segment base page size, the second one is the actual 67 * page size. 68 */ 69 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 70 #endif 71 72 /* 73 * Due to the involved complexity, and that the current hypervisor is only 74 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 75 * buffer size to 8 size block. 76 */ 77 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 78 79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 80 static u8 dtl_mask = DTL_LOG_PREEMPT; 81 #else 82 static u8 dtl_mask; 83 #endif 84 85 void alloc_dtl_buffers(unsigned long *time_limit) 86 { 87 int cpu; 88 struct paca_struct *pp; 89 struct dtl_entry *dtl; 90 91 for_each_possible_cpu(cpu) { 92 pp = paca_ptrs[cpu]; 93 if (pp->dispatch_log) 94 continue; 95 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 96 if (!dtl) { 97 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 98 cpu); 99 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 100 pr_warn("Stolen time statistics will be unreliable\n"); 101 #endif 102 break; 103 } 104 105 pp->dtl_ridx = 0; 106 pp->dispatch_log = dtl; 107 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 108 pp->dtl_curr = dtl; 109 110 if (time_limit && time_after(jiffies, *time_limit)) { 111 cond_resched(); 112 *time_limit = jiffies + HZ; 113 } 114 } 115 } 116 117 void register_dtl_buffer(int cpu) 118 { 119 long ret; 120 struct paca_struct *pp; 121 struct dtl_entry *dtl; 122 int hwcpu = get_hard_smp_processor_id(cpu); 123 124 pp = paca_ptrs[cpu]; 125 dtl = pp->dispatch_log; 126 if (dtl && dtl_mask) { 127 pp->dtl_ridx = 0; 128 pp->dtl_curr = dtl; 129 lppaca_of(cpu).dtl_idx = 0; 130 131 /* hypervisor reads buffer length from this field */ 132 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 133 ret = register_dtl(hwcpu, __pa(dtl)); 134 if (ret) 135 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 136 cpu, hwcpu, ret); 137 138 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 139 } 140 } 141 142 #ifdef CONFIG_PPC_SPLPAR 143 struct dtl_worker { 144 struct delayed_work work; 145 int cpu; 146 }; 147 148 struct vcpu_dispatch_data { 149 int last_disp_cpu; 150 151 int total_disp; 152 153 int same_cpu_disp; 154 int same_chip_disp; 155 int diff_chip_disp; 156 int far_chip_disp; 157 158 int numa_home_disp; 159 int numa_remote_disp; 160 int numa_far_disp; 161 }; 162 163 /* 164 * This represents the number of cpus in the hypervisor. Since there is no 165 * architected way to discover the number of processors in the host, we 166 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 167 * is sufficient for our purposes. This will need to be tweaked if 168 * CONFIG_NR_CPUS is changed. 169 */ 170 #define NR_CPUS_H NR_CPUS 171 172 DEFINE_RWLOCK(dtl_access_lock); 173 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 174 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 175 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 176 static enum cpuhp_state dtl_worker_state; 177 static DEFINE_MUTEX(dtl_enable_mutex); 178 static int vcpudispatch_stats_on __read_mostly; 179 static int vcpudispatch_stats_freq = 50; 180 static __be32 *vcpu_associativity, *pcpu_associativity; 181 182 183 static void free_dtl_buffers(unsigned long *time_limit) 184 { 185 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 186 int cpu; 187 struct paca_struct *pp; 188 189 for_each_possible_cpu(cpu) { 190 pp = paca_ptrs[cpu]; 191 if (!pp->dispatch_log) 192 continue; 193 kmem_cache_free(dtl_cache, pp->dispatch_log); 194 pp->dtl_ridx = 0; 195 pp->dispatch_log = 0; 196 pp->dispatch_log_end = 0; 197 pp->dtl_curr = 0; 198 199 if (time_limit && time_after(jiffies, *time_limit)) { 200 cond_resched(); 201 *time_limit = jiffies + HZ; 202 } 203 } 204 #endif 205 } 206 207 static int init_cpu_associativity(void) 208 { 209 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 211 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 212 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 213 214 if (!vcpu_associativity || !pcpu_associativity) { 215 pr_err("error allocating memory for associativity information\n"); 216 return -ENOMEM; 217 } 218 219 return 0; 220 } 221 222 static void destroy_cpu_associativity(void) 223 { 224 kfree(vcpu_associativity); 225 kfree(pcpu_associativity); 226 vcpu_associativity = pcpu_associativity = 0; 227 } 228 229 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 230 { 231 __be32 *assoc; 232 int rc = 0; 233 234 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 235 if (!assoc[0]) { 236 rc = hcall_vphn(cpu, flag, &assoc[0]); 237 if (rc) 238 return NULL; 239 } 240 241 return assoc; 242 } 243 244 static __be32 *get_pcpu_associativity(int cpu) 245 { 246 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 247 } 248 249 static __be32 *get_vcpu_associativity(int cpu) 250 { 251 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 252 } 253 254 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 255 { 256 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 257 258 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 259 return -EINVAL; 260 261 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 262 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 263 264 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 265 return -EIO; 266 267 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 268 } 269 270 static int cpu_home_node_dispatch_distance(int disp_cpu) 271 { 272 __be32 *disp_cpu_assoc, *vcpu_assoc; 273 int vcpu_id = smp_processor_id(); 274 275 if (disp_cpu >= NR_CPUS_H) { 276 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 277 disp_cpu, NR_CPUS_H); 278 return -EINVAL; 279 } 280 281 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 282 vcpu_assoc = get_vcpu_associativity(vcpu_id); 283 284 if (!disp_cpu_assoc || !vcpu_assoc) 285 return -EIO; 286 287 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 288 } 289 290 static void update_vcpu_disp_stat(int disp_cpu) 291 { 292 struct vcpu_dispatch_data *disp; 293 int distance; 294 295 disp = this_cpu_ptr(&vcpu_disp_data); 296 if (disp->last_disp_cpu == -1) { 297 disp->last_disp_cpu = disp_cpu; 298 return; 299 } 300 301 disp->total_disp++; 302 303 if (disp->last_disp_cpu == disp_cpu || 304 (cpu_first_thread_sibling(disp->last_disp_cpu) == 305 cpu_first_thread_sibling(disp_cpu))) 306 disp->same_cpu_disp++; 307 else { 308 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 309 disp_cpu); 310 if (distance < 0) 311 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 312 smp_processor_id()); 313 else { 314 switch (distance) { 315 case 0: 316 disp->same_chip_disp++; 317 break; 318 case 1: 319 disp->diff_chip_disp++; 320 break; 321 case 2: 322 disp->far_chip_disp++; 323 break; 324 default: 325 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 326 smp_processor_id(), 327 disp->last_disp_cpu, 328 disp_cpu, 329 distance); 330 } 331 } 332 } 333 334 distance = cpu_home_node_dispatch_distance(disp_cpu); 335 if (distance < 0) 336 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 337 smp_processor_id()); 338 else { 339 switch (distance) { 340 case 0: 341 disp->numa_home_disp++; 342 break; 343 case 1: 344 disp->numa_remote_disp++; 345 break; 346 case 2: 347 disp->numa_far_disp++; 348 break; 349 default: 350 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 351 smp_processor_id(), 352 disp_cpu, 353 distance); 354 } 355 } 356 357 disp->last_disp_cpu = disp_cpu; 358 } 359 360 static void process_dtl_buffer(struct work_struct *work) 361 { 362 struct dtl_entry dtle; 363 u64 i = __this_cpu_read(dtl_entry_ridx); 364 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 365 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 366 struct lppaca *vpa = local_paca->lppaca_ptr; 367 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 368 369 if (!local_paca->dispatch_log) 370 return; 371 372 /* if we have been migrated away, we cancel ourself */ 373 if (d->cpu != smp_processor_id()) { 374 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 375 smp_processor_id()); 376 return; 377 } 378 379 if (i == be64_to_cpu(vpa->dtl_idx)) 380 goto out; 381 382 while (i < be64_to_cpu(vpa->dtl_idx)) { 383 dtle = *dtl; 384 barrier(); 385 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 386 /* buffer has overflowed */ 387 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 388 d->cpu, 389 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 390 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 391 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 392 continue; 393 } 394 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 395 ++i; 396 ++dtl; 397 if (dtl == dtl_end) 398 dtl = local_paca->dispatch_log; 399 } 400 401 __this_cpu_write(dtl_entry_ridx, i); 402 403 out: 404 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 405 HZ / vcpudispatch_stats_freq); 406 } 407 408 static int dtl_worker_online(unsigned int cpu) 409 { 410 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 411 412 memset(d, 0, sizeof(*d)); 413 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 414 d->cpu = cpu; 415 416 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 417 per_cpu(dtl_entry_ridx, cpu) = 0; 418 register_dtl_buffer(cpu); 419 #else 420 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 421 #endif 422 423 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 424 return 0; 425 } 426 427 static int dtl_worker_offline(unsigned int cpu) 428 { 429 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 430 431 cancel_delayed_work_sync(&d->work); 432 433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 434 unregister_dtl(get_hard_smp_processor_id(cpu)); 435 #endif 436 437 return 0; 438 } 439 440 static void set_global_dtl_mask(u8 mask) 441 { 442 int cpu; 443 444 dtl_mask = mask; 445 for_each_present_cpu(cpu) 446 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 447 } 448 449 static void reset_global_dtl_mask(void) 450 { 451 int cpu; 452 453 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 454 dtl_mask = DTL_LOG_PREEMPT; 455 #else 456 dtl_mask = 0; 457 #endif 458 for_each_present_cpu(cpu) 459 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 460 } 461 462 static int dtl_worker_enable(unsigned long *time_limit) 463 { 464 int rc = 0, state; 465 466 if (!write_trylock(&dtl_access_lock)) { 467 rc = -EBUSY; 468 goto out; 469 } 470 471 set_global_dtl_mask(DTL_LOG_ALL); 472 473 /* Setup dtl buffers and register those */ 474 alloc_dtl_buffers(time_limit); 475 476 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 477 dtl_worker_online, dtl_worker_offline); 478 if (state < 0) { 479 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 480 free_dtl_buffers(time_limit); 481 reset_global_dtl_mask(); 482 write_unlock(&dtl_access_lock); 483 rc = -EINVAL; 484 goto out; 485 } 486 dtl_worker_state = state; 487 488 out: 489 return rc; 490 } 491 492 static void dtl_worker_disable(unsigned long *time_limit) 493 { 494 cpuhp_remove_state(dtl_worker_state); 495 free_dtl_buffers(time_limit); 496 reset_global_dtl_mask(); 497 write_unlock(&dtl_access_lock); 498 } 499 500 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 501 size_t count, loff_t *ppos) 502 { 503 unsigned long time_limit = jiffies + HZ; 504 struct vcpu_dispatch_data *disp; 505 int rc, cmd, cpu; 506 char buf[16]; 507 508 if (count > 15) 509 return -EINVAL; 510 511 if (copy_from_user(buf, p, count)) 512 return -EFAULT; 513 514 buf[count] = 0; 515 rc = kstrtoint(buf, 0, &cmd); 516 if (rc || cmd < 0 || cmd > 1) { 517 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 518 return rc ? rc : -EINVAL; 519 } 520 521 mutex_lock(&dtl_enable_mutex); 522 523 if ((cmd == 0 && !vcpudispatch_stats_on) || 524 (cmd == 1 && vcpudispatch_stats_on)) 525 goto out; 526 527 if (cmd) { 528 rc = init_cpu_associativity(); 529 if (rc) 530 goto out; 531 532 for_each_possible_cpu(cpu) { 533 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 534 memset(disp, 0, sizeof(*disp)); 535 disp->last_disp_cpu = -1; 536 } 537 538 rc = dtl_worker_enable(&time_limit); 539 if (rc) { 540 destroy_cpu_associativity(); 541 goto out; 542 } 543 } else { 544 dtl_worker_disable(&time_limit); 545 destroy_cpu_associativity(); 546 } 547 548 vcpudispatch_stats_on = cmd; 549 550 out: 551 mutex_unlock(&dtl_enable_mutex); 552 if (rc) 553 return rc; 554 return count; 555 } 556 557 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 558 { 559 int cpu; 560 struct vcpu_dispatch_data *disp; 561 562 if (!vcpudispatch_stats_on) { 563 seq_puts(p, "off\n"); 564 return 0; 565 } 566 567 for_each_online_cpu(cpu) { 568 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 569 seq_printf(p, "cpu%d", cpu); 570 seq_put_decimal_ull(p, " ", disp->total_disp); 571 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 572 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 573 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 574 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 575 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 576 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 577 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 578 seq_puts(p, "\n"); 579 } 580 581 return 0; 582 } 583 584 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 585 { 586 return single_open(file, vcpudispatch_stats_display, NULL); 587 } 588 589 static const struct proc_ops vcpudispatch_stats_proc_ops = { 590 .proc_open = vcpudispatch_stats_open, 591 .proc_read = seq_read, 592 .proc_write = vcpudispatch_stats_write, 593 .proc_lseek = seq_lseek, 594 .proc_release = single_release, 595 }; 596 597 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 598 const char __user *p, size_t count, loff_t *ppos) 599 { 600 int rc, freq; 601 char buf[16]; 602 603 if (count > 15) 604 return -EINVAL; 605 606 if (copy_from_user(buf, p, count)) 607 return -EFAULT; 608 609 buf[count] = 0; 610 rc = kstrtoint(buf, 0, &freq); 611 if (rc || freq < 1 || freq > HZ) { 612 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 613 HZ); 614 return rc ? rc : -EINVAL; 615 } 616 617 vcpudispatch_stats_freq = freq; 618 619 return count; 620 } 621 622 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 623 { 624 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 625 return 0; 626 } 627 628 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 629 { 630 return single_open(file, vcpudispatch_stats_freq_display, NULL); 631 } 632 633 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 634 .proc_open = vcpudispatch_stats_freq_open, 635 .proc_read = seq_read, 636 .proc_write = vcpudispatch_stats_freq_write, 637 .proc_lseek = seq_lseek, 638 .proc_release = single_release, 639 }; 640 641 static int __init vcpudispatch_stats_procfs_init(void) 642 { 643 if (!lppaca_shared_proc()) 644 return 0; 645 646 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 647 &vcpudispatch_stats_proc_ops)) 648 pr_err("vcpudispatch_stats: error creating procfs file\n"); 649 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 650 &vcpudispatch_stats_freq_proc_ops)) 651 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 652 653 return 0; 654 } 655 656 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 657 658 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 659 u64 pseries_paravirt_steal_clock(int cpu) 660 { 661 struct lppaca *lppaca = &lppaca_of(cpu); 662 663 return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) + 664 be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)); 665 } 666 #endif 667 668 #endif /* CONFIG_PPC_SPLPAR */ 669 670 void vpa_init(int cpu) 671 { 672 int hwcpu = get_hard_smp_processor_id(cpu); 673 unsigned long addr; 674 long ret; 675 676 /* 677 * The spec says it "may be problematic" if CPU x registers the VPA of 678 * CPU y. We should never do that, but wail if we ever do. 679 */ 680 WARN_ON(cpu != smp_processor_id()); 681 682 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 683 lppaca_of(cpu).vmxregs_in_use = 1; 684 685 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 686 lppaca_of(cpu).ebb_regs_in_use = 1; 687 688 addr = __pa(&lppaca_of(cpu)); 689 ret = register_vpa(hwcpu, addr); 690 691 if (ret) { 692 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 693 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 694 return; 695 } 696 697 #ifdef CONFIG_PPC_64S_HASH_MMU 698 /* 699 * PAPR says this feature is SLB-Buffer but firmware never 700 * reports that. All SPLPAR support SLB shadow buffer. 701 */ 702 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 703 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 704 ret = register_slb_shadow(hwcpu, addr); 705 if (ret) 706 pr_err("WARNING: SLB shadow buffer registration for " 707 "cpu %d (hw %d) of area %lx failed with %ld\n", 708 cpu, hwcpu, addr, ret); 709 } 710 #endif /* CONFIG_PPC_64S_HASH_MMU */ 711 712 /* 713 * Register dispatch trace log, if one has been allocated. 714 */ 715 register_dtl_buffer(cpu); 716 } 717 718 #ifdef CONFIG_PPC_BOOK3S_64 719 720 static int __init pseries_lpar_register_process_table(unsigned long base, 721 unsigned long page_size, unsigned long table_size) 722 { 723 long rc; 724 unsigned long flags = 0; 725 726 if (table_size) 727 flags |= PROC_TABLE_NEW; 728 if (radix_enabled()) { 729 flags |= PROC_TABLE_RADIX; 730 if (mmu_has_feature(MMU_FTR_GTSE)) 731 flags |= PROC_TABLE_GTSE; 732 } else 733 flags |= PROC_TABLE_HPT_SLB; 734 for (;;) { 735 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 736 page_size, table_size); 737 if (!H_IS_LONG_BUSY(rc)) 738 break; 739 mdelay(get_longbusy_msecs(rc)); 740 } 741 if (rc != H_SUCCESS) { 742 pr_err("Failed to register process table (rc=%ld)\n", rc); 743 BUG(); 744 } 745 return rc; 746 } 747 748 #ifdef CONFIG_PPC_64S_HASH_MMU 749 750 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 751 unsigned long vpn, unsigned long pa, 752 unsigned long rflags, unsigned long vflags, 753 int psize, int apsize, int ssize) 754 { 755 unsigned long lpar_rc; 756 unsigned long flags; 757 unsigned long slot; 758 unsigned long hpte_v, hpte_r; 759 760 if (!(vflags & HPTE_V_BOLTED)) 761 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 762 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 763 hpte_group, vpn, pa, rflags, vflags, psize); 764 765 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 766 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 767 768 if (!(vflags & HPTE_V_BOLTED)) 769 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 770 771 /* Now fill in the actual HPTE */ 772 /* Set CEC cookie to 0 */ 773 /* Zero page = 0 */ 774 /* I-cache Invalidate = 0 */ 775 /* I-cache synchronize = 0 */ 776 /* Exact = 0 */ 777 flags = 0; 778 779 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 780 flags |= H_COALESCE_CAND; 781 782 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 783 if (unlikely(lpar_rc == H_PTEG_FULL)) { 784 pr_devel("Hash table group is full\n"); 785 return -1; 786 } 787 788 /* 789 * Since we try and ioremap PHBs we don't own, the pte insert 790 * will fail. However we must catch the failure in hash_page 791 * or we will loop forever, so return -2 in this case. 792 */ 793 if (unlikely(lpar_rc != H_SUCCESS)) { 794 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 795 return -2; 796 } 797 if (!(vflags & HPTE_V_BOLTED)) 798 pr_devel(" -> slot: %lu\n", slot & 7); 799 800 /* Because of iSeries, we have to pass down the secondary 801 * bucket bit here as well 802 */ 803 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 804 } 805 806 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 807 808 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 809 { 810 unsigned long slot_offset; 811 unsigned long lpar_rc; 812 int i; 813 unsigned long dummy1, dummy2; 814 815 /* pick a random slot to start at */ 816 slot_offset = mftb() & 0x7; 817 818 for (i = 0; i < HPTES_PER_GROUP; i++) { 819 820 /* don't remove a bolted entry */ 821 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 822 HPTE_V_BOLTED, &dummy1, &dummy2); 823 if (lpar_rc == H_SUCCESS) 824 return i; 825 826 /* 827 * The test for adjunct partition is performed before the 828 * ANDCOND test. H_RESOURCE may be returned, so we need to 829 * check for that as well. 830 */ 831 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 832 833 slot_offset++; 834 slot_offset &= 0x7; 835 } 836 837 return -1; 838 } 839 840 /* Called during kexec sequence with MMU off */ 841 static notrace void manual_hpte_clear_all(void) 842 { 843 unsigned long size_bytes = 1UL << ppc64_pft_size; 844 unsigned long hpte_count = size_bytes >> 4; 845 struct { 846 unsigned long pteh; 847 unsigned long ptel; 848 } ptes[4]; 849 long lpar_rc; 850 unsigned long i, j; 851 852 /* Read in batches of 4, 853 * invalidate only valid entries not in the VRMA 854 * hpte_count will be a multiple of 4 855 */ 856 for (i = 0; i < hpte_count; i += 4) { 857 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 858 if (lpar_rc != H_SUCCESS) { 859 pr_info("Failed to read hash page table at %ld err %ld\n", 860 i, lpar_rc); 861 continue; 862 } 863 for (j = 0; j < 4; j++){ 864 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 865 HPTE_V_VRMA_MASK) 866 continue; 867 if (ptes[j].pteh & HPTE_V_VALID) 868 plpar_pte_remove_raw(0, i + j, 0, 869 &(ptes[j].pteh), &(ptes[j].ptel)); 870 } 871 } 872 } 873 874 /* Called during kexec sequence with MMU off */ 875 static notrace int hcall_hpte_clear_all(void) 876 { 877 int rc; 878 879 do { 880 rc = plpar_hcall_norets(H_CLEAR_HPT); 881 } while (rc == H_CONTINUE); 882 883 return rc; 884 } 885 886 /* Called during kexec sequence with MMU off */ 887 static notrace void pseries_hpte_clear_all(void) 888 { 889 int rc; 890 891 rc = hcall_hpte_clear_all(); 892 if (rc != H_SUCCESS) 893 manual_hpte_clear_all(); 894 895 #ifdef __LITTLE_ENDIAN__ 896 /* 897 * Reset exceptions to big endian. 898 * 899 * FIXME this is a hack for kexec, we need to reset the exception 900 * endian before starting the new kernel and this is a convenient place 901 * to do it. 902 * 903 * This is also called on boot when a fadump happens. In that case we 904 * must not change the exception endian mode. 905 */ 906 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 907 pseries_big_endian_exceptions(); 908 #endif 909 } 910 911 /* 912 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 913 * the low 3 bits of flags happen to line up. So no transform is needed. 914 * We can probably optimize here and assume the high bits of newpp are 915 * already zero. For now I am paranoid. 916 */ 917 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 918 unsigned long newpp, 919 unsigned long vpn, 920 int psize, int apsize, 921 int ssize, unsigned long inv_flags) 922 { 923 unsigned long lpar_rc; 924 unsigned long flags; 925 unsigned long want_v; 926 927 want_v = hpte_encode_avpn(vpn, psize, ssize); 928 929 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 930 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 931 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 932 /* Move pp0 into bit 8 (IBM 55) */ 933 flags |= (newpp & HPTE_R_PP0) >> 55; 934 935 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 936 want_v, slot, flags, psize); 937 938 lpar_rc = plpar_pte_protect(flags, slot, want_v); 939 940 if (lpar_rc == H_NOT_FOUND) { 941 pr_devel("not found !\n"); 942 return -1; 943 } 944 945 pr_devel("ok\n"); 946 947 BUG_ON(lpar_rc != H_SUCCESS); 948 949 return 0; 950 } 951 952 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 953 { 954 long lpar_rc; 955 unsigned long i, j; 956 struct { 957 unsigned long pteh; 958 unsigned long ptel; 959 } ptes[4]; 960 961 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 962 963 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 964 if (lpar_rc != H_SUCCESS) { 965 pr_info("Failed to read hash page table at %ld err %ld\n", 966 hpte_group, lpar_rc); 967 continue; 968 } 969 970 for (j = 0; j < 4; j++) { 971 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 972 (ptes[j].pteh & HPTE_V_VALID)) 973 return i + j; 974 } 975 } 976 977 return -1; 978 } 979 980 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 981 { 982 long slot; 983 unsigned long hash; 984 unsigned long want_v; 985 unsigned long hpte_group; 986 987 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 988 want_v = hpte_encode_avpn(vpn, psize, ssize); 989 990 /* 991 * We try to keep bolted entries always in primary hash 992 * But in some case we can find them in secondary too. 993 */ 994 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 995 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 996 if (slot < 0) { 997 /* Try in secondary */ 998 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 999 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1000 if (slot < 0) 1001 return -1; 1002 } 1003 return hpte_group + slot; 1004 } 1005 1006 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1007 unsigned long ea, 1008 int psize, int ssize) 1009 { 1010 unsigned long vpn; 1011 unsigned long lpar_rc, slot, vsid, flags; 1012 1013 vsid = get_kernel_vsid(ea, ssize); 1014 vpn = hpt_vpn(ea, vsid, ssize); 1015 1016 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1017 BUG_ON(slot == -1); 1018 1019 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1020 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1021 /* Move pp0 into bit 8 (IBM 55) */ 1022 flags |= (newpp & HPTE_R_PP0) >> 55; 1023 1024 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1025 1026 lpar_rc = plpar_pte_protect(flags, slot, 0); 1027 1028 BUG_ON(lpar_rc != H_SUCCESS); 1029 } 1030 1031 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1032 int psize, int apsize, 1033 int ssize, int local) 1034 { 1035 unsigned long want_v; 1036 unsigned long lpar_rc; 1037 unsigned long dummy1, dummy2; 1038 1039 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1040 slot, vpn, psize, local); 1041 1042 want_v = hpte_encode_avpn(vpn, psize, ssize); 1043 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1044 if (lpar_rc == H_NOT_FOUND) 1045 return; 1046 1047 BUG_ON(lpar_rc != H_SUCCESS); 1048 } 1049 1050 1051 /* 1052 * As defined in the PAPR's section 14.5.4.1.8 1053 * The control mask doesn't include the returned reference and change bit from 1054 * the processed PTE. 1055 */ 1056 #define HBLKR_AVPN 0x0100000000000000UL 1057 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1058 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1059 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1060 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1061 1062 /* 1063 * Returned true if we are supporting this block size for the specified segment 1064 * base page size and actual page size. 1065 * 1066 * Currently, we only support 8 size block. 1067 */ 1068 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1069 { 1070 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1071 } 1072 1073 /** 1074 * H_BLOCK_REMOVE caller. 1075 * @idx should point to the latest @param entry set with a PTEX. 1076 * If PTE cannot be processed because another CPUs has already locked that 1077 * group, those entries are put back in @param starting at index 1. 1078 * If entries has to be retried and @retry_busy is set to true, these entries 1079 * are retried until success. If @retry_busy is set to false, the returned 1080 * is the number of entries yet to process. 1081 */ 1082 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1083 bool retry_busy) 1084 { 1085 unsigned long i, rc, new_idx; 1086 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1087 1088 if (idx < 2) { 1089 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1090 return 0; 1091 } 1092 again: 1093 new_idx = 0; 1094 if (idx > PLPAR_HCALL9_BUFSIZE) { 1095 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1096 idx = PLPAR_HCALL9_BUFSIZE; 1097 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1098 param[idx] = HBR_END; 1099 1100 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1101 param[0], /* AVA */ 1102 param[1], param[2], param[3], param[4], /* TS0-7 */ 1103 param[5], param[6], param[7], param[8]); 1104 if (rc == H_SUCCESS) 1105 return 0; 1106 1107 BUG_ON(rc != H_PARTIAL); 1108 1109 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1110 for (i = 0; i < idx-1; i++) { 1111 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1112 1113 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1114 param[++new_idx] = param[i+1]; 1115 continue; 1116 } 1117 1118 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1119 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1120 } 1121 1122 /* 1123 * If there were entries found busy, retry these entries if requested, 1124 * of if all the entries have to be retried. 1125 */ 1126 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1127 idx = new_idx + 1; 1128 goto again; 1129 } 1130 1131 return new_idx; 1132 } 1133 1134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1135 /* 1136 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1137 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1138 */ 1139 #define PPC64_HUGE_HPTE_BATCH 12 1140 1141 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1142 int count, int psize, int ssize) 1143 { 1144 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1145 unsigned long shift, current_vpgb, vpgb; 1146 int i, pix = 0; 1147 1148 shift = mmu_psize_defs[psize].shift; 1149 1150 for (i = 0; i < count; i++) { 1151 /* 1152 * Shifting 3 bits more on the right to get a 1153 * 8 pages aligned virtual addresse. 1154 */ 1155 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1156 if (!pix || vpgb != current_vpgb) { 1157 /* 1158 * Need to start a new 8 pages block, flush 1159 * the current one if needed. 1160 */ 1161 if (pix) 1162 (void)call_block_remove(pix, param, true); 1163 current_vpgb = vpgb; 1164 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1165 pix = 1; 1166 } 1167 1168 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1169 if (pix == PLPAR_HCALL9_BUFSIZE) { 1170 pix = call_block_remove(pix, param, false); 1171 /* 1172 * pix = 0 means that all the entries were 1173 * removed, we can start a new block. 1174 * Otherwise, this means that there are entries 1175 * to retry, and pix points to latest one, so 1176 * we should increment it and try to continue 1177 * the same block. 1178 */ 1179 if (pix) 1180 pix++; 1181 } 1182 } 1183 if (pix) 1184 (void)call_block_remove(pix, param, true); 1185 } 1186 1187 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1188 int count, int psize, int ssize) 1189 { 1190 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1191 int i = 0, pix = 0, rc; 1192 1193 for (i = 0; i < count; i++) { 1194 1195 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1196 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1197 ssize, 0); 1198 } else { 1199 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1200 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1201 pix += 2; 1202 if (pix == 8) { 1203 rc = plpar_hcall9(H_BULK_REMOVE, param, 1204 param[0], param[1], param[2], 1205 param[3], param[4], param[5], 1206 param[6], param[7]); 1207 BUG_ON(rc != H_SUCCESS); 1208 pix = 0; 1209 } 1210 } 1211 } 1212 if (pix) { 1213 param[pix] = HBR_END; 1214 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1215 param[2], param[3], param[4], param[5], 1216 param[6], param[7]); 1217 BUG_ON(rc != H_SUCCESS); 1218 } 1219 } 1220 1221 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1222 unsigned long *vpn, 1223 int count, int psize, 1224 int ssize) 1225 { 1226 unsigned long flags = 0; 1227 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1228 1229 if (lock_tlbie) 1230 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1231 1232 /* Assuming THP size is 16M */ 1233 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1234 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1235 else 1236 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1237 1238 if (lock_tlbie) 1239 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1240 } 1241 1242 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1243 unsigned long addr, 1244 unsigned char *hpte_slot_array, 1245 int psize, int ssize, int local) 1246 { 1247 int i, index = 0; 1248 unsigned long s_addr = addr; 1249 unsigned int max_hpte_count, valid; 1250 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1251 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1252 unsigned long shift, hidx, vpn = 0, hash, slot; 1253 1254 shift = mmu_psize_defs[psize].shift; 1255 max_hpte_count = 1U << (PMD_SHIFT - shift); 1256 1257 for (i = 0; i < max_hpte_count; i++) { 1258 valid = hpte_valid(hpte_slot_array, i); 1259 if (!valid) 1260 continue; 1261 hidx = hpte_hash_index(hpte_slot_array, i); 1262 1263 /* get the vpn */ 1264 addr = s_addr + (i * (1ul << shift)); 1265 vpn = hpt_vpn(addr, vsid, ssize); 1266 hash = hpt_hash(vpn, shift, ssize); 1267 if (hidx & _PTEIDX_SECONDARY) 1268 hash = ~hash; 1269 1270 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1271 slot += hidx & _PTEIDX_GROUP_IX; 1272 1273 slot_array[index] = slot; 1274 vpn_array[index] = vpn; 1275 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1276 /* 1277 * Now do a bluk invalidate 1278 */ 1279 __pSeries_lpar_hugepage_invalidate(slot_array, 1280 vpn_array, 1281 PPC64_HUGE_HPTE_BATCH, 1282 psize, ssize); 1283 index = 0; 1284 } else 1285 index++; 1286 } 1287 if (index) 1288 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1289 index, psize, ssize); 1290 } 1291 #else 1292 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1293 unsigned long addr, 1294 unsigned char *hpte_slot_array, 1295 int psize, int ssize, int local) 1296 { 1297 WARN(1, "%s called without THP support\n", __func__); 1298 } 1299 #endif 1300 1301 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1302 int psize, int ssize) 1303 { 1304 unsigned long vpn; 1305 unsigned long slot, vsid; 1306 1307 vsid = get_kernel_vsid(ea, ssize); 1308 vpn = hpt_vpn(ea, vsid, ssize); 1309 1310 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1311 if (slot == -1) 1312 return -ENOENT; 1313 1314 /* 1315 * lpar doesn't use the passed actual page size 1316 */ 1317 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1318 return 0; 1319 } 1320 1321 1322 static inline unsigned long compute_slot(real_pte_t pte, 1323 unsigned long vpn, 1324 unsigned long index, 1325 unsigned long shift, 1326 int ssize) 1327 { 1328 unsigned long slot, hash, hidx; 1329 1330 hash = hpt_hash(vpn, shift, ssize); 1331 hidx = __rpte_to_hidx(pte, index); 1332 if (hidx & _PTEIDX_SECONDARY) 1333 hash = ~hash; 1334 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1335 slot += hidx & _PTEIDX_GROUP_IX; 1336 return slot; 1337 } 1338 1339 /** 1340 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1341 * "all within the same naturally aligned 8 page virtual address block". 1342 */ 1343 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1344 unsigned long *param) 1345 { 1346 unsigned long vpn; 1347 unsigned long i, pix = 0; 1348 unsigned long index, shift, slot, current_vpgb, vpgb; 1349 real_pte_t pte; 1350 int psize, ssize; 1351 1352 psize = batch->psize; 1353 ssize = batch->ssize; 1354 1355 for (i = 0; i < number; i++) { 1356 vpn = batch->vpn[i]; 1357 pte = batch->pte[i]; 1358 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1359 /* 1360 * Shifting 3 bits more on the right to get a 1361 * 8 pages aligned virtual addresse. 1362 */ 1363 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1364 if (!pix || vpgb != current_vpgb) { 1365 /* 1366 * Need to start a new 8 pages block, flush 1367 * the current one if needed. 1368 */ 1369 if (pix) 1370 (void)call_block_remove(pix, param, 1371 true); 1372 current_vpgb = vpgb; 1373 param[0] = hpte_encode_avpn(vpn, psize, 1374 ssize); 1375 pix = 1; 1376 } 1377 1378 slot = compute_slot(pte, vpn, index, shift, ssize); 1379 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1380 1381 if (pix == PLPAR_HCALL9_BUFSIZE) { 1382 pix = call_block_remove(pix, param, false); 1383 /* 1384 * pix = 0 means that all the entries were 1385 * removed, we can start a new block. 1386 * Otherwise, this means that there are entries 1387 * to retry, and pix points to latest one, so 1388 * we should increment it and try to continue 1389 * the same block. 1390 */ 1391 if (pix) 1392 pix++; 1393 } 1394 } pte_iterate_hashed_end(); 1395 } 1396 1397 if (pix) 1398 (void)call_block_remove(pix, param, true); 1399 } 1400 1401 /* 1402 * TLB Block Invalidate Characteristics 1403 * 1404 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1405 * is able to process for each couple segment base page size, actual page size. 1406 * 1407 * The ibm,get-system-parameter properties is returning a buffer with the 1408 * following layout: 1409 * 1410 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1411 * ----------------- 1412 * TLB Block Invalidate Specifiers: 1413 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1414 * [ 1 byte Number of page sizes (N) that are supported for the specified 1415 * TLB invalidate block size ] 1416 * [ 1 byte Encoded segment base page size and actual page size 1417 * MSB=0 means 4k segment base page size and actual page size 1418 * MSB=1 the penc value in mmu_psize_def ] 1419 * ... 1420 * ----------------- 1421 * Next TLB Block Invalidate Specifiers... 1422 * ----------------- 1423 * [ 0 ] 1424 */ 1425 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1426 unsigned int block_size) 1427 { 1428 if (block_size > hblkrm_size[bpsize][psize]) 1429 hblkrm_size[bpsize][psize] = block_size; 1430 } 1431 1432 /* 1433 * Decode the Encoded segment base page size and actual page size. 1434 * PAPR specifies: 1435 * - bit 7 is the L bit 1436 * - bits 0-5 are the penc value 1437 * If the L bit is 0, this means 4K segment base page size and actual page size 1438 * otherwise the penc value should be read. 1439 */ 1440 #define HBLKRM_L_MASK 0x80 1441 #define HBLKRM_PENC_MASK 0x3f 1442 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1443 unsigned int block_size) 1444 { 1445 unsigned int bpsize, psize; 1446 1447 /* First, check the L bit, if not set, this means 4K */ 1448 if ((lp & HBLKRM_L_MASK) == 0) { 1449 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1450 return; 1451 } 1452 1453 lp &= HBLKRM_PENC_MASK; 1454 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1455 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1456 1457 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1458 if (def->penc[psize] == lp) { 1459 set_hblkrm_bloc_size(bpsize, psize, block_size); 1460 return; 1461 } 1462 } 1463 } 1464 } 1465 1466 /* 1467 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1468 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1469 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1470 * (128 bytes) for the buffer to get plenty of space. 1471 */ 1472 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1473 1474 void __init pseries_lpar_read_hblkrm_characteristics(void) 1475 { 1476 static struct papr_sysparm_buf buf __initdata; 1477 int len, idx, bpsize; 1478 1479 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1480 return; 1481 1482 if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf)) 1483 return; 1484 1485 len = be16_to_cpu(buf.len); 1486 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1487 pr_warn("%s too large returned buffer %d", __func__, len); 1488 return; 1489 } 1490 1491 idx = 0; 1492 while (idx < len) { 1493 u8 block_shift = buf.val[idx++]; 1494 u32 block_size; 1495 unsigned int npsize; 1496 1497 if (!block_shift) 1498 break; 1499 1500 block_size = 1 << block_shift; 1501 1502 for (npsize = buf.val[idx++]; 1503 npsize > 0 && idx < len; npsize--) 1504 check_lp_set_hblkrm((unsigned int)buf.val[idx++], 1505 block_size); 1506 } 1507 1508 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1509 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1510 if (hblkrm_size[bpsize][idx]) 1511 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1512 bpsize, idx, hblkrm_size[bpsize][idx]); 1513 } 1514 1515 /* 1516 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1517 * lock. 1518 */ 1519 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1520 { 1521 unsigned long vpn; 1522 unsigned long i, pix, rc; 1523 unsigned long flags = 0; 1524 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1525 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1526 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1527 unsigned long index, shift, slot; 1528 real_pte_t pte; 1529 int psize, ssize; 1530 1531 if (lock_tlbie) 1532 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1533 1534 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1535 do_block_remove(number, batch, param); 1536 goto out; 1537 } 1538 1539 psize = batch->psize; 1540 ssize = batch->ssize; 1541 pix = 0; 1542 for (i = 0; i < number; i++) { 1543 vpn = batch->vpn[i]; 1544 pte = batch->pte[i]; 1545 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1546 slot = compute_slot(pte, vpn, index, shift, ssize); 1547 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1548 /* 1549 * lpar doesn't use the passed actual page size 1550 */ 1551 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1552 0, ssize, local); 1553 } else { 1554 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1555 param[pix+1] = hpte_encode_avpn(vpn, psize, 1556 ssize); 1557 pix += 2; 1558 if (pix == 8) { 1559 rc = plpar_hcall9(H_BULK_REMOVE, param, 1560 param[0], param[1], param[2], 1561 param[3], param[4], param[5], 1562 param[6], param[7]); 1563 BUG_ON(rc != H_SUCCESS); 1564 pix = 0; 1565 } 1566 } 1567 } pte_iterate_hashed_end(); 1568 } 1569 if (pix) { 1570 param[pix] = HBR_END; 1571 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1572 param[2], param[3], param[4], param[5], 1573 param[6], param[7]); 1574 BUG_ON(rc != H_SUCCESS); 1575 } 1576 1577 out: 1578 if (lock_tlbie) 1579 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1580 } 1581 1582 static int __init disable_bulk_remove(char *str) 1583 { 1584 if (strcmp(str, "off") == 0 && 1585 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1586 pr_info("Disabling BULK_REMOVE firmware feature"); 1587 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1588 } 1589 return 1; 1590 } 1591 1592 __setup("bulk_remove=", disable_bulk_remove); 1593 1594 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1595 1596 struct hpt_resize_state { 1597 unsigned long shift; 1598 int commit_rc; 1599 }; 1600 1601 static int pseries_lpar_resize_hpt_commit(void *data) 1602 { 1603 struct hpt_resize_state *state = data; 1604 1605 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1606 if (state->commit_rc != H_SUCCESS) 1607 return -EIO; 1608 1609 /* Hypervisor has transitioned the HTAB, update our globals */ 1610 ppc64_pft_size = state->shift; 1611 htab_size_bytes = 1UL << ppc64_pft_size; 1612 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1613 1614 return 0; 1615 } 1616 1617 /* 1618 * Must be called in process context. The caller must hold the 1619 * cpus_lock. 1620 */ 1621 static int pseries_lpar_resize_hpt(unsigned long shift) 1622 { 1623 struct hpt_resize_state state = { 1624 .shift = shift, 1625 .commit_rc = H_FUNCTION, 1626 }; 1627 unsigned int delay, total_delay = 0; 1628 int rc; 1629 ktime_t t0, t1, t2; 1630 1631 might_sleep(); 1632 1633 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1634 return -ENODEV; 1635 1636 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1637 1638 t0 = ktime_get(); 1639 1640 rc = plpar_resize_hpt_prepare(0, shift); 1641 while (H_IS_LONG_BUSY(rc)) { 1642 delay = get_longbusy_msecs(rc); 1643 total_delay += delay; 1644 if (total_delay > HPT_RESIZE_TIMEOUT) { 1645 /* prepare with shift==0 cancels an in-progress resize */ 1646 rc = plpar_resize_hpt_prepare(0, 0); 1647 if (rc != H_SUCCESS) 1648 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1649 rc); 1650 return -ETIMEDOUT; 1651 } 1652 msleep(delay); 1653 rc = plpar_resize_hpt_prepare(0, shift); 1654 } 1655 1656 switch (rc) { 1657 case H_SUCCESS: 1658 /* Continue on */ 1659 break; 1660 1661 case H_PARAMETER: 1662 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1663 return -EINVAL; 1664 case H_RESOURCE: 1665 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1666 return -EPERM; 1667 default: 1668 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1669 return -EIO; 1670 } 1671 1672 t1 = ktime_get(); 1673 1674 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1675 &state, NULL); 1676 1677 t2 = ktime_get(); 1678 1679 if (rc != 0) { 1680 switch (state.commit_rc) { 1681 case H_PTEG_FULL: 1682 return -ENOSPC; 1683 1684 default: 1685 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1686 state.commit_rc); 1687 return -EIO; 1688 }; 1689 } 1690 1691 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1692 shift, (long long) ktime_ms_delta(t1, t0), 1693 (long long) ktime_ms_delta(t2, t1)); 1694 1695 return 0; 1696 } 1697 1698 void __init hpte_init_pseries(void) 1699 { 1700 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1701 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1702 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1703 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1704 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1705 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1706 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1707 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1708 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1709 1710 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1711 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1712 1713 /* 1714 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1715 * to inform the hypervisor that we wish to use the HPT. 1716 */ 1717 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1718 pseries_lpar_register_process_table(0, 0, 0); 1719 } 1720 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1721 1722 #ifdef CONFIG_PPC_RADIX_MMU 1723 void __init radix_init_pseries(void) 1724 { 1725 pr_info("Using radix MMU under hypervisor\n"); 1726 1727 pseries_lpar_register_process_table(__pa(process_tb), 1728 0, PRTB_SIZE_SHIFT - 12); 1729 } 1730 #endif 1731 1732 #ifdef CONFIG_PPC_SMLPAR 1733 #define CMO_FREE_HINT_DEFAULT 1 1734 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1735 1736 static int __init cmo_free_hint(char *str) 1737 { 1738 char *parm; 1739 parm = strstrip(str); 1740 1741 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1742 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1743 cmo_free_hint_flag = 0; 1744 return 1; 1745 } 1746 1747 cmo_free_hint_flag = 1; 1748 pr_info("%s: CMO free page hinting is active.\n", __func__); 1749 1750 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1751 return 1; 1752 1753 return 0; 1754 } 1755 1756 __setup("cmo_free_hint=", cmo_free_hint); 1757 1758 static void pSeries_set_page_state(struct page *page, int order, 1759 unsigned long state) 1760 { 1761 int i, j; 1762 unsigned long cmo_page_sz, addr; 1763 1764 cmo_page_sz = cmo_get_page_size(); 1765 addr = __pa((unsigned long)page_address(page)); 1766 1767 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1768 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1769 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1770 } 1771 } 1772 1773 void arch_free_page(struct page *page, int order) 1774 { 1775 if (radix_enabled()) 1776 return; 1777 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1778 return; 1779 1780 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1781 } 1782 EXPORT_SYMBOL(arch_free_page); 1783 1784 #endif /* CONFIG_PPC_SMLPAR */ 1785 #endif /* CONFIG_PPC_BOOK3S_64 */ 1786 1787 #ifdef CONFIG_TRACEPOINTS 1788 #ifdef CONFIG_JUMP_LABEL 1789 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1790 1791 int hcall_tracepoint_regfunc(void) 1792 { 1793 static_key_slow_inc(&hcall_tracepoint_key); 1794 return 0; 1795 } 1796 1797 void hcall_tracepoint_unregfunc(void) 1798 { 1799 static_key_slow_dec(&hcall_tracepoint_key); 1800 } 1801 #else 1802 /* 1803 * We optimise our hcall path by placing hcall_tracepoint_refcount 1804 * directly in the TOC so we can check if the hcall tracepoints are 1805 * enabled via a single load. 1806 */ 1807 1808 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1809 extern long hcall_tracepoint_refcount; 1810 1811 int hcall_tracepoint_regfunc(void) 1812 { 1813 hcall_tracepoint_refcount++; 1814 return 0; 1815 } 1816 1817 void hcall_tracepoint_unregfunc(void) 1818 { 1819 hcall_tracepoint_refcount--; 1820 } 1821 #endif 1822 1823 /* 1824 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1825 * detected because it may indicate a problem. This will not catch all 1826 * problems with tracing code making hcalls, because the tracing might have 1827 * been invoked from a non-hcall, so the first hcall could recurse into it 1828 * without warning here, but this better than nothing. 1829 * 1830 * Hcalls with specific problems being traced should use the _notrace 1831 * plpar_hcall variants. 1832 */ 1833 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1834 1835 1836 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1837 { 1838 unsigned long flags; 1839 unsigned int *depth; 1840 1841 local_irq_save(flags); 1842 1843 depth = this_cpu_ptr(&hcall_trace_depth); 1844 1845 if (WARN_ON_ONCE(*depth)) 1846 goto out; 1847 1848 (*depth)++; 1849 preempt_disable(); 1850 trace_hcall_entry(opcode, args); 1851 (*depth)--; 1852 1853 out: 1854 local_irq_restore(flags); 1855 } 1856 1857 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1858 { 1859 unsigned long flags; 1860 unsigned int *depth; 1861 1862 local_irq_save(flags); 1863 1864 depth = this_cpu_ptr(&hcall_trace_depth); 1865 1866 if (*depth) /* Don't warn again on the way out */ 1867 goto out; 1868 1869 (*depth)++; 1870 trace_hcall_exit(opcode, retval, retbuf); 1871 preempt_enable(); 1872 (*depth)--; 1873 1874 out: 1875 local_irq_restore(flags); 1876 } 1877 #endif 1878 1879 /** 1880 * h_get_mpp 1881 * H_GET_MPP hcall returns info in 7 parms 1882 */ 1883 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1884 { 1885 int rc; 1886 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1887 1888 rc = plpar_hcall9(H_GET_MPP, retbuf); 1889 1890 mpp_data->entitled_mem = retbuf[0]; 1891 mpp_data->mapped_mem = retbuf[1]; 1892 1893 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1894 mpp_data->pool_num = retbuf[2] & 0xffff; 1895 1896 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1897 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1898 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1899 1900 mpp_data->pool_size = retbuf[4]; 1901 mpp_data->loan_request = retbuf[5]; 1902 mpp_data->backing_mem = retbuf[6]; 1903 1904 return rc; 1905 } 1906 EXPORT_SYMBOL(h_get_mpp); 1907 1908 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1909 { 1910 int rc; 1911 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1912 1913 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1914 1915 mpp_x_data->coalesced_bytes = retbuf[0]; 1916 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1917 mpp_x_data->pool_purr_cycles = retbuf[2]; 1918 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1919 1920 return rc; 1921 } 1922 1923 #ifdef CONFIG_PPC_64S_HASH_MMU 1924 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1925 { 1926 unsigned long protovsid; 1927 unsigned long va_bits = VA_BITS; 1928 unsigned long modinv, vsid_modulus; 1929 unsigned long max_mod_inv, tmp_modinv; 1930 1931 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1932 va_bits = 65; 1933 1934 if (ssize == MMU_SEGSIZE_256M) { 1935 modinv = VSID_MULINV_256M; 1936 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1937 } else { 1938 modinv = VSID_MULINV_1T; 1939 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1940 } 1941 1942 /* 1943 * vsid outside our range. 1944 */ 1945 if (vsid >= vsid_modulus) 1946 return 0; 1947 1948 /* 1949 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1950 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1951 * protovsid = (vsid * modinv) % vsid_modulus 1952 */ 1953 1954 /* Check if (vsid * modinv) overflow (63 bits) */ 1955 max_mod_inv = 0x7fffffffffffffffull / vsid; 1956 if (modinv < max_mod_inv) 1957 return (vsid * modinv) % vsid_modulus; 1958 1959 tmp_modinv = modinv/max_mod_inv; 1960 modinv %= max_mod_inv; 1961 1962 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1963 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1964 1965 return protovsid; 1966 } 1967 1968 static int __init reserve_vrma_context_id(void) 1969 { 1970 unsigned long protovsid; 1971 1972 /* 1973 * Reserve context ids which map to reserved virtual addresses. For now 1974 * we only reserve the context id which maps to the VRMA VSID. We ignore 1975 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1976 * enable adjunct support via the "ibm,client-architecture-support" 1977 * interface. 1978 */ 1979 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1980 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1981 return 0; 1982 } 1983 machine_device_initcall(pseries, reserve_vrma_context_id); 1984 #endif 1985 1986 #ifdef CONFIG_DEBUG_FS 1987 /* debugfs file interface for vpa data */ 1988 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1989 loff_t *pos) 1990 { 1991 int cpu = (long)filp->private_data; 1992 struct lppaca *lppaca = &lppaca_of(cpu); 1993 1994 return simple_read_from_buffer(buf, len, pos, lppaca, 1995 sizeof(struct lppaca)); 1996 } 1997 1998 static const struct file_operations vpa_fops = { 1999 .open = simple_open, 2000 .read = vpa_file_read, 2001 .llseek = default_llseek, 2002 }; 2003 2004 static int __init vpa_debugfs_init(void) 2005 { 2006 char name[16]; 2007 long i; 2008 struct dentry *vpa_dir; 2009 2010 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2011 return 0; 2012 2013 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2014 2015 /* set up the per-cpu vpa file*/ 2016 for_each_possible_cpu(i) { 2017 sprintf(name, "cpu-%ld", i); 2018 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2019 } 2020 2021 return 0; 2022 } 2023 machine_arch_initcall(pseries, vpa_debugfs_init); 2024 #endif /* CONFIG_DEBUG_FS */ 2025