1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8 
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <asm/processor.h>
25 #include <asm/mmu.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43 
44 #include "pseries.h"
45 
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST	0x4000000000000000UL
48 #define HBR_RESPONSE	0x8000000000000000UL
49 #define HBR_END		0xc000000000000000UL
50 #define HBR_AVPN	0x0200000000000000UL
51 #define HBR_ANDCOND	0x0100000000000000UL
52 
53 
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58 
59 /*
60  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
61  * page size is that page size.
62  *
63  * The first index is the segment base page size, the second one is the actual
64  * page size.
65  */
66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
67 
68 /*
69  * Due to the involved complexity, and that the current hypervisor is only
70  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
71  * buffer size to 8 size block.
72  */
73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
74 
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
76 static u8 dtl_mask = DTL_LOG_PREEMPT;
77 #else
78 static u8 dtl_mask;
79 #endif
80 
81 void alloc_dtl_buffers(unsigned long *time_limit)
82 {
83 	int cpu;
84 	struct paca_struct *pp;
85 	struct dtl_entry *dtl;
86 
87 	for_each_possible_cpu(cpu) {
88 		pp = paca_ptrs[cpu];
89 		if (pp->dispatch_log)
90 			continue;
91 		dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
92 		if (!dtl) {
93 			pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
94 				cpu);
95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
96 			pr_warn("Stolen time statistics will be unreliable\n");
97 #endif
98 			break;
99 		}
100 
101 		pp->dtl_ridx = 0;
102 		pp->dispatch_log = dtl;
103 		pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
104 		pp->dtl_curr = dtl;
105 
106 		if (time_limit && time_after(jiffies, *time_limit)) {
107 			cond_resched();
108 			*time_limit = jiffies + HZ;
109 		}
110 	}
111 }
112 
113 void register_dtl_buffer(int cpu)
114 {
115 	long ret;
116 	struct paca_struct *pp;
117 	struct dtl_entry *dtl;
118 	int hwcpu = get_hard_smp_processor_id(cpu);
119 
120 	pp = paca_ptrs[cpu];
121 	dtl = pp->dispatch_log;
122 	if (dtl && dtl_mask) {
123 		pp->dtl_ridx = 0;
124 		pp->dtl_curr = dtl;
125 		lppaca_of(cpu).dtl_idx = 0;
126 
127 		/* hypervisor reads buffer length from this field */
128 		dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
129 		ret = register_dtl(hwcpu, __pa(dtl));
130 		if (ret)
131 			pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
132 			       cpu, hwcpu, ret);
133 
134 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
135 	}
136 }
137 
138 #ifdef CONFIG_PPC_SPLPAR
139 struct dtl_worker {
140 	struct delayed_work work;
141 	int cpu;
142 };
143 
144 struct vcpu_dispatch_data {
145 	int last_disp_cpu;
146 
147 	int total_disp;
148 
149 	int same_cpu_disp;
150 	int same_chip_disp;
151 	int diff_chip_disp;
152 	int far_chip_disp;
153 
154 	int numa_home_disp;
155 	int numa_remote_disp;
156 	int numa_far_disp;
157 };
158 
159 /*
160  * This represents the number of cpus in the hypervisor. Since there is no
161  * architected way to discover the number of processors in the host, we
162  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
163  * is sufficient for our purposes. This will need to be tweaked if
164  * CONFIG_NR_CPUS is changed.
165  */
166 #define NR_CPUS_H	NR_CPUS
167 
168 DEFINE_RWLOCK(dtl_access_lock);
169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
170 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
172 static enum cpuhp_state dtl_worker_state;
173 static DEFINE_MUTEX(dtl_enable_mutex);
174 static int vcpudispatch_stats_on __read_mostly;
175 static int vcpudispatch_stats_freq = 50;
176 static __be32 *vcpu_associativity, *pcpu_associativity;
177 
178 
179 static void free_dtl_buffers(unsigned long *time_limit)
180 {
181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
182 	int cpu;
183 	struct paca_struct *pp;
184 
185 	for_each_possible_cpu(cpu) {
186 		pp = paca_ptrs[cpu];
187 		if (!pp->dispatch_log)
188 			continue;
189 		kmem_cache_free(dtl_cache, pp->dispatch_log);
190 		pp->dtl_ridx = 0;
191 		pp->dispatch_log = 0;
192 		pp->dispatch_log_end = 0;
193 		pp->dtl_curr = 0;
194 
195 		if (time_limit && time_after(jiffies, *time_limit)) {
196 			cond_resched();
197 			*time_limit = jiffies + HZ;
198 		}
199 	}
200 #endif
201 }
202 
203 static int init_cpu_associativity(void)
204 {
205 	vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
206 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
207 	pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
208 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209 
210 	if (!vcpu_associativity || !pcpu_associativity) {
211 		pr_err("error allocating memory for associativity information\n");
212 		return -ENOMEM;
213 	}
214 
215 	return 0;
216 }
217 
218 static void destroy_cpu_associativity(void)
219 {
220 	kfree(vcpu_associativity);
221 	kfree(pcpu_associativity);
222 	vcpu_associativity = pcpu_associativity = 0;
223 }
224 
225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
226 {
227 	__be32 *assoc;
228 	int rc = 0;
229 
230 	assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
231 	if (!assoc[0]) {
232 		rc = hcall_vphn(cpu, flag, &assoc[0]);
233 		if (rc)
234 			return NULL;
235 	}
236 
237 	return assoc;
238 }
239 
240 static __be32 *get_pcpu_associativity(int cpu)
241 {
242 	return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
243 }
244 
245 static __be32 *get_vcpu_associativity(int cpu)
246 {
247 	return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
248 }
249 
250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
251 {
252 	__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
253 
254 	if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
255 		return -EINVAL;
256 
257 	last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
258 	cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
259 
260 	if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
261 		return -EIO;
262 
263 	return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
264 }
265 
266 static int cpu_home_node_dispatch_distance(int disp_cpu)
267 {
268 	__be32 *disp_cpu_assoc, *vcpu_assoc;
269 	int vcpu_id = smp_processor_id();
270 
271 	if (disp_cpu >= NR_CPUS_H) {
272 		pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
273 						disp_cpu, NR_CPUS_H);
274 		return -EINVAL;
275 	}
276 
277 	disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
278 	vcpu_assoc = get_vcpu_associativity(vcpu_id);
279 
280 	if (!disp_cpu_assoc || !vcpu_assoc)
281 		return -EIO;
282 
283 	return cpu_distance(disp_cpu_assoc, vcpu_assoc);
284 }
285 
286 static void update_vcpu_disp_stat(int disp_cpu)
287 {
288 	struct vcpu_dispatch_data *disp;
289 	int distance;
290 
291 	disp = this_cpu_ptr(&vcpu_disp_data);
292 	if (disp->last_disp_cpu == -1) {
293 		disp->last_disp_cpu = disp_cpu;
294 		return;
295 	}
296 
297 	disp->total_disp++;
298 
299 	if (disp->last_disp_cpu == disp_cpu ||
300 		(cpu_first_thread_sibling(disp->last_disp_cpu) ==
301 					cpu_first_thread_sibling(disp_cpu)))
302 		disp->same_cpu_disp++;
303 	else {
304 		distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
305 								disp_cpu);
306 		if (distance < 0)
307 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
308 					smp_processor_id());
309 		else {
310 			switch (distance) {
311 			case 0:
312 				disp->same_chip_disp++;
313 				break;
314 			case 1:
315 				disp->diff_chip_disp++;
316 				break;
317 			case 2:
318 				disp->far_chip_disp++;
319 				break;
320 			default:
321 				pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
322 						 smp_processor_id(),
323 						 disp->last_disp_cpu,
324 						 disp_cpu,
325 						 distance);
326 			}
327 		}
328 	}
329 
330 	distance = cpu_home_node_dispatch_distance(disp_cpu);
331 	if (distance < 0)
332 		pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
333 				smp_processor_id());
334 	else {
335 		switch (distance) {
336 		case 0:
337 			disp->numa_home_disp++;
338 			break;
339 		case 1:
340 			disp->numa_remote_disp++;
341 			break;
342 		case 2:
343 			disp->numa_far_disp++;
344 			break;
345 		default:
346 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
347 						 smp_processor_id(),
348 						 disp_cpu,
349 						 distance);
350 		}
351 	}
352 
353 	disp->last_disp_cpu = disp_cpu;
354 }
355 
356 static void process_dtl_buffer(struct work_struct *work)
357 {
358 	struct dtl_entry dtle;
359 	u64 i = __this_cpu_read(dtl_entry_ridx);
360 	struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
361 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
362 	struct lppaca *vpa = local_paca->lppaca_ptr;
363 	struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
364 
365 	if (!local_paca->dispatch_log)
366 		return;
367 
368 	/* if we have been migrated away, we cancel ourself */
369 	if (d->cpu != smp_processor_id()) {
370 		pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
371 						smp_processor_id());
372 		return;
373 	}
374 
375 	if (i == be64_to_cpu(vpa->dtl_idx))
376 		goto out;
377 
378 	while (i < be64_to_cpu(vpa->dtl_idx)) {
379 		dtle = *dtl;
380 		barrier();
381 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
382 			/* buffer has overflowed */
383 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
384 				d->cpu,
385 				be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
386 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
387 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
388 			continue;
389 		}
390 		update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
391 		++i;
392 		++dtl;
393 		if (dtl == dtl_end)
394 			dtl = local_paca->dispatch_log;
395 	}
396 
397 	__this_cpu_write(dtl_entry_ridx, i);
398 
399 out:
400 	schedule_delayed_work_on(d->cpu, to_delayed_work(work),
401 					HZ / vcpudispatch_stats_freq);
402 }
403 
404 static int dtl_worker_online(unsigned int cpu)
405 {
406 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
407 
408 	memset(d, 0, sizeof(*d));
409 	INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
410 	d->cpu = cpu;
411 
412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
413 	per_cpu(dtl_entry_ridx, cpu) = 0;
414 	register_dtl_buffer(cpu);
415 #else
416 	per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
417 #endif
418 
419 	schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
420 	return 0;
421 }
422 
423 static int dtl_worker_offline(unsigned int cpu)
424 {
425 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
426 
427 	cancel_delayed_work_sync(&d->work);
428 
429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430 	unregister_dtl(get_hard_smp_processor_id(cpu));
431 #endif
432 
433 	return 0;
434 }
435 
436 static void set_global_dtl_mask(u8 mask)
437 {
438 	int cpu;
439 
440 	dtl_mask = mask;
441 	for_each_present_cpu(cpu)
442 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
443 }
444 
445 static void reset_global_dtl_mask(void)
446 {
447 	int cpu;
448 
449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
450 	dtl_mask = DTL_LOG_PREEMPT;
451 #else
452 	dtl_mask = 0;
453 #endif
454 	for_each_present_cpu(cpu)
455 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
456 }
457 
458 static int dtl_worker_enable(unsigned long *time_limit)
459 {
460 	int rc = 0, state;
461 
462 	if (!write_trylock(&dtl_access_lock)) {
463 		rc = -EBUSY;
464 		goto out;
465 	}
466 
467 	set_global_dtl_mask(DTL_LOG_ALL);
468 
469 	/* Setup dtl buffers and register those */
470 	alloc_dtl_buffers(time_limit);
471 
472 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
473 					dtl_worker_online, dtl_worker_offline);
474 	if (state < 0) {
475 		pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
476 		free_dtl_buffers(time_limit);
477 		reset_global_dtl_mask();
478 		write_unlock(&dtl_access_lock);
479 		rc = -EINVAL;
480 		goto out;
481 	}
482 	dtl_worker_state = state;
483 
484 out:
485 	return rc;
486 }
487 
488 static void dtl_worker_disable(unsigned long *time_limit)
489 {
490 	cpuhp_remove_state(dtl_worker_state);
491 	free_dtl_buffers(time_limit);
492 	reset_global_dtl_mask();
493 	write_unlock(&dtl_access_lock);
494 }
495 
496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
497 		size_t count, loff_t *ppos)
498 {
499 	unsigned long time_limit = jiffies + HZ;
500 	struct vcpu_dispatch_data *disp;
501 	int rc, cmd, cpu;
502 	char buf[16];
503 
504 	if (count > 15)
505 		return -EINVAL;
506 
507 	if (copy_from_user(buf, p, count))
508 		return -EFAULT;
509 
510 	buf[count] = 0;
511 	rc = kstrtoint(buf, 0, &cmd);
512 	if (rc || cmd < 0 || cmd > 1) {
513 		pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
514 		return rc ? rc : -EINVAL;
515 	}
516 
517 	mutex_lock(&dtl_enable_mutex);
518 
519 	if ((cmd == 0 && !vcpudispatch_stats_on) ||
520 			(cmd == 1 && vcpudispatch_stats_on))
521 		goto out;
522 
523 	if (cmd) {
524 		rc = init_cpu_associativity();
525 		if (rc)
526 			goto out;
527 
528 		for_each_possible_cpu(cpu) {
529 			disp = per_cpu_ptr(&vcpu_disp_data, cpu);
530 			memset(disp, 0, sizeof(*disp));
531 			disp->last_disp_cpu = -1;
532 		}
533 
534 		rc = dtl_worker_enable(&time_limit);
535 		if (rc) {
536 			destroy_cpu_associativity();
537 			goto out;
538 		}
539 	} else {
540 		dtl_worker_disable(&time_limit);
541 		destroy_cpu_associativity();
542 	}
543 
544 	vcpudispatch_stats_on = cmd;
545 
546 out:
547 	mutex_unlock(&dtl_enable_mutex);
548 	if (rc)
549 		return rc;
550 	return count;
551 }
552 
553 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
554 {
555 	int cpu;
556 	struct vcpu_dispatch_data *disp;
557 
558 	if (!vcpudispatch_stats_on) {
559 		seq_puts(p, "off\n");
560 		return 0;
561 	}
562 
563 	for_each_online_cpu(cpu) {
564 		disp = per_cpu_ptr(&vcpu_disp_data, cpu);
565 		seq_printf(p, "cpu%d", cpu);
566 		seq_put_decimal_ull(p, " ", disp->total_disp);
567 		seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
568 		seq_put_decimal_ull(p, " ", disp->same_chip_disp);
569 		seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
570 		seq_put_decimal_ull(p, " ", disp->far_chip_disp);
571 		seq_put_decimal_ull(p, " ", disp->numa_home_disp);
572 		seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
573 		seq_put_decimal_ull(p, " ", disp->numa_far_disp);
574 		seq_puts(p, "\n");
575 	}
576 
577 	return 0;
578 }
579 
580 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
581 {
582 	return single_open(file, vcpudispatch_stats_display, NULL);
583 }
584 
585 static const struct file_operations vcpudispatch_stats_proc_ops = {
586 	.open		= vcpudispatch_stats_open,
587 	.read		= seq_read,
588 	.write		= vcpudispatch_stats_write,
589 	.llseek		= seq_lseek,
590 	.release	= single_release,
591 };
592 
593 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
594 		const char __user *p, size_t count, loff_t *ppos)
595 {
596 	int rc, freq;
597 	char buf[16];
598 
599 	if (count > 15)
600 		return -EINVAL;
601 
602 	if (copy_from_user(buf, p, count))
603 		return -EFAULT;
604 
605 	buf[count] = 0;
606 	rc = kstrtoint(buf, 0, &freq);
607 	if (rc || freq < 1 || freq > HZ) {
608 		pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
609 				HZ);
610 		return rc ? rc : -EINVAL;
611 	}
612 
613 	vcpudispatch_stats_freq = freq;
614 
615 	return count;
616 }
617 
618 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
619 {
620 	seq_printf(p, "%d\n", vcpudispatch_stats_freq);
621 	return 0;
622 }
623 
624 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
625 {
626 	return single_open(file, vcpudispatch_stats_freq_display, NULL);
627 }
628 
629 static const struct file_operations vcpudispatch_stats_freq_proc_ops = {
630 	.open		= vcpudispatch_stats_freq_open,
631 	.read		= seq_read,
632 	.write		= vcpudispatch_stats_freq_write,
633 	.llseek		= seq_lseek,
634 	.release	= single_release,
635 };
636 
637 static int __init vcpudispatch_stats_procfs_init(void)
638 {
639 	if (!lppaca_shared_proc(get_lppaca()))
640 		return 0;
641 
642 	if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
643 					&vcpudispatch_stats_proc_ops))
644 		pr_err("vcpudispatch_stats: error creating procfs file\n");
645 	else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
646 					&vcpudispatch_stats_freq_proc_ops))
647 		pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
648 
649 	return 0;
650 }
651 
652 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
653 #endif /* CONFIG_PPC_SPLPAR */
654 
655 void vpa_init(int cpu)
656 {
657 	int hwcpu = get_hard_smp_processor_id(cpu);
658 	unsigned long addr;
659 	long ret;
660 
661 	/*
662 	 * The spec says it "may be problematic" if CPU x registers the VPA of
663 	 * CPU y. We should never do that, but wail if we ever do.
664 	 */
665 	WARN_ON(cpu != smp_processor_id());
666 
667 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
668 		lppaca_of(cpu).vmxregs_in_use = 1;
669 
670 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
671 		lppaca_of(cpu).ebb_regs_in_use = 1;
672 
673 	addr = __pa(&lppaca_of(cpu));
674 	ret = register_vpa(hwcpu, addr);
675 
676 	if (ret) {
677 		pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
678 		       "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
679 		return;
680 	}
681 
682 #ifdef CONFIG_PPC_BOOK3S_64
683 	/*
684 	 * PAPR says this feature is SLB-Buffer but firmware never
685 	 * reports that.  All SPLPAR support SLB shadow buffer.
686 	 */
687 	if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
688 		addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
689 		ret = register_slb_shadow(hwcpu, addr);
690 		if (ret)
691 			pr_err("WARNING: SLB shadow buffer registration for "
692 			       "cpu %d (hw %d) of area %lx failed with %ld\n",
693 			       cpu, hwcpu, addr, ret);
694 	}
695 #endif /* CONFIG_PPC_BOOK3S_64 */
696 
697 	/*
698 	 * Register dispatch trace log, if one has been allocated.
699 	 */
700 	register_dtl_buffer(cpu);
701 }
702 
703 #ifdef CONFIG_PPC_BOOK3S_64
704 
705 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
706 				     unsigned long vpn, unsigned long pa,
707 				     unsigned long rflags, unsigned long vflags,
708 				     int psize, int apsize, int ssize)
709 {
710 	unsigned long lpar_rc;
711 	unsigned long flags;
712 	unsigned long slot;
713 	unsigned long hpte_v, hpte_r;
714 
715 	if (!(vflags & HPTE_V_BOLTED))
716 		pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
717 			 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
718 			 hpte_group, vpn,  pa, rflags, vflags, psize);
719 
720 	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
721 	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
722 
723 	if (!(vflags & HPTE_V_BOLTED))
724 		pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
725 
726 	/* Now fill in the actual HPTE */
727 	/* Set CEC cookie to 0         */
728 	/* Zero page = 0               */
729 	/* I-cache Invalidate = 0      */
730 	/* I-cache synchronize = 0     */
731 	/* Exact = 0                   */
732 	flags = 0;
733 
734 	if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
735 		flags |= H_COALESCE_CAND;
736 
737 	lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
738 	if (unlikely(lpar_rc == H_PTEG_FULL)) {
739 		pr_devel("Hash table group is full\n");
740 		return -1;
741 	}
742 
743 	/*
744 	 * Since we try and ioremap PHBs we don't own, the pte insert
745 	 * will fail. However we must catch the failure in hash_page
746 	 * or we will loop forever, so return -2 in this case.
747 	 */
748 	if (unlikely(lpar_rc != H_SUCCESS)) {
749 		pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
750 		return -2;
751 	}
752 	if (!(vflags & HPTE_V_BOLTED))
753 		pr_devel(" -> slot: %lu\n", slot & 7);
754 
755 	/* Because of iSeries, we have to pass down the secondary
756 	 * bucket bit here as well
757 	 */
758 	return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
759 }
760 
761 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
762 
763 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
764 {
765 	unsigned long slot_offset;
766 	unsigned long lpar_rc;
767 	int i;
768 	unsigned long dummy1, dummy2;
769 
770 	/* pick a random slot to start at */
771 	slot_offset = mftb() & 0x7;
772 
773 	for (i = 0; i < HPTES_PER_GROUP; i++) {
774 
775 		/* don't remove a bolted entry */
776 		lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
777 					   (0x1UL << 4), &dummy1, &dummy2);
778 		if (lpar_rc == H_SUCCESS)
779 			return i;
780 
781 		/*
782 		 * The test for adjunct partition is performed before the
783 		 * ANDCOND test.  H_RESOURCE may be returned, so we need to
784 		 * check for that as well.
785 		 */
786 		BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
787 
788 		slot_offset++;
789 		slot_offset &= 0x7;
790 	}
791 
792 	return -1;
793 }
794 
795 static void manual_hpte_clear_all(void)
796 {
797 	unsigned long size_bytes = 1UL << ppc64_pft_size;
798 	unsigned long hpte_count = size_bytes >> 4;
799 	struct {
800 		unsigned long pteh;
801 		unsigned long ptel;
802 	} ptes[4];
803 	long lpar_rc;
804 	unsigned long i, j;
805 
806 	/* Read in batches of 4,
807 	 * invalidate only valid entries not in the VRMA
808 	 * hpte_count will be a multiple of 4
809          */
810 	for (i = 0; i < hpte_count; i += 4) {
811 		lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
812 		if (lpar_rc != H_SUCCESS) {
813 			pr_info("Failed to read hash page table at %ld err %ld\n",
814 				i, lpar_rc);
815 			continue;
816 		}
817 		for (j = 0; j < 4; j++){
818 			if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
819 				HPTE_V_VRMA_MASK)
820 				continue;
821 			if (ptes[j].pteh & HPTE_V_VALID)
822 				plpar_pte_remove_raw(0, i + j, 0,
823 					&(ptes[j].pteh), &(ptes[j].ptel));
824 		}
825 	}
826 }
827 
828 static int hcall_hpte_clear_all(void)
829 {
830 	int rc;
831 
832 	do {
833 		rc = plpar_hcall_norets(H_CLEAR_HPT);
834 	} while (rc == H_CONTINUE);
835 
836 	return rc;
837 }
838 
839 static void pseries_hpte_clear_all(void)
840 {
841 	int rc;
842 
843 	rc = hcall_hpte_clear_all();
844 	if (rc != H_SUCCESS)
845 		manual_hpte_clear_all();
846 
847 #ifdef __LITTLE_ENDIAN__
848 	/*
849 	 * Reset exceptions to big endian.
850 	 *
851 	 * FIXME this is a hack for kexec, we need to reset the exception
852 	 * endian before starting the new kernel and this is a convenient place
853 	 * to do it.
854 	 *
855 	 * This is also called on boot when a fadump happens. In that case we
856 	 * must not change the exception endian mode.
857 	 */
858 	if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
859 		pseries_big_endian_exceptions();
860 #endif
861 }
862 
863 /*
864  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
865  * the low 3 bits of flags happen to line up.  So no transform is needed.
866  * We can probably optimize here and assume the high bits of newpp are
867  * already zero.  For now I am paranoid.
868  */
869 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
870 				       unsigned long newpp,
871 				       unsigned long vpn,
872 				       int psize, int apsize,
873 				       int ssize, unsigned long inv_flags)
874 {
875 	unsigned long lpar_rc;
876 	unsigned long flags;
877 	unsigned long want_v;
878 
879 	want_v = hpte_encode_avpn(vpn, psize, ssize);
880 
881 	flags = (newpp & 7) | H_AVPN;
882 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
883 		/* Move pp0 into bit 8 (IBM 55) */
884 		flags |= (newpp & HPTE_R_PP0) >> 55;
885 
886 	pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
887 		 want_v, slot, flags, psize);
888 
889 	lpar_rc = plpar_pte_protect(flags, slot, want_v);
890 
891 	if (lpar_rc == H_NOT_FOUND) {
892 		pr_devel("not found !\n");
893 		return -1;
894 	}
895 
896 	pr_devel("ok\n");
897 
898 	BUG_ON(lpar_rc != H_SUCCESS);
899 
900 	return 0;
901 }
902 
903 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
904 {
905 	long lpar_rc;
906 	unsigned long i, j;
907 	struct {
908 		unsigned long pteh;
909 		unsigned long ptel;
910 	} ptes[4];
911 
912 	for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
913 
914 		lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
915 		if (lpar_rc != H_SUCCESS) {
916 			pr_info("Failed to read hash page table at %ld err %ld\n",
917 				hpte_group, lpar_rc);
918 			continue;
919 		}
920 
921 		for (j = 0; j < 4; j++) {
922 			if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
923 			    (ptes[j].pteh & HPTE_V_VALID))
924 				return i + j;
925 		}
926 	}
927 
928 	return -1;
929 }
930 
931 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
932 {
933 	long slot;
934 	unsigned long hash;
935 	unsigned long want_v;
936 	unsigned long hpte_group;
937 
938 	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
939 	want_v = hpte_encode_avpn(vpn, psize, ssize);
940 
941 	/* Bolted entries are always in the primary group */
942 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
943 	slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
944 	if (slot < 0)
945 		return -1;
946 	return hpte_group + slot;
947 }
948 
949 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
950 					     unsigned long ea,
951 					     int psize, int ssize)
952 {
953 	unsigned long vpn;
954 	unsigned long lpar_rc, slot, vsid, flags;
955 
956 	vsid = get_kernel_vsid(ea, ssize);
957 	vpn = hpt_vpn(ea, vsid, ssize);
958 
959 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
960 	BUG_ON(slot == -1);
961 
962 	flags = newpp & 7;
963 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
964 		/* Move pp0 into bit 8 (IBM 55) */
965 		flags |= (newpp & HPTE_R_PP0) >> 55;
966 
967 	lpar_rc = plpar_pte_protect(flags, slot, 0);
968 
969 	BUG_ON(lpar_rc != H_SUCCESS);
970 }
971 
972 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
973 					 int psize, int apsize,
974 					 int ssize, int local)
975 {
976 	unsigned long want_v;
977 	unsigned long lpar_rc;
978 	unsigned long dummy1, dummy2;
979 
980 	pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
981 		 slot, vpn, psize, local);
982 
983 	want_v = hpte_encode_avpn(vpn, psize, ssize);
984 	lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
985 	if (lpar_rc == H_NOT_FOUND)
986 		return;
987 
988 	BUG_ON(lpar_rc != H_SUCCESS);
989 }
990 
991 
992 /*
993  * As defined in the PAPR's section 14.5.4.1.8
994  * The control mask doesn't include the returned reference and change bit from
995  * the processed PTE.
996  */
997 #define HBLKR_AVPN		0x0100000000000000UL
998 #define HBLKR_CTRL_MASK		0xf800000000000000UL
999 #define HBLKR_CTRL_SUCCESS	0x8000000000000000UL
1000 #define HBLKR_CTRL_ERRNOTFOUND	0x8800000000000000UL
1001 #define HBLKR_CTRL_ERRBUSY	0xa000000000000000UL
1002 
1003 /*
1004  * Returned true if we are supporting this block size for the specified segment
1005  * base page size and actual page size.
1006  *
1007  * Currently, we only support 8 size block.
1008  */
1009 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1010 {
1011 	return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1012 }
1013 
1014 /**
1015  * H_BLOCK_REMOVE caller.
1016  * @idx should point to the latest @param entry set with a PTEX.
1017  * If PTE cannot be processed because another CPUs has already locked that
1018  * group, those entries are put back in @param starting at index 1.
1019  * If entries has to be retried and @retry_busy is set to true, these entries
1020  * are retried until success. If @retry_busy is set to false, the returned
1021  * is the number of entries yet to process.
1022  */
1023 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1024 				       bool retry_busy)
1025 {
1026 	unsigned long i, rc, new_idx;
1027 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1028 
1029 	if (idx < 2) {
1030 		pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1031 		return 0;
1032 	}
1033 again:
1034 	new_idx = 0;
1035 	if (idx > PLPAR_HCALL9_BUFSIZE) {
1036 		pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1037 		idx = PLPAR_HCALL9_BUFSIZE;
1038 	} else if (idx < PLPAR_HCALL9_BUFSIZE)
1039 		param[idx] = HBR_END;
1040 
1041 	rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1042 			  param[0], /* AVA */
1043 			  param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1044 			  param[5],  param[6],  param[7],  param[8]);
1045 	if (rc == H_SUCCESS)
1046 		return 0;
1047 
1048 	BUG_ON(rc != H_PARTIAL);
1049 
1050 	/* Check that the unprocessed entries were 'not found' or 'busy' */
1051 	for (i = 0; i < idx-1; i++) {
1052 		unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1053 
1054 		if (ctrl == HBLKR_CTRL_ERRBUSY) {
1055 			param[++new_idx] = param[i+1];
1056 			continue;
1057 		}
1058 
1059 		BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1060 		       && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1061 	}
1062 
1063 	/*
1064 	 * If there were entries found busy, retry these entries if requested,
1065 	 * of if all the entries have to be retried.
1066 	 */
1067 	if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1068 		idx = new_idx + 1;
1069 		goto again;
1070 	}
1071 
1072 	return new_idx;
1073 }
1074 
1075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1076 /*
1077  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1078  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1079  */
1080 #define PPC64_HUGE_HPTE_BATCH 12
1081 
1082 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1083 				      int count, int psize, int ssize)
1084 {
1085 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1086 	unsigned long shift, current_vpgb, vpgb;
1087 	int i, pix = 0;
1088 
1089 	shift = mmu_psize_defs[psize].shift;
1090 
1091 	for (i = 0; i < count; i++) {
1092 		/*
1093 		 * Shifting 3 bits more on the right to get a
1094 		 * 8 pages aligned virtual addresse.
1095 		 */
1096 		vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1097 		if (!pix || vpgb != current_vpgb) {
1098 			/*
1099 			 * Need to start a new 8 pages block, flush
1100 			 * the current one if needed.
1101 			 */
1102 			if (pix)
1103 				(void)call_block_remove(pix, param, true);
1104 			current_vpgb = vpgb;
1105 			param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1106 			pix = 1;
1107 		}
1108 
1109 		param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1110 		if (pix == PLPAR_HCALL9_BUFSIZE) {
1111 			pix = call_block_remove(pix, param, false);
1112 			/*
1113 			 * pix = 0 means that all the entries were
1114 			 * removed, we can start a new block.
1115 			 * Otherwise, this means that there are entries
1116 			 * to retry, and pix points to latest one, so
1117 			 * we should increment it and try to continue
1118 			 * the same block.
1119 			 */
1120 			if (pix)
1121 				pix++;
1122 		}
1123 	}
1124 	if (pix)
1125 		(void)call_block_remove(pix, param, true);
1126 }
1127 
1128 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1129 				     int count, int psize, int ssize)
1130 {
1131 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1132 	int i = 0, pix = 0, rc;
1133 
1134 	for (i = 0; i < count; i++) {
1135 
1136 		if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1137 			pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1138 						     ssize, 0);
1139 		} else {
1140 			param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1141 			param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1142 			pix += 2;
1143 			if (pix == 8) {
1144 				rc = plpar_hcall9(H_BULK_REMOVE, param,
1145 						  param[0], param[1], param[2],
1146 						  param[3], param[4], param[5],
1147 						  param[6], param[7]);
1148 				BUG_ON(rc != H_SUCCESS);
1149 				pix = 0;
1150 			}
1151 		}
1152 	}
1153 	if (pix) {
1154 		param[pix] = HBR_END;
1155 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1156 				  param[2], param[3], param[4], param[5],
1157 				  param[6], param[7]);
1158 		BUG_ON(rc != H_SUCCESS);
1159 	}
1160 }
1161 
1162 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1163 						      unsigned long *vpn,
1164 						      int count, int psize,
1165 						      int ssize)
1166 {
1167 	unsigned long flags = 0;
1168 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1169 
1170 	if (lock_tlbie)
1171 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1172 
1173 	/* Assuming THP size is 16M */
1174 	if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1175 		hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1176 	else
1177 		hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1178 
1179 	if (lock_tlbie)
1180 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1181 }
1182 
1183 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1184 					     unsigned long addr,
1185 					     unsigned char *hpte_slot_array,
1186 					     int psize, int ssize, int local)
1187 {
1188 	int i, index = 0;
1189 	unsigned long s_addr = addr;
1190 	unsigned int max_hpte_count, valid;
1191 	unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1192 	unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1193 	unsigned long shift, hidx, vpn = 0, hash, slot;
1194 
1195 	shift = mmu_psize_defs[psize].shift;
1196 	max_hpte_count = 1U << (PMD_SHIFT - shift);
1197 
1198 	for (i = 0; i < max_hpte_count; i++) {
1199 		valid = hpte_valid(hpte_slot_array, i);
1200 		if (!valid)
1201 			continue;
1202 		hidx =  hpte_hash_index(hpte_slot_array, i);
1203 
1204 		/* get the vpn */
1205 		addr = s_addr + (i * (1ul << shift));
1206 		vpn = hpt_vpn(addr, vsid, ssize);
1207 		hash = hpt_hash(vpn, shift, ssize);
1208 		if (hidx & _PTEIDX_SECONDARY)
1209 			hash = ~hash;
1210 
1211 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1212 		slot += hidx & _PTEIDX_GROUP_IX;
1213 
1214 		slot_array[index] = slot;
1215 		vpn_array[index] = vpn;
1216 		if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1217 			/*
1218 			 * Now do a bluk invalidate
1219 			 */
1220 			__pSeries_lpar_hugepage_invalidate(slot_array,
1221 							   vpn_array,
1222 							   PPC64_HUGE_HPTE_BATCH,
1223 							   psize, ssize);
1224 			index = 0;
1225 		} else
1226 			index++;
1227 	}
1228 	if (index)
1229 		__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1230 						   index, psize, ssize);
1231 }
1232 #else
1233 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1234 					     unsigned long addr,
1235 					     unsigned char *hpte_slot_array,
1236 					     int psize, int ssize, int local)
1237 {
1238 	WARN(1, "%s called without THP support\n", __func__);
1239 }
1240 #endif
1241 
1242 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1243 					  int psize, int ssize)
1244 {
1245 	unsigned long vpn;
1246 	unsigned long slot, vsid;
1247 
1248 	vsid = get_kernel_vsid(ea, ssize);
1249 	vpn = hpt_vpn(ea, vsid, ssize);
1250 
1251 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1252 	if (slot == -1)
1253 		return -ENOENT;
1254 
1255 	/*
1256 	 * lpar doesn't use the passed actual page size
1257 	 */
1258 	pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1259 	return 0;
1260 }
1261 
1262 
1263 static inline unsigned long compute_slot(real_pte_t pte,
1264 					 unsigned long vpn,
1265 					 unsigned long index,
1266 					 unsigned long shift,
1267 					 int ssize)
1268 {
1269 	unsigned long slot, hash, hidx;
1270 
1271 	hash = hpt_hash(vpn, shift, ssize);
1272 	hidx = __rpte_to_hidx(pte, index);
1273 	if (hidx & _PTEIDX_SECONDARY)
1274 		hash = ~hash;
1275 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1276 	slot += hidx & _PTEIDX_GROUP_IX;
1277 	return slot;
1278 }
1279 
1280 /**
1281  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1282  * "all within the same naturally aligned 8 page virtual address block".
1283  */
1284 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1285 			    unsigned long *param)
1286 {
1287 	unsigned long vpn;
1288 	unsigned long i, pix = 0;
1289 	unsigned long index, shift, slot, current_vpgb, vpgb;
1290 	real_pte_t pte;
1291 	int psize, ssize;
1292 
1293 	psize = batch->psize;
1294 	ssize = batch->ssize;
1295 
1296 	for (i = 0; i < number; i++) {
1297 		vpn = batch->vpn[i];
1298 		pte = batch->pte[i];
1299 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1300 			/*
1301 			 * Shifting 3 bits more on the right to get a
1302 			 * 8 pages aligned virtual addresse.
1303 			 */
1304 			vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1305 			if (!pix || vpgb != current_vpgb) {
1306 				/*
1307 				 * Need to start a new 8 pages block, flush
1308 				 * the current one if needed.
1309 				 */
1310 				if (pix)
1311 					(void)call_block_remove(pix, param,
1312 								true);
1313 				current_vpgb = vpgb;
1314 				param[0] = hpte_encode_avpn(vpn, psize,
1315 							    ssize);
1316 				pix = 1;
1317 			}
1318 
1319 			slot = compute_slot(pte, vpn, index, shift, ssize);
1320 			param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1321 
1322 			if (pix == PLPAR_HCALL9_BUFSIZE) {
1323 				pix = call_block_remove(pix, param, false);
1324 				/*
1325 				 * pix = 0 means that all the entries were
1326 				 * removed, we can start a new block.
1327 				 * Otherwise, this means that there are entries
1328 				 * to retry, and pix points to latest one, so
1329 				 * we should increment it and try to continue
1330 				 * the same block.
1331 				 */
1332 				if (pix)
1333 					pix++;
1334 			}
1335 		} pte_iterate_hashed_end();
1336 	}
1337 
1338 	if (pix)
1339 		(void)call_block_remove(pix, param, true);
1340 }
1341 
1342 /*
1343  * TLB Block Invalidate Characteristics
1344  *
1345  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1346  * is able to process for each couple segment base page size, actual page size.
1347  *
1348  * The ibm,get-system-parameter properties is returning a buffer with the
1349  * following layout:
1350  *
1351  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1352  * -----------------
1353  * TLB Block Invalidate Specifiers:
1354  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1355  * [ 1 byte Number of page sizes (N) that are supported for the specified
1356  *          TLB invalidate block size ]
1357  * [ 1 byte Encoded segment base page size and actual page size
1358  *          MSB=0 means 4k segment base page size and actual page size
1359  *          MSB=1 the penc value in mmu_psize_def ]
1360  * ...
1361  * -----------------
1362  * Next TLB Block Invalidate Specifiers...
1363  * -----------------
1364  * [ 0 ]
1365  */
1366 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1367 					unsigned int block_size)
1368 {
1369 	if (block_size > hblkrm_size[bpsize][psize])
1370 		hblkrm_size[bpsize][psize] = block_size;
1371 }
1372 
1373 /*
1374  * Decode the Encoded segment base page size and actual page size.
1375  * PAPR specifies:
1376  *   - bit 7 is the L bit
1377  *   - bits 0-5 are the penc value
1378  * If the L bit is 0, this means 4K segment base page size and actual page size
1379  * otherwise the penc value should be read.
1380  */
1381 #define HBLKRM_L_MASK		0x80
1382 #define HBLKRM_PENC_MASK	0x3f
1383 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1384 					      unsigned int block_size)
1385 {
1386 	unsigned int bpsize, psize;
1387 
1388 	/* First, check the L bit, if not set, this means 4K */
1389 	if ((lp & HBLKRM_L_MASK) == 0) {
1390 		set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1391 		return;
1392 	}
1393 
1394 	lp &= HBLKRM_PENC_MASK;
1395 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1396 		struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1397 
1398 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1399 			if (def->penc[psize] == lp) {
1400 				set_hblkrm_bloc_size(bpsize, psize, block_size);
1401 				return;
1402 			}
1403 		}
1404 	}
1405 }
1406 
1407 #define SPLPAR_TLB_BIC_TOKEN		50
1408 
1409 /*
1410  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1411  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1412  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1413  * (128 bytes) for the buffer to get plenty of space.
1414  */
1415 #define SPLPAR_TLB_BIC_MAXLENGTH	128
1416 
1417 void __init pseries_lpar_read_hblkrm_characteristics(void)
1418 {
1419 	unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1420 	int call_status, len, idx, bpsize;
1421 
1422 	spin_lock(&rtas_data_buf_lock);
1423 	memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1424 	call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1425 				NULL,
1426 				SPLPAR_TLB_BIC_TOKEN,
1427 				__pa(rtas_data_buf),
1428 				RTAS_DATA_BUF_SIZE);
1429 	memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1430 	local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1431 	spin_unlock(&rtas_data_buf_lock);
1432 
1433 	if (call_status != 0) {
1434 		pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1435 			__FILE__, __func__, call_status);
1436 		return;
1437 	}
1438 
1439 	/*
1440 	 * The first two (2) bytes of the data in the buffer are the length of
1441 	 * the returned data, not counting these first two (2) bytes.
1442 	 */
1443 	len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1444 	if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1445 		pr_warn("%s too large returned buffer %d", __func__, len);
1446 		return;
1447 	}
1448 
1449 	idx = 2;
1450 	while (idx < len) {
1451 		u8 block_shift = local_buffer[idx++];
1452 		u32 block_size;
1453 		unsigned int npsize;
1454 
1455 		if (!block_shift)
1456 			break;
1457 
1458 		block_size = 1 << block_shift;
1459 
1460 		for (npsize = local_buffer[idx++];
1461 		     npsize > 0 && idx < len; npsize--)
1462 			check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1463 					    block_size);
1464 	}
1465 
1466 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1467 		for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1468 			if (hblkrm_size[bpsize][idx])
1469 				pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1470 					bpsize, idx, hblkrm_size[bpsize][idx]);
1471 }
1472 
1473 /*
1474  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1475  * lock.
1476  */
1477 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1478 {
1479 	unsigned long vpn;
1480 	unsigned long i, pix, rc;
1481 	unsigned long flags = 0;
1482 	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1483 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1484 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1485 	unsigned long index, shift, slot;
1486 	real_pte_t pte;
1487 	int psize, ssize;
1488 
1489 	if (lock_tlbie)
1490 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1491 
1492 	if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1493 		do_block_remove(number, batch, param);
1494 		goto out;
1495 	}
1496 
1497 	psize = batch->psize;
1498 	ssize = batch->ssize;
1499 	pix = 0;
1500 	for (i = 0; i < number; i++) {
1501 		vpn = batch->vpn[i];
1502 		pte = batch->pte[i];
1503 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1504 			slot = compute_slot(pte, vpn, index, shift, ssize);
1505 			if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1506 				/*
1507 				 * lpar doesn't use the passed actual page size
1508 				 */
1509 				pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1510 							     0, ssize, local);
1511 			} else {
1512 				param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1513 				param[pix+1] = hpte_encode_avpn(vpn, psize,
1514 								ssize);
1515 				pix += 2;
1516 				if (pix == 8) {
1517 					rc = plpar_hcall9(H_BULK_REMOVE, param,
1518 						param[0], param[1], param[2],
1519 						param[3], param[4], param[5],
1520 						param[6], param[7]);
1521 					BUG_ON(rc != H_SUCCESS);
1522 					pix = 0;
1523 				}
1524 			}
1525 		} pte_iterate_hashed_end();
1526 	}
1527 	if (pix) {
1528 		param[pix] = HBR_END;
1529 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1530 				  param[2], param[3], param[4], param[5],
1531 				  param[6], param[7]);
1532 		BUG_ON(rc != H_SUCCESS);
1533 	}
1534 
1535 out:
1536 	if (lock_tlbie)
1537 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1538 }
1539 
1540 static int __init disable_bulk_remove(char *str)
1541 {
1542 	if (strcmp(str, "off") == 0 &&
1543 	    firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1544 		pr_info("Disabling BULK_REMOVE firmware feature");
1545 		powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1546 	}
1547 	return 1;
1548 }
1549 
1550 __setup("bulk_remove=", disable_bulk_remove);
1551 
1552 #define HPT_RESIZE_TIMEOUT	10000 /* ms */
1553 
1554 struct hpt_resize_state {
1555 	unsigned long shift;
1556 	int commit_rc;
1557 };
1558 
1559 static int pseries_lpar_resize_hpt_commit(void *data)
1560 {
1561 	struct hpt_resize_state *state = data;
1562 
1563 	state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1564 	if (state->commit_rc != H_SUCCESS)
1565 		return -EIO;
1566 
1567 	/* Hypervisor has transitioned the HTAB, update our globals */
1568 	ppc64_pft_size = state->shift;
1569 	htab_size_bytes = 1UL << ppc64_pft_size;
1570 	htab_hash_mask = (htab_size_bytes >> 7) - 1;
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Must be called in process context. The caller must hold the
1577  * cpus_lock.
1578  */
1579 static int pseries_lpar_resize_hpt(unsigned long shift)
1580 {
1581 	struct hpt_resize_state state = {
1582 		.shift = shift,
1583 		.commit_rc = H_FUNCTION,
1584 	};
1585 	unsigned int delay, total_delay = 0;
1586 	int rc;
1587 	ktime_t t0, t1, t2;
1588 
1589 	might_sleep();
1590 
1591 	if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1592 		return -ENODEV;
1593 
1594 	pr_info("Attempting to resize HPT to shift %lu\n", shift);
1595 
1596 	t0 = ktime_get();
1597 
1598 	rc = plpar_resize_hpt_prepare(0, shift);
1599 	while (H_IS_LONG_BUSY(rc)) {
1600 		delay = get_longbusy_msecs(rc);
1601 		total_delay += delay;
1602 		if (total_delay > HPT_RESIZE_TIMEOUT) {
1603 			/* prepare with shift==0 cancels an in-progress resize */
1604 			rc = plpar_resize_hpt_prepare(0, 0);
1605 			if (rc != H_SUCCESS)
1606 				pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1607 				       rc);
1608 			return -ETIMEDOUT;
1609 		}
1610 		msleep(delay);
1611 		rc = plpar_resize_hpt_prepare(0, shift);
1612 	};
1613 
1614 	switch (rc) {
1615 	case H_SUCCESS:
1616 		/* Continue on */
1617 		break;
1618 
1619 	case H_PARAMETER:
1620 		pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1621 		return -EINVAL;
1622 	case H_RESOURCE:
1623 		pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1624 		return -EPERM;
1625 	default:
1626 		pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1627 		return -EIO;
1628 	}
1629 
1630 	t1 = ktime_get();
1631 
1632 	rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1633 				     &state, NULL);
1634 
1635 	t2 = ktime_get();
1636 
1637 	if (rc != 0) {
1638 		switch (state.commit_rc) {
1639 		case H_PTEG_FULL:
1640 			return -ENOSPC;
1641 
1642 		default:
1643 			pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1644 				state.commit_rc);
1645 			return -EIO;
1646 		};
1647 	}
1648 
1649 	pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1650 		shift, (long long) ktime_ms_delta(t1, t0),
1651 		(long long) ktime_ms_delta(t2, t1));
1652 
1653 	return 0;
1654 }
1655 
1656 static int pseries_lpar_register_process_table(unsigned long base,
1657 			unsigned long page_size, unsigned long table_size)
1658 {
1659 	long rc;
1660 	unsigned long flags = 0;
1661 
1662 	if (table_size)
1663 		flags |= PROC_TABLE_NEW;
1664 	if (radix_enabled())
1665 		flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
1666 	else
1667 		flags |= PROC_TABLE_HPT_SLB;
1668 	for (;;) {
1669 		rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1670 					page_size, table_size);
1671 		if (!H_IS_LONG_BUSY(rc))
1672 			break;
1673 		mdelay(get_longbusy_msecs(rc));
1674 	}
1675 	if (rc != H_SUCCESS) {
1676 		pr_err("Failed to register process table (rc=%ld)\n", rc);
1677 		BUG();
1678 	}
1679 	return rc;
1680 }
1681 
1682 void __init hpte_init_pseries(void)
1683 {
1684 	mmu_hash_ops.hpte_invalidate	 = pSeries_lpar_hpte_invalidate;
1685 	mmu_hash_ops.hpte_updatepp	 = pSeries_lpar_hpte_updatepp;
1686 	mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1687 	mmu_hash_ops.hpte_insert	 = pSeries_lpar_hpte_insert;
1688 	mmu_hash_ops.hpte_remove	 = pSeries_lpar_hpte_remove;
1689 	mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1690 	mmu_hash_ops.flush_hash_range	 = pSeries_lpar_flush_hash_range;
1691 	mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1692 	mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1693 
1694 	if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1695 		mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1696 
1697 	/*
1698 	 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1699 	 * to inform the hypervisor that we wish to use the HPT.
1700 	 */
1701 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1702 		pseries_lpar_register_process_table(0, 0, 0);
1703 }
1704 
1705 void radix_init_pseries(void)
1706 {
1707 	pr_info("Using radix MMU under hypervisor\n");
1708 
1709 	pseries_lpar_register_process_table(__pa(process_tb),
1710 						0, PRTB_SIZE_SHIFT - 12);
1711 }
1712 
1713 #ifdef CONFIG_PPC_SMLPAR
1714 #define CMO_FREE_HINT_DEFAULT 1
1715 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1716 
1717 static int __init cmo_free_hint(char *str)
1718 {
1719 	char *parm;
1720 	parm = strstrip(str);
1721 
1722 	if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1723 		pr_info("%s: CMO free page hinting is not active.\n", __func__);
1724 		cmo_free_hint_flag = 0;
1725 		return 1;
1726 	}
1727 
1728 	cmo_free_hint_flag = 1;
1729 	pr_info("%s: CMO free page hinting is active.\n", __func__);
1730 
1731 	if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1732 		return 1;
1733 
1734 	return 0;
1735 }
1736 
1737 __setup("cmo_free_hint=", cmo_free_hint);
1738 
1739 static void pSeries_set_page_state(struct page *page, int order,
1740 				   unsigned long state)
1741 {
1742 	int i, j;
1743 	unsigned long cmo_page_sz, addr;
1744 
1745 	cmo_page_sz = cmo_get_page_size();
1746 	addr = __pa((unsigned long)page_address(page));
1747 
1748 	for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1749 		for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1750 			plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1751 	}
1752 }
1753 
1754 void arch_free_page(struct page *page, int order)
1755 {
1756 	if (radix_enabled())
1757 		return;
1758 	if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1759 		return;
1760 
1761 	pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1762 }
1763 EXPORT_SYMBOL(arch_free_page);
1764 
1765 #endif /* CONFIG_PPC_SMLPAR */
1766 #endif /* CONFIG_PPC_BOOK3S_64 */
1767 
1768 #ifdef CONFIG_TRACEPOINTS
1769 #ifdef CONFIG_JUMP_LABEL
1770 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1771 
1772 int hcall_tracepoint_regfunc(void)
1773 {
1774 	static_key_slow_inc(&hcall_tracepoint_key);
1775 	return 0;
1776 }
1777 
1778 void hcall_tracepoint_unregfunc(void)
1779 {
1780 	static_key_slow_dec(&hcall_tracepoint_key);
1781 }
1782 #else
1783 /*
1784  * We optimise our hcall path by placing hcall_tracepoint_refcount
1785  * directly in the TOC so we can check if the hcall tracepoints are
1786  * enabled via a single load.
1787  */
1788 
1789 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1790 extern long hcall_tracepoint_refcount;
1791 
1792 int hcall_tracepoint_regfunc(void)
1793 {
1794 	hcall_tracepoint_refcount++;
1795 	return 0;
1796 }
1797 
1798 void hcall_tracepoint_unregfunc(void)
1799 {
1800 	hcall_tracepoint_refcount--;
1801 }
1802 #endif
1803 
1804 /*
1805  * Since the tracing code might execute hcalls we need to guard against
1806  * recursion. One example of this are spinlocks calling H_YIELD on
1807  * shared processor partitions.
1808  */
1809 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1810 
1811 
1812 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1813 {
1814 	unsigned long flags;
1815 	unsigned int *depth;
1816 
1817 	/*
1818 	 * We cannot call tracepoints inside RCU idle regions which
1819 	 * means we must not trace H_CEDE.
1820 	 */
1821 	if (opcode == H_CEDE)
1822 		return;
1823 
1824 	local_irq_save(flags);
1825 
1826 	depth = this_cpu_ptr(&hcall_trace_depth);
1827 
1828 	if (*depth)
1829 		goto out;
1830 
1831 	(*depth)++;
1832 	preempt_disable();
1833 	trace_hcall_entry(opcode, args);
1834 	(*depth)--;
1835 
1836 out:
1837 	local_irq_restore(flags);
1838 }
1839 
1840 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1841 {
1842 	unsigned long flags;
1843 	unsigned int *depth;
1844 
1845 	if (opcode == H_CEDE)
1846 		return;
1847 
1848 	local_irq_save(flags);
1849 
1850 	depth = this_cpu_ptr(&hcall_trace_depth);
1851 
1852 	if (*depth)
1853 		goto out;
1854 
1855 	(*depth)++;
1856 	trace_hcall_exit(opcode, retval, retbuf);
1857 	preempt_enable();
1858 	(*depth)--;
1859 
1860 out:
1861 	local_irq_restore(flags);
1862 }
1863 #endif
1864 
1865 /**
1866  * h_get_mpp
1867  * H_GET_MPP hcall returns info in 7 parms
1868  */
1869 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1870 {
1871 	int rc;
1872 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1873 
1874 	rc = plpar_hcall9(H_GET_MPP, retbuf);
1875 
1876 	mpp_data->entitled_mem = retbuf[0];
1877 	mpp_data->mapped_mem = retbuf[1];
1878 
1879 	mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1880 	mpp_data->pool_num = retbuf[2] & 0xffff;
1881 
1882 	mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1883 	mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1884 	mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1885 
1886 	mpp_data->pool_size = retbuf[4];
1887 	mpp_data->loan_request = retbuf[5];
1888 	mpp_data->backing_mem = retbuf[6];
1889 
1890 	return rc;
1891 }
1892 EXPORT_SYMBOL(h_get_mpp);
1893 
1894 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1895 {
1896 	int rc;
1897 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1898 
1899 	rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1900 
1901 	mpp_x_data->coalesced_bytes = retbuf[0];
1902 	mpp_x_data->pool_coalesced_bytes = retbuf[1];
1903 	mpp_x_data->pool_purr_cycles = retbuf[2];
1904 	mpp_x_data->pool_spurr_cycles = retbuf[3];
1905 
1906 	return rc;
1907 }
1908 
1909 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1910 {
1911 	unsigned long protovsid;
1912 	unsigned long va_bits = VA_BITS;
1913 	unsigned long modinv, vsid_modulus;
1914 	unsigned long max_mod_inv, tmp_modinv;
1915 
1916 	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1917 		va_bits = 65;
1918 
1919 	if (ssize == MMU_SEGSIZE_256M) {
1920 		modinv = VSID_MULINV_256M;
1921 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1922 	} else {
1923 		modinv = VSID_MULINV_1T;
1924 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1925 	}
1926 
1927 	/*
1928 	 * vsid outside our range.
1929 	 */
1930 	if (vsid >= vsid_modulus)
1931 		return 0;
1932 
1933 	/*
1934 	 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1935 	 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1936 	 *   protovsid = (vsid * modinv) % vsid_modulus
1937 	 */
1938 
1939 	/* Check if (vsid * modinv) overflow (63 bits) */
1940 	max_mod_inv = 0x7fffffffffffffffull / vsid;
1941 	if (modinv < max_mod_inv)
1942 		return (vsid * modinv) % vsid_modulus;
1943 
1944 	tmp_modinv = modinv/max_mod_inv;
1945 	modinv %= max_mod_inv;
1946 
1947 	protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1948 	protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1949 
1950 	return protovsid;
1951 }
1952 
1953 static int __init reserve_vrma_context_id(void)
1954 {
1955 	unsigned long protovsid;
1956 
1957 	/*
1958 	 * Reserve context ids which map to reserved virtual addresses. For now
1959 	 * we only reserve the context id which maps to the VRMA VSID. We ignore
1960 	 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1961 	 * enable adjunct support via the "ibm,client-architecture-support"
1962 	 * interface.
1963 	 */
1964 	protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1965 	hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1966 	return 0;
1967 }
1968 machine_device_initcall(pseries, reserve_vrma_context_id);
1969 
1970 #ifdef CONFIG_DEBUG_FS
1971 /* debugfs file interface for vpa data */
1972 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1973 			      loff_t *pos)
1974 {
1975 	int cpu = (long)filp->private_data;
1976 	struct lppaca *lppaca = &lppaca_of(cpu);
1977 
1978 	return simple_read_from_buffer(buf, len, pos, lppaca,
1979 				sizeof(struct lppaca));
1980 }
1981 
1982 static const struct file_operations vpa_fops = {
1983 	.open		= simple_open,
1984 	.read		= vpa_file_read,
1985 	.llseek		= default_llseek,
1986 };
1987 
1988 static int __init vpa_debugfs_init(void)
1989 {
1990 	char name[16];
1991 	long i;
1992 	static struct dentry *vpa_dir;
1993 
1994 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
1995 		return 0;
1996 
1997 	vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
1998 	if (!vpa_dir) {
1999 		pr_warn("%s: can't create vpa root dir\n", __func__);
2000 		return -ENOMEM;
2001 	}
2002 
2003 	/* set up the per-cpu vpa file*/
2004 	for_each_possible_cpu(i) {
2005 		struct dentry *d;
2006 
2007 		sprintf(name, "cpu-%ld", i);
2008 
2009 		d = debugfs_create_file(name, 0400, vpa_dir, (void *)i,
2010 					&vpa_fops);
2011 		if (!d) {
2012 			pr_warn("%s: can't create per-cpu vpa file\n",
2013 					__func__);
2014 			return -ENOMEM;
2015 		}
2016 	}
2017 
2018 	return 0;
2019 }
2020 machine_arch_initcall(pseries, vpa_debugfs_init);
2021 #endif /* CONFIG_DEBUG_FS */
2022