1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <asm/processor.h> 25 #include <asm/mmu.h> 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/machdep.h> 29 #include <asm/mmu_context.h> 30 #include <asm/iommu.h> 31 #include <asm/tlb.h> 32 #include <asm/prom.h> 33 #include <asm/cputable.h> 34 #include <asm/udbg.h> 35 #include <asm/smp.h> 36 #include <asm/trace.h> 37 #include <asm/firmware.h> 38 #include <asm/plpar_wrappers.h> 39 #include <asm/kexec.h> 40 #include <asm/fadump.h> 41 #include <asm/asm-prototypes.h> 42 #include <asm/debugfs.h> 43 44 #include "pseries.h" 45 46 /* Flag bits for H_BULK_REMOVE */ 47 #define HBR_REQUEST 0x4000000000000000UL 48 #define HBR_RESPONSE 0x8000000000000000UL 49 #define HBR_END 0xc000000000000000UL 50 #define HBR_AVPN 0x0200000000000000UL 51 #define HBR_ANDCOND 0x0100000000000000UL 52 53 54 /* in hvCall.S */ 55 EXPORT_SYMBOL(plpar_hcall); 56 EXPORT_SYMBOL(plpar_hcall9); 57 EXPORT_SYMBOL(plpar_hcall_norets); 58 59 /* 60 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 61 * page size is that page size. 62 * 63 * The first index is the segment base page size, the second one is the actual 64 * page size. 65 */ 66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 67 68 /* 69 * Due to the involved complexity, and that the current hypervisor is only 70 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 71 * buffer size to 8 size block. 72 */ 73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 74 75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 76 static u8 dtl_mask = DTL_LOG_PREEMPT; 77 #else 78 static u8 dtl_mask; 79 #endif 80 81 void alloc_dtl_buffers(unsigned long *time_limit) 82 { 83 int cpu; 84 struct paca_struct *pp; 85 struct dtl_entry *dtl; 86 87 for_each_possible_cpu(cpu) { 88 pp = paca_ptrs[cpu]; 89 if (pp->dispatch_log) 90 continue; 91 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 92 if (!dtl) { 93 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 94 cpu); 95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 96 pr_warn("Stolen time statistics will be unreliable\n"); 97 #endif 98 break; 99 } 100 101 pp->dtl_ridx = 0; 102 pp->dispatch_log = dtl; 103 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 104 pp->dtl_curr = dtl; 105 106 if (time_limit && time_after(jiffies, *time_limit)) { 107 cond_resched(); 108 *time_limit = jiffies + HZ; 109 } 110 } 111 } 112 113 void register_dtl_buffer(int cpu) 114 { 115 long ret; 116 struct paca_struct *pp; 117 struct dtl_entry *dtl; 118 int hwcpu = get_hard_smp_processor_id(cpu); 119 120 pp = paca_ptrs[cpu]; 121 dtl = pp->dispatch_log; 122 if (dtl && dtl_mask) { 123 pp->dtl_ridx = 0; 124 pp->dtl_curr = dtl; 125 lppaca_of(cpu).dtl_idx = 0; 126 127 /* hypervisor reads buffer length from this field */ 128 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 129 ret = register_dtl(hwcpu, __pa(dtl)); 130 if (ret) 131 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 132 cpu, hwcpu, ret); 133 134 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 135 } 136 } 137 138 #ifdef CONFIG_PPC_SPLPAR 139 struct dtl_worker { 140 struct delayed_work work; 141 int cpu; 142 }; 143 144 struct vcpu_dispatch_data { 145 int last_disp_cpu; 146 147 int total_disp; 148 149 int same_cpu_disp; 150 int same_chip_disp; 151 int diff_chip_disp; 152 int far_chip_disp; 153 154 int numa_home_disp; 155 int numa_remote_disp; 156 int numa_far_disp; 157 }; 158 159 /* 160 * This represents the number of cpus in the hypervisor. Since there is no 161 * architected way to discover the number of processors in the host, we 162 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 163 * is sufficient for our purposes. This will need to be tweaked if 164 * CONFIG_NR_CPUS is changed. 165 */ 166 #define NR_CPUS_H NR_CPUS 167 168 DEFINE_RWLOCK(dtl_access_lock); 169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 170 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 172 static enum cpuhp_state dtl_worker_state; 173 static DEFINE_MUTEX(dtl_enable_mutex); 174 static int vcpudispatch_stats_on __read_mostly; 175 static int vcpudispatch_stats_freq = 50; 176 static __be32 *vcpu_associativity, *pcpu_associativity; 177 178 179 static void free_dtl_buffers(unsigned long *time_limit) 180 { 181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 182 int cpu; 183 struct paca_struct *pp; 184 185 for_each_possible_cpu(cpu) { 186 pp = paca_ptrs[cpu]; 187 if (!pp->dispatch_log) 188 continue; 189 kmem_cache_free(dtl_cache, pp->dispatch_log); 190 pp->dtl_ridx = 0; 191 pp->dispatch_log = 0; 192 pp->dispatch_log_end = 0; 193 pp->dtl_curr = 0; 194 195 if (time_limit && time_after(jiffies, *time_limit)) { 196 cond_resched(); 197 *time_limit = jiffies + HZ; 198 } 199 } 200 #endif 201 } 202 203 static int init_cpu_associativity(void) 204 { 205 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 206 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 207 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 209 210 if (!vcpu_associativity || !pcpu_associativity) { 211 pr_err("error allocating memory for associativity information\n"); 212 return -ENOMEM; 213 } 214 215 return 0; 216 } 217 218 static void destroy_cpu_associativity(void) 219 { 220 kfree(vcpu_associativity); 221 kfree(pcpu_associativity); 222 vcpu_associativity = pcpu_associativity = 0; 223 } 224 225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 226 { 227 __be32 *assoc; 228 int rc = 0; 229 230 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 231 if (!assoc[0]) { 232 rc = hcall_vphn(cpu, flag, &assoc[0]); 233 if (rc) 234 return NULL; 235 } 236 237 return assoc; 238 } 239 240 static __be32 *get_pcpu_associativity(int cpu) 241 { 242 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 243 } 244 245 static __be32 *get_vcpu_associativity(int cpu) 246 { 247 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 248 } 249 250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 251 { 252 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 253 254 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 255 return -EINVAL; 256 257 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 258 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 259 260 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 261 return -EIO; 262 263 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 264 } 265 266 static int cpu_home_node_dispatch_distance(int disp_cpu) 267 { 268 __be32 *disp_cpu_assoc, *vcpu_assoc; 269 int vcpu_id = smp_processor_id(); 270 271 if (disp_cpu >= NR_CPUS_H) { 272 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 273 disp_cpu, NR_CPUS_H); 274 return -EINVAL; 275 } 276 277 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 278 vcpu_assoc = get_vcpu_associativity(vcpu_id); 279 280 if (!disp_cpu_assoc || !vcpu_assoc) 281 return -EIO; 282 283 return cpu_distance(disp_cpu_assoc, vcpu_assoc); 284 } 285 286 static void update_vcpu_disp_stat(int disp_cpu) 287 { 288 struct vcpu_dispatch_data *disp; 289 int distance; 290 291 disp = this_cpu_ptr(&vcpu_disp_data); 292 if (disp->last_disp_cpu == -1) { 293 disp->last_disp_cpu = disp_cpu; 294 return; 295 } 296 297 disp->total_disp++; 298 299 if (disp->last_disp_cpu == disp_cpu || 300 (cpu_first_thread_sibling(disp->last_disp_cpu) == 301 cpu_first_thread_sibling(disp_cpu))) 302 disp->same_cpu_disp++; 303 else { 304 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 305 disp_cpu); 306 if (distance < 0) 307 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 308 smp_processor_id()); 309 else { 310 switch (distance) { 311 case 0: 312 disp->same_chip_disp++; 313 break; 314 case 1: 315 disp->diff_chip_disp++; 316 break; 317 case 2: 318 disp->far_chip_disp++; 319 break; 320 default: 321 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 322 smp_processor_id(), 323 disp->last_disp_cpu, 324 disp_cpu, 325 distance); 326 } 327 } 328 } 329 330 distance = cpu_home_node_dispatch_distance(disp_cpu); 331 if (distance < 0) 332 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 333 smp_processor_id()); 334 else { 335 switch (distance) { 336 case 0: 337 disp->numa_home_disp++; 338 break; 339 case 1: 340 disp->numa_remote_disp++; 341 break; 342 case 2: 343 disp->numa_far_disp++; 344 break; 345 default: 346 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 347 smp_processor_id(), 348 disp_cpu, 349 distance); 350 } 351 } 352 353 disp->last_disp_cpu = disp_cpu; 354 } 355 356 static void process_dtl_buffer(struct work_struct *work) 357 { 358 struct dtl_entry dtle; 359 u64 i = __this_cpu_read(dtl_entry_ridx); 360 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 361 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 362 struct lppaca *vpa = local_paca->lppaca_ptr; 363 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 364 365 if (!local_paca->dispatch_log) 366 return; 367 368 /* if we have been migrated away, we cancel ourself */ 369 if (d->cpu != smp_processor_id()) { 370 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 371 smp_processor_id()); 372 return; 373 } 374 375 if (i == be64_to_cpu(vpa->dtl_idx)) 376 goto out; 377 378 while (i < be64_to_cpu(vpa->dtl_idx)) { 379 dtle = *dtl; 380 barrier(); 381 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 382 /* buffer has overflowed */ 383 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 384 d->cpu, 385 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 386 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 387 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 388 continue; 389 } 390 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 391 ++i; 392 ++dtl; 393 if (dtl == dtl_end) 394 dtl = local_paca->dispatch_log; 395 } 396 397 __this_cpu_write(dtl_entry_ridx, i); 398 399 out: 400 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 401 HZ / vcpudispatch_stats_freq); 402 } 403 404 static int dtl_worker_online(unsigned int cpu) 405 { 406 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 407 408 memset(d, 0, sizeof(*d)); 409 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 410 d->cpu = cpu; 411 412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 413 per_cpu(dtl_entry_ridx, cpu) = 0; 414 register_dtl_buffer(cpu); 415 #else 416 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 417 #endif 418 419 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 420 return 0; 421 } 422 423 static int dtl_worker_offline(unsigned int cpu) 424 { 425 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 426 427 cancel_delayed_work_sync(&d->work); 428 429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 430 unregister_dtl(get_hard_smp_processor_id(cpu)); 431 #endif 432 433 return 0; 434 } 435 436 static void set_global_dtl_mask(u8 mask) 437 { 438 int cpu; 439 440 dtl_mask = mask; 441 for_each_present_cpu(cpu) 442 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 443 } 444 445 static void reset_global_dtl_mask(void) 446 { 447 int cpu; 448 449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 450 dtl_mask = DTL_LOG_PREEMPT; 451 #else 452 dtl_mask = 0; 453 #endif 454 for_each_present_cpu(cpu) 455 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 456 } 457 458 static int dtl_worker_enable(unsigned long *time_limit) 459 { 460 int rc = 0, state; 461 462 if (!write_trylock(&dtl_access_lock)) { 463 rc = -EBUSY; 464 goto out; 465 } 466 467 set_global_dtl_mask(DTL_LOG_ALL); 468 469 /* Setup dtl buffers and register those */ 470 alloc_dtl_buffers(time_limit); 471 472 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 473 dtl_worker_online, dtl_worker_offline); 474 if (state < 0) { 475 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 476 free_dtl_buffers(time_limit); 477 reset_global_dtl_mask(); 478 write_unlock(&dtl_access_lock); 479 rc = -EINVAL; 480 goto out; 481 } 482 dtl_worker_state = state; 483 484 out: 485 return rc; 486 } 487 488 static void dtl_worker_disable(unsigned long *time_limit) 489 { 490 cpuhp_remove_state(dtl_worker_state); 491 free_dtl_buffers(time_limit); 492 reset_global_dtl_mask(); 493 write_unlock(&dtl_access_lock); 494 } 495 496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 497 size_t count, loff_t *ppos) 498 { 499 unsigned long time_limit = jiffies + HZ; 500 struct vcpu_dispatch_data *disp; 501 int rc, cmd, cpu; 502 char buf[16]; 503 504 if (count > 15) 505 return -EINVAL; 506 507 if (copy_from_user(buf, p, count)) 508 return -EFAULT; 509 510 buf[count] = 0; 511 rc = kstrtoint(buf, 0, &cmd); 512 if (rc || cmd < 0 || cmd > 1) { 513 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 514 return rc ? rc : -EINVAL; 515 } 516 517 mutex_lock(&dtl_enable_mutex); 518 519 if ((cmd == 0 && !vcpudispatch_stats_on) || 520 (cmd == 1 && vcpudispatch_stats_on)) 521 goto out; 522 523 if (cmd) { 524 rc = init_cpu_associativity(); 525 if (rc) 526 goto out; 527 528 for_each_possible_cpu(cpu) { 529 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 530 memset(disp, 0, sizeof(*disp)); 531 disp->last_disp_cpu = -1; 532 } 533 534 rc = dtl_worker_enable(&time_limit); 535 if (rc) { 536 destroy_cpu_associativity(); 537 goto out; 538 } 539 } else { 540 dtl_worker_disable(&time_limit); 541 destroy_cpu_associativity(); 542 } 543 544 vcpudispatch_stats_on = cmd; 545 546 out: 547 mutex_unlock(&dtl_enable_mutex); 548 if (rc) 549 return rc; 550 return count; 551 } 552 553 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 554 { 555 int cpu; 556 struct vcpu_dispatch_data *disp; 557 558 if (!vcpudispatch_stats_on) { 559 seq_puts(p, "off\n"); 560 return 0; 561 } 562 563 for_each_online_cpu(cpu) { 564 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 565 seq_printf(p, "cpu%d", cpu); 566 seq_put_decimal_ull(p, " ", disp->total_disp); 567 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 568 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 569 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 570 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 571 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 572 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 573 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 574 seq_puts(p, "\n"); 575 } 576 577 return 0; 578 } 579 580 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 581 { 582 return single_open(file, vcpudispatch_stats_display, NULL); 583 } 584 585 static const struct file_operations vcpudispatch_stats_proc_ops = { 586 .open = vcpudispatch_stats_open, 587 .read = seq_read, 588 .write = vcpudispatch_stats_write, 589 .llseek = seq_lseek, 590 .release = single_release, 591 }; 592 593 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 594 const char __user *p, size_t count, loff_t *ppos) 595 { 596 int rc, freq; 597 char buf[16]; 598 599 if (count > 15) 600 return -EINVAL; 601 602 if (copy_from_user(buf, p, count)) 603 return -EFAULT; 604 605 buf[count] = 0; 606 rc = kstrtoint(buf, 0, &freq); 607 if (rc || freq < 1 || freq > HZ) { 608 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 609 HZ); 610 return rc ? rc : -EINVAL; 611 } 612 613 vcpudispatch_stats_freq = freq; 614 615 return count; 616 } 617 618 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 619 { 620 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 621 return 0; 622 } 623 624 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 625 { 626 return single_open(file, vcpudispatch_stats_freq_display, NULL); 627 } 628 629 static const struct file_operations vcpudispatch_stats_freq_proc_ops = { 630 .open = vcpudispatch_stats_freq_open, 631 .read = seq_read, 632 .write = vcpudispatch_stats_freq_write, 633 .llseek = seq_lseek, 634 .release = single_release, 635 }; 636 637 static int __init vcpudispatch_stats_procfs_init(void) 638 { 639 if (!lppaca_shared_proc(get_lppaca())) 640 return 0; 641 642 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 643 &vcpudispatch_stats_proc_ops)) 644 pr_err("vcpudispatch_stats: error creating procfs file\n"); 645 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 646 &vcpudispatch_stats_freq_proc_ops)) 647 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 648 649 return 0; 650 } 651 652 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 653 #endif /* CONFIG_PPC_SPLPAR */ 654 655 void vpa_init(int cpu) 656 { 657 int hwcpu = get_hard_smp_processor_id(cpu); 658 unsigned long addr; 659 long ret; 660 661 /* 662 * The spec says it "may be problematic" if CPU x registers the VPA of 663 * CPU y. We should never do that, but wail if we ever do. 664 */ 665 WARN_ON(cpu != smp_processor_id()); 666 667 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 668 lppaca_of(cpu).vmxregs_in_use = 1; 669 670 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 671 lppaca_of(cpu).ebb_regs_in_use = 1; 672 673 addr = __pa(&lppaca_of(cpu)); 674 ret = register_vpa(hwcpu, addr); 675 676 if (ret) { 677 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 678 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 679 return; 680 } 681 682 #ifdef CONFIG_PPC_BOOK3S_64 683 /* 684 * PAPR says this feature is SLB-Buffer but firmware never 685 * reports that. All SPLPAR support SLB shadow buffer. 686 */ 687 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 688 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 689 ret = register_slb_shadow(hwcpu, addr); 690 if (ret) 691 pr_err("WARNING: SLB shadow buffer registration for " 692 "cpu %d (hw %d) of area %lx failed with %ld\n", 693 cpu, hwcpu, addr, ret); 694 } 695 #endif /* CONFIG_PPC_BOOK3S_64 */ 696 697 /* 698 * Register dispatch trace log, if one has been allocated. 699 */ 700 register_dtl_buffer(cpu); 701 } 702 703 #ifdef CONFIG_PPC_BOOK3S_64 704 705 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 706 unsigned long vpn, unsigned long pa, 707 unsigned long rflags, unsigned long vflags, 708 int psize, int apsize, int ssize) 709 { 710 unsigned long lpar_rc; 711 unsigned long flags; 712 unsigned long slot; 713 unsigned long hpte_v, hpte_r; 714 715 if (!(vflags & HPTE_V_BOLTED)) 716 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 717 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 718 hpte_group, vpn, pa, rflags, vflags, psize); 719 720 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 721 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 722 723 if (!(vflags & HPTE_V_BOLTED)) 724 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 725 726 /* Now fill in the actual HPTE */ 727 /* Set CEC cookie to 0 */ 728 /* Zero page = 0 */ 729 /* I-cache Invalidate = 0 */ 730 /* I-cache synchronize = 0 */ 731 /* Exact = 0 */ 732 flags = 0; 733 734 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 735 flags |= H_COALESCE_CAND; 736 737 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 738 if (unlikely(lpar_rc == H_PTEG_FULL)) { 739 pr_devel("Hash table group is full\n"); 740 return -1; 741 } 742 743 /* 744 * Since we try and ioremap PHBs we don't own, the pte insert 745 * will fail. However we must catch the failure in hash_page 746 * or we will loop forever, so return -2 in this case. 747 */ 748 if (unlikely(lpar_rc != H_SUCCESS)) { 749 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 750 return -2; 751 } 752 if (!(vflags & HPTE_V_BOLTED)) 753 pr_devel(" -> slot: %lu\n", slot & 7); 754 755 /* Because of iSeries, we have to pass down the secondary 756 * bucket bit here as well 757 */ 758 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 759 } 760 761 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 762 763 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 764 { 765 unsigned long slot_offset; 766 unsigned long lpar_rc; 767 int i; 768 unsigned long dummy1, dummy2; 769 770 /* pick a random slot to start at */ 771 slot_offset = mftb() & 0x7; 772 773 for (i = 0; i < HPTES_PER_GROUP; i++) { 774 775 /* don't remove a bolted entry */ 776 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 777 (0x1UL << 4), &dummy1, &dummy2); 778 if (lpar_rc == H_SUCCESS) 779 return i; 780 781 /* 782 * The test for adjunct partition is performed before the 783 * ANDCOND test. H_RESOURCE may be returned, so we need to 784 * check for that as well. 785 */ 786 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 787 788 slot_offset++; 789 slot_offset &= 0x7; 790 } 791 792 return -1; 793 } 794 795 static void manual_hpte_clear_all(void) 796 { 797 unsigned long size_bytes = 1UL << ppc64_pft_size; 798 unsigned long hpte_count = size_bytes >> 4; 799 struct { 800 unsigned long pteh; 801 unsigned long ptel; 802 } ptes[4]; 803 long lpar_rc; 804 unsigned long i, j; 805 806 /* Read in batches of 4, 807 * invalidate only valid entries not in the VRMA 808 * hpte_count will be a multiple of 4 809 */ 810 for (i = 0; i < hpte_count; i += 4) { 811 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 812 if (lpar_rc != H_SUCCESS) { 813 pr_info("Failed to read hash page table at %ld err %ld\n", 814 i, lpar_rc); 815 continue; 816 } 817 for (j = 0; j < 4; j++){ 818 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 819 HPTE_V_VRMA_MASK) 820 continue; 821 if (ptes[j].pteh & HPTE_V_VALID) 822 plpar_pte_remove_raw(0, i + j, 0, 823 &(ptes[j].pteh), &(ptes[j].ptel)); 824 } 825 } 826 } 827 828 static int hcall_hpte_clear_all(void) 829 { 830 int rc; 831 832 do { 833 rc = plpar_hcall_norets(H_CLEAR_HPT); 834 } while (rc == H_CONTINUE); 835 836 return rc; 837 } 838 839 static void pseries_hpte_clear_all(void) 840 { 841 int rc; 842 843 rc = hcall_hpte_clear_all(); 844 if (rc != H_SUCCESS) 845 manual_hpte_clear_all(); 846 847 #ifdef __LITTLE_ENDIAN__ 848 /* 849 * Reset exceptions to big endian. 850 * 851 * FIXME this is a hack for kexec, we need to reset the exception 852 * endian before starting the new kernel and this is a convenient place 853 * to do it. 854 * 855 * This is also called on boot when a fadump happens. In that case we 856 * must not change the exception endian mode. 857 */ 858 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 859 pseries_big_endian_exceptions(); 860 #endif 861 } 862 863 /* 864 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 865 * the low 3 bits of flags happen to line up. So no transform is needed. 866 * We can probably optimize here and assume the high bits of newpp are 867 * already zero. For now I am paranoid. 868 */ 869 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 870 unsigned long newpp, 871 unsigned long vpn, 872 int psize, int apsize, 873 int ssize, unsigned long inv_flags) 874 { 875 unsigned long lpar_rc; 876 unsigned long flags; 877 unsigned long want_v; 878 879 want_v = hpte_encode_avpn(vpn, psize, ssize); 880 881 flags = (newpp & 7) | H_AVPN; 882 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 883 /* Move pp0 into bit 8 (IBM 55) */ 884 flags |= (newpp & HPTE_R_PP0) >> 55; 885 886 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 887 want_v, slot, flags, psize); 888 889 lpar_rc = plpar_pte_protect(flags, slot, want_v); 890 891 if (lpar_rc == H_NOT_FOUND) { 892 pr_devel("not found !\n"); 893 return -1; 894 } 895 896 pr_devel("ok\n"); 897 898 BUG_ON(lpar_rc != H_SUCCESS); 899 900 return 0; 901 } 902 903 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 904 { 905 long lpar_rc; 906 unsigned long i, j; 907 struct { 908 unsigned long pteh; 909 unsigned long ptel; 910 } ptes[4]; 911 912 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 913 914 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 915 if (lpar_rc != H_SUCCESS) { 916 pr_info("Failed to read hash page table at %ld err %ld\n", 917 hpte_group, lpar_rc); 918 continue; 919 } 920 921 for (j = 0; j < 4; j++) { 922 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 923 (ptes[j].pteh & HPTE_V_VALID)) 924 return i + j; 925 } 926 } 927 928 return -1; 929 } 930 931 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 932 { 933 long slot; 934 unsigned long hash; 935 unsigned long want_v; 936 unsigned long hpte_group; 937 938 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 939 want_v = hpte_encode_avpn(vpn, psize, ssize); 940 941 /* Bolted entries are always in the primary group */ 942 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 943 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 944 if (slot < 0) 945 return -1; 946 return hpte_group + slot; 947 } 948 949 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 950 unsigned long ea, 951 int psize, int ssize) 952 { 953 unsigned long vpn; 954 unsigned long lpar_rc, slot, vsid, flags; 955 956 vsid = get_kernel_vsid(ea, ssize); 957 vpn = hpt_vpn(ea, vsid, ssize); 958 959 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 960 BUG_ON(slot == -1); 961 962 flags = newpp & 7; 963 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 964 /* Move pp0 into bit 8 (IBM 55) */ 965 flags |= (newpp & HPTE_R_PP0) >> 55; 966 967 lpar_rc = plpar_pte_protect(flags, slot, 0); 968 969 BUG_ON(lpar_rc != H_SUCCESS); 970 } 971 972 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 973 int psize, int apsize, 974 int ssize, int local) 975 { 976 unsigned long want_v; 977 unsigned long lpar_rc; 978 unsigned long dummy1, dummy2; 979 980 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 981 slot, vpn, psize, local); 982 983 want_v = hpte_encode_avpn(vpn, psize, ssize); 984 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 985 if (lpar_rc == H_NOT_FOUND) 986 return; 987 988 BUG_ON(lpar_rc != H_SUCCESS); 989 } 990 991 992 /* 993 * As defined in the PAPR's section 14.5.4.1.8 994 * The control mask doesn't include the returned reference and change bit from 995 * the processed PTE. 996 */ 997 #define HBLKR_AVPN 0x0100000000000000UL 998 #define HBLKR_CTRL_MASK 0xf800000000000000UL 999 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1000 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1001 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1002 1003 /* 1004 * Returned true if we are supporting this block size for the specified segment 1005 * base page size and actual page size. 1006 * 1007 * Currently, we only support 8 size block. 1008 */ 1009 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1010 { 1011 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1012 } 1013 1014 /** 1015 * H_BLOCK_REMOVE caller. 1016 * @idx should point to the latest @param entry set with a PTEX. 1017 * If PTE cannot be processed because another CPUs has already locked that 1018 * group, those entries are put back in @param starting at index 1. 1019 * If entries has to be retried and @retry_busy is set to true, these entries 1020 * are retried until success. If @retry_busy is set to false, the returned 1021 * is the number of entries yet to process. 1022 */ 1023 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1024 bool retry_busy) 1025 { 1026 unsigned long i, rc, new_idx; 1027 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1028 1029 if (idx < 2) { 1030 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1031 return 0; 1032 } 1033 again: 1034 new_idx = 0; 1035 if (idx > PLPAR_HCALL9_BUFSIZE) { 1036 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1037 idx = PLPAR_HCALL9_BUFSIZE; 1038 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1039 param[idx] = HBR_END; 1040 1041 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1042 param[0], /* AVA */ 1043 param[1], param[2], param[3], param[4], /* TS0-7 */ 1044 param[5], param[6], param[7], param[8]); 1045 if (rc == H_SUCCESS) 1046 return 0; 1047 1048 BUG_ON(rc != H_PARTIAL); 1049 1050 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1051 for (i = 0; i < idx-1; i++) { 1052 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1053 1054 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1055 param[++new_idx] = param[i+1]; 1056 continue; 1057 } 1058 1059 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1060 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1061 } 1062 1063 /* 1064 * If there were entries found busy, retry these entries if requested, 1065 * of if all the entries have to be retried. 1066 */ 1067 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1068 idx = new_idx + 1; 1069 goto again; 1070 } 1071 1072 return new_idx; 1073 } 1074 1075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1076 /* 1077 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1078 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1079 */ 1080 #define PPC64_HUGE_HPTE_BATCH 12 1081 1082 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1083 int count, int psize, int ssize) 1084 { 1085 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1086 unsigned long shift, current_vpgb, vpgb; 1087 int i, pix = 0; 1088 1089 shift = mmu_psize_defs[psize].shift; 1090 1091 for (i = 0; i < count; i++) { 1092 /* 1093 * Shifting 3 bits more on the right to get a 1094 * 8 pages aligned virtual addresse. 1095 */ 1096 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1097 if (!pix || vpgb != current_vpgb) { 1098 /* 1099 * Need to start a new 8 pages block, flush 1100 * the current one if needed. 1101 */ 1102 if (pix) 1103 (void)call_block_remove(pix, param, true); 1104 current_vpgb = vpgb; 1105 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1106 pix = 1; 1107 } 1108 1109 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1110 if (pix == PLPAR_HCALL9_BUFSIZE) { 1111 pix = call_block_remove(pix, param, false); 1112 /* 1113 * pix = 0 means that all the entries were 1114 * removed, we can start a new block. 1115 * Otherwise, this means that there are entries 1116 * to retry, and pix points to latest one, so 1117 * we should increment it and try to continue 1118 * the same block. 1119 */ 1120 if (pix) 1121 pix++; 1122 } 1123 } 1124 if (pix) 1125 (void)call_block_remove(pix, param, true); 1126 } 1127 1128 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1129 int count, int psize, int ssize) 1130 { 1131 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1132 int i = 0, pix = 0, rc; 1133 1134 for (i = 0; i < count; i++) { 1135 1136 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1137 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1138 ssize, 0); 1139 } else { 1140 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1141 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1142 pix += 2; 1143 if (pix == 8) { 1144 rc = plpar_hcall9(H_BULK_REMOVE, param, 1145 param[0], param[1], param[2], 1146 param[3], param[4], param[5], 1147 param[6], param[7]); 1148 BUG_ON(rc != H_SUCCESS); 1149 pix = 0; 1150 } 1151 } 1152 } 1153 if (pix) { 1154 param[pix] = HBR_END; 1155 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1156 param[2], param[3], param[4], param[5], 1157 param[6], param[7]); 1158 BUG_ON(rc != H_SUCCESS); 1159 } 1160 } 1161 1162 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1163 unsigned long *vpn, 1164 int count, int psize, 1165 int ssize) 1166 { 1167 unsigned long flags = 0; 1168 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1169 1170 if (lock_tlbie) 1171 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1172 1173 /* Assuming THP size is 16M */ 1174 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1175 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1176 else 1177 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1178 1179 if (lock_tlbie) 1180 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1181 } 1182 1183 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1184 unsigned long addr, 1185 unsigned char *hpte_slot_array, 1186 int psize, int ssize, int local) 1187 { 1188 int i, index = 0; 1189 unsigned long s_addr = addr; 1190 unsigned int max_hpte_count, valid; 1191 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1192 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1193 unsigned long shift, hidx, vpn = 0, hash, slot; 1194 1195 shift = mmu_psize_defs[psize].shift; 1196 max_hpte_count = 1U << (PMD_SHIFT - shift); 1197 1198 for (i = 0; i < max_hpte_count; i++) { 1199 valid = hpte_valid(hpte_slot_array, i); 1200 if (!valid) 1201 continue; 1202 hidx = hpte_hash_index(hpte_slot_array, i); 1203 1204 /* get the vpn */ 1205 addr = s_addr + (i * (1ul << shift)); 1206 vpn = hpt_vpn(addr, vsid, ssize); 1207 hash = hpt_hash(vpn, shift, ssize); 1208 if (hidx & _PTEIDX_SECONDARY) 1209 hash = ~hash; 1210 1211 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1212 slot += hidx & _PTEIDX_GROUP_IX; 1213 1214 slot_array[index] = slot; 1215 vpn_array[index] = vpn; 1216 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1217 /* 1218 * Now do a bluk invalidate 1219 */ 1220 __pSeries_lpar_hugepage_invalidate(slot_array, 1221 vpn_array, 1222 PPC64_HUGE_HPTE_BATCH, 1223 psize, ssize); 1224 index = 0; 1225 } else 1226 index++; 1227 } 1228 if (index) 1229 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1230 index, psize, ssize); 1231 } 1232 #else 1233 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1234 unsigned long addr, 1235 unsigned char *hpte_slot_array, 1236 int psize, int ssize, int local) 1237 { 1238 WARN(1, "%s called without THP support\n", __func__); 1239 } 1240 #endif 1241 1242 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1243 int psize, int ssize) 1244 { 1245 unsigned long vpn; 1246 unsigned long slot, vsid; 1247 1248 vsid = get_kernel_vsid(ea, ssize); 1249 vpn = hpt_vpn(ea, vsid, ssize); 1250 1251 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1252 if (slot == -1) 1253 return -ENOENT; 1254 1255 /* 1256 * lpar doesn't use the passed actual page size 1257 */ 1258 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1259 return 0; 1260 } 1261 1262 1263 static inline unsigned long compute_slot(real_pte_t pte, 1264 unsigned long vpn, 1265 unsigned long index, 1266 unsigned long shift, 1267 int ssize) 1268 { 1269 unsigned long slot, hash, hidx; 1270 1271 hash = hpt_hash(vpn, shift, ssize); 1272 hidx = __rpte_to_hidx(pte, index); 1273 if (hidx & _PTEIDX_SECONDARY) 1274 hash = ~hash; 1275 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1276 slot += hidx & _PTEIDX_GROUP_IX; 1277 return slot; 1278 } 1279 1280 /** 1281 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1282 * "all within the same naturally aligned 8 page virtual address block". 1283 */ 1284 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1285 unsigned long *param) 1286 { 1287 unsigned long vpn; 1288 unsigned long i, pix = 0; 1289 unsigned long index, shift, slot, current_vpgb, vpgb; 1290 real_pte_t pte; 1291 int psize, ssize; 1292 1293 psize = batch->psize; 1294 ssize = batch->ssize; 1295 1296 for (i = 0; i < number; i++) { 1297 vpn = batch->vpn[i]; 1298 pte = batch->pte[i]; 1299 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1300 /* 1301 * Shifting 3 bits more on the right to get a 1302 * 8 pages aligned virtual addresse. 1303 */ 1304 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1305 if (!pix || vpgb != current_vpgb) { 1306 /* 1307 * Need to start a new 8 pages block, flush 1308 * the current one if needed. 1309 */ 1310 if (pix) 1311 (void)call_block_remove(pix, param, 1312 true); 1313 current_vpgb = vpgb; 1314 param[0] = hpte_encode_avpn(vpn, psize, 1315 ssize); 1316 pix = 1; 1317 } 1318 1319 slot = compute_slot(pte, vpn, index, shift, ssize); 1320 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1321 1322 if (pix == PLPAR_HCALL9_BUFSIZE) { 1323 pix = call_block_remove(pix, param, false); 1324 /* 1325 * pix = 0 means that all the entries were 1326 * removed, we can start a new block. 1327 * Otherwise, this means that there are entries 1328 * to retry, and pix points to latest one, so 1329 * we should increment it and try to continue 1330 * the same block. 1331 */ 1332 if (pix) 1333 pix++; 1334 } 1335 } pte_iterate_hashed_end(); 1336 } 1337 1338 if (pix) 1339 (void)call_block_remove(pix, param, true); 1340 } 1341 1342 /* 1343 * TLB Block Invalidate Characteristics 1344 * 1345 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1346 * is able to process for each couple segment base page size, actual page size. 1347 * 1348 * The ibm,get-system-parameter properties is returning a buffer with the 1349 * following layout: 1350 * 1351 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1352 * ----------------- 1353 * TLB Block Invalidate Specifiers: 1354 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1355 * [ 1 byte Number of page sizes (N) that are supported for the specified 1356 * TLB invalidate block size ] 1357 * [ 1 byte Encoded segment base page size and actual page size 1358 * MSB=0 means 4k segment base page size and actual page size 1359 * MSB=1 the penc value in mmu_psize_def ] 1360 * ... 1361 * ----------------- 1362 * Next TLB Block Invalidate Specifiers... 1363 * ----------------- 1364 * [ 0 ] 1365 */ 1366 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1367 unsigned int block_size) 1368 { 1369 if (block_size > hblkrm_size[bpsize][psize]) 1370 hblkrm_size[bpsize][psize] = block_size; 1371 } 1372 1373 /* 1374 * Decode the Encoded segment base page size and actual page size. 1375 * PAPR specifies: 1376 * - bit 7 is the L bit 1377 * - bits 0-5 are the penc value 1378 * If the L bit is 0, this means 4K segment base page size and actual page size 1379 * otherwise the penc value should be read. 1380 */ 1381 #define HBLKRM_L_MASK 0x80 1382 #define HBLKRM_PENC_MASK 0x3f 1383 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1384 unsigned int block_size) 1385 { 1386 unsigned int bpsize, psize; 1387 1388 /* First, check the L bit, if not set, this means 4K */ 1389 if ((lp & HBLKRM_L_MASK) == 0) { 1390 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1391 return; 1392 } 1393 1394 lp &= HBLKRM_PENC_MASK; 1395 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1396 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1397 1398 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1399 if (def->penc[psize] == lp) { 1400 set_hblkrm_bloc_size(bpsize, psize, block_size); 1401 return; 1402 } 1403 } 1404 } 1405 } 1406 1407 #define SPLPAR_TLB_BIC_TOKEN 50 1408 1409 /* 1410 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1411 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1412 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1413 * (128 bytes) for the buffer to get plenty of space. 1414 */ 1415 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1416 1417 void __init pseries_lpar_read_hblkrm_characteristics(void) 1418 { 1419 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1420 int call_status, len, idx, bpsize; 1421 1422 spin_lock(&rtas_data_buf_lock); 1423 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1424 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1425 NULL, 1426 SPLPAR_TLB_BIC_TOKEN, 1427 __pa(rtas_data_buf), 1428 RTAS_DATA_BUF_SIZE); 1429 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1430 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1431 spin_unlock(&rtas_data_buf_lock); 1432 1433 if (call_status != 0) { 1434 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1435 __FILE__, __func__, call_status); 1436 return; 1437 } 1438 1439 /* 1440 * The first two (2) bytes of the data in the buffer are the length of 1441 * the returned data, not counting these first two (2) bytes. 1442 */ 1443 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1444 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1445 pr_warn("%s too large returned buffer %d", __func__, len); 1446 return; 1447 } 1448 1449 idx = 2; 1450 while (idx < len) { 1451 u8 block_shift = local_buffer[idx++]; 1452 u32 block_size; 1453 unsigned int npsize; 1454 1455 if (!block_shift) 1456 break; 1457 1458 block_size = 1 << block_shift; 1459 1460 for (npsize = local_buffer[idx++]; 1461 npsize > 0 && idx < len; npsize--) 1462 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1463 block_size); 1464 } 1465 1466 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1467 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1468 if (hblkrm_size[bpsize][idx]) 1469 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1470 bpsize, idx, hblkrm_size[bpsize][idx]); 1471 } 1472 1473 /* 1474 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1475 * lock. 1476 */ 1477 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1478 { 1479 unsigned long vpn; 1480 unsigned long i, pix, rc; 1481 unsigned long flags = 0; 1482 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1483 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1484 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1485 unsigned long index, shift, slot; 1486 real_pte_t pte; 1487 int psize, ssize; 1488 1489 if (lock_tlbie) 1490 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1491 1492 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1493 do_block_remove(number, batch, param); 1494 goto out; 1495 } 1496 1497 psize = batch->psize; 1498 ssize = batch->ssize; 1499 pix = 0; 1500 for (i = 0; i < number; i++) { 1501 vpn = batch->vpn[i]; 1502 pte = batch->pte[i]; 1503 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1504 slot = compute_slot(pte, vpn, index, shift, ssize); 1505 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1506 /* 1507 * lpar doesn't use the passed actual page size 1508 */ 1509 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1510 0, ssize, local); 1511 } else { 1512 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1513 param[pix+1] = hpte_encode_avpn(vpn, psize, 1514 ssize); 1515 pix += 2; 1516 if (pix == 8) { 1517 rc = plpar_hcall9(H_BULK_REMOVE, param, 1518 param[0], param[1], param[2], 1519 param[3], param[4], param[5], 1520 param[6], param[7]); 1521 BUG_ON(rc != H_SUCCESS); 1522 pix = 0; 1523 } 1524 } 1525 } pte_iterate_hashed_end(); 1526 } 1527 if (pix) { 1528 param[pix] = HBR_END; 1529 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1530 param[2], param[3], param[4], param[5], 1531 param[6], param[7]); 1532 BUG_ON(rc != H_SUCCESS); 1533 } 1534 1535 out: 1536 if (lock_tlbie) 1537 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1538 } 1539 1540 static int __init disable_bulk_remove(char *str) 1541 { 1542 if (strcmp(str, "off") == 0 && 1543 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1544 pr_info("Disabling BULK_REMOVE firmware feature"); 1545 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1546 } 1547 return 1; 1548 } 1549 1550 __setup("bulk_remove=", disable_bulk_remove); 1551 1552 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1553 1554 struct hpt_resize_state { 1555 unsigned long shift; 1556 int commit_rc; 1557 }; 1558 1559 static int pseries_lpar_resize_hpt_commit(void *data) 1560 { 1561 struct hpt_resize_state *state = data; 1562 1563 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1564 if (state->commit_rc != H_SUCCESS) 1565 return -EIO; 1566 1567 /* Hypervisor has transitioned the HTAB, update our globals */ 1568 ppc64_pft_size = state->shift; 1569 htab_size_bytes = 1UL << ppc64_pft_size; 1570 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * Must be called in process context. The caller must hold the 1577 * cpus_lock. 1578 */ 1579 static int pseries_lpar_resize_hpt(unsigned long shift) 1580 { 1581 struct hpt_resize_state state = { 1582 .shift = shift, 1583 .commit_rc = H_FUNCTION, 1584 }; 1585 unsigned int delay, total_delay = 0; 1586 int rc; 1587 ktime_t t0, t1, t2; 1588 1589 might_sleep(); 1590 1591 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1592 return -ENODEV; 1593 1594 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1595 1596 t0 = ktime_get(); 1597 1598 rc = plpar_resize_hpt_prepare(0, shift); 1599 while (H_IS_LONG_BUSY(rc)) { 1600 delay = get_longbusy_msecs(rc); 1601 total_delay += delay; 1602 if (total_delay > HPT_RESIZE_TIMEOUT) { 1603 /* prepare with shift==0 cancels an in-progress resize */ 1604 rc = plpar_resize_hpt_prepare(0, 0); 1605 if (rc != H_SUCCESS) 1606 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1607 rc); 1608 return -ETIMEDOUT; 1609 } 1610 msleep(delay); 1611 rc = plpar_resize_hpt_prepare(0, shift); 1612 }; 1613 1614 switch (rc) { 1615 case H_SUCCESS: 1616 /* Continue on */ 1617 break; 1618 1619 case H_PARAMETER: 1620 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1621 return -EINVAL; 1622 case H_RESOURCE: 1623 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1624 return -EPERM; 1625 default: 1626 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1627 return -EIO; 1628 } 1629 1630 t1 = ktime_get(); 1631 1632 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1633 &state, NULL); 1634 1635 t2 = ktime_get(); 1636 1637 if (rc != 0) { 1638 switch (state.commit_rc) { 1639 case H_PTEG_FULL: 1640 return -ENOSPC; 1641 1642 default: 1643 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1644 state.commit_rc); 1645 return -EIO; 1646 }; 1647 } 1648 1649 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1650 shift, (long long) ktime_ms_delta(t1, t0), 1651 (long long) ktime_ms_delta(t2, t1)); 1652 1653 return 0; 1654 } 1655 1656 static int pseries_lpar_register_process_table(unsigned long base, 1657 unsigned long page_size, unsigned long table_size) 1658 { 1659 long rc; 1660 unsigned long flags = 0; 1661 1662 if (table_size) 1663 flags |= PROC_TABLE_NEW; 1664 if (radix_enabled()) 1665 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE; 1666 else 1667 flags |= PROC_TABLE_HPT_SLB; 1668 for (;;) { 1669 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 1670 page_size, table_size); 1671 if (!H_IS_LONG_BUSY(rc)) 1672 break; 1673 mdelay(get_longbusy_msecs(rc)); 1674 } 1675 if (rc != H_SUCCESS) { 1676 pr_err("Failed to register process table (rc=%ld)\n", rc); 1677 BUG(); 1678 } 1679 return rc; 1680 } 1681 1682 void __init hpte_init_pseries(void) 1683 { 1684 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1685 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1686 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1687 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1688 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1689 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1690 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1691 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1692 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1693 1694 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1695 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1696 1697 /* 1698 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1699 * to inform the hypervisor that we wish to use the HPT. 1700 */ 1701 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1702 pseries_lpar_register_process_table(0, 0, 0); 1703 } 1704 1705 void radix_init_pseries(void) 1706 { 1707 pr_info("Using radix MMU under hypervisor\n"); 1708 1709 pseries_lpar_register_process_table(__pa(process_tb), 1710 0, PRTB_SIZE_SHIFT - 12); 1711 } 1712 1713 #ifdef CONFIG_PPC_SMLPAR 1714 #define CMO_FREE_HINT_DEFAULT 1 1715 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1716 1717 static int __init cmo_free_hint(char *str) 1718 { 1719 char *parm; 1720 parm = strstrip(str); 1721 1722 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1723 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1724 cmo_free_hint_flag = 0; 1725 return 1; 1726 } 1727 1728 cmo_free_hint_flag = 1; 1729 pr_info("%s: CMO free page hinting is active.\n", __func__); 1730 1731 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1732 return 1; 1733 1734 return 0; 1735 } 1736 1737 __setup("cmo_free_hint=", cmo_free_hint); 1738 1739 static void pSeries_set_page_state(struct page *page, int order, 1740 unsigned long state) 1741 { 1742 int i, j; 1743 unsigned long cmo_page_sz, addr; 1744 1745 cmo_page_sz = cmo_get_page_size(); 1746 addr = __pa((unsigned long)page_address(page)); 1747 1748 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1749 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1750 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1751 } 1752 } 1753 1754 void arch_free_page(struct page *page, int order) 1755 { 1756 if (radix_enabled()) 1757 return; 1758 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1759 return; 1760 1761 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1762 } 1763 EXPORT_SYMBOL(arch_free_page); 1764 1765 #endif /* CONFIG_PPC_SMLPAR */ 1766 #endif /* CONFIG_PPC_BOOK3S_64 */ 1767 1768 #ifdef CONFIG_TRACEPOINTS 1769 #ifdef CONFIG_JUMP_LABEL 1770 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1771 1772 int hcall_tracepoint_regfunc(void) 1773 { 1774 static_key_slow_inc(&hcall_tracepoint_key); 1775 return 0; 1776 } 1777 1778 void hcall_tracepoint_unregfunc(void) 1779 { 1780 static_key_slow_dec(&hcall_tracepoint_key); 1781 } 1782 #else 1783 /* 1784 * We optimise our hcall path by placing hcall_tracepoint_refcount 1785 * directly in the TOC so we can check if the hcall tracepoints are 1786 * enabled via a single load. 1787 */ 1788 1789 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1790 extern long hcall_tracepoint_refcount; 1791 1792 int hcall_tracepoint_regfunc(void) 1793 { 1794 hcall_tracepoint_refcount++; 1795 return 0; 1796 } 1797 1798 void hcall_tracepoint_unregfunc(void) 1799 { 1800 hcall_tracepoint_refcount--; 1801 } 1802 #endif 1803 1804 /* 1805 * Since the tracing code might execute hcalls we need to guard against 1806 * recursion. One example of this are spinlocks calling H_YIELD on 1807 * shared processor partitions. 1808 */ 1809 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1810 1811 1812 void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1813 { 1814 unsigned long flags; 1815 unsigned int *depth; 1816 1817 /* 1818 * We cannot call tracepoints inside RCU idle regions which 1819 * means we must not trace H_CEDE. 1820 */ 1821 if (opcode == H_CEDE) 1822 return; 1823 1824 local_irq_save(flags); 1825 1826 depth = this_cpu_ptr(&hcall_trace_depth); 1827 1828 if (*depth) 1829 goto out; 1830 1831 (*depth)++; 1832 preempt_disable(); 1833 trace_hcall_entry(opcode, args); 1834 (*depth)--; 1835 1836 out: 1837 local_irq_restore(flags); 1838 } 1839 1840 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1841 { 1842 unsigned long flags; 1843 unsigned int *depth; 1844 1845 if (opcode == H_CEDE) 1846 return; 1847 1848 local_irq_save(flags); 1849 1850 depth = this_cpu_ptr(&hcall_trace_depth); 1851 1852 if (*depth) 1853 goto out; 1854 1855 (*depth)++; 1856 trace_hcall_exit(opcode, retval, retbuf); 1857 preempt_enable(); 1858 (*depth)--; 1859 1860 out: 1861 local_irq_restore(flags); 1862 } 1863 #endif 1864 1865 /** 1866 * h_get_mpp 1867 * H_GET_MPP hcall returns info in 7 parms 1868 */ 1869 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1870 { 1871 int rc; 1872 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1873 1874 rc = plpar_hcall9(H_GET_MPP, retbuf); 1875 1876 mpp_data->entitled_mem = retbuf[0]; 1877 mpp_data->mapped_mem = retbuf[1]; 1878 1879 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1880 mpp_data->pool_num = retbuf[2] & 0xffff; 1881 1882 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1883 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1884 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1885 1886 mpp_data->pool_size = retbuf[4]; 1887 mpp_data->loan_request = retbuf[5]; 1888 mpp_data->backing_mem = retbuf[6]; 1889 1890 return rc; 1891 } 1892 EXPORT_SYMBOL(h_get_mpp); 1893 1894 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1895 { 1896 int rc; 1897 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1898 1899 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1900 1901 mpp_x_data->coalesced_bytes = retbuf[0]; 1902 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1903 mpp_x_data->pool_purr_cycles = retbuf[2]; 1904 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1905 1906 return rc; 1907 } 1908 1909 static unsigned long vsid_unscramble(unsigned long vsid, int ssize) 1910 { 1911 unsigned long protovsid; 1912 unsigned long va_bits = VA_BITS; 1913 unsigned long modinv, vsid_modulus; 1914 unsigned long max_mod_inv, tmp_modinv; 1915 1916 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1917 va_bits = 65; 1918 1919 if (ssize == MMU_SEGSIZE_256M) { 1920 modinv = VSID_MULINV_256M; 1921 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1922 } else { 1923 modinv = VSID_MULINV_1T; 1924 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1925 } 1926 1927 /* 1928 * vsid outside our range. 1929 */ 1930 if (vsid >= vsid_modulus) 1931 return 0; 1932 1933 /* 1934 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1935 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1936 * protovsid = (vsid * modinv) % vsid_modulus 1937 */ 1938 1939 /* Check if (vsid * modinv) overflow (63 bits) */ 1940 max_mod_inv = 0x7fffffffffffffffull / vsid; 1941 if (modinv < max_mod_inv) 1942 return (vsid * modinv) % vsid_modulus; 1943 1944 tmp_modinv = modinv/max_mod_inv; 1945 modinv %= max_mod_inv; 1946 1947 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1948 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1949 1950 return protovsid; 1951 } 1952 1953 static int __init reserve_vrma_context_id(void) 1954 { 1955 unsigned long protovsid; 1956 1957 /* 1958 * Reserve context ids which map to reserved virtual addresses. For now 1959 * we only reserve the context id which maps to the VRMA VSID. We ignore 1960 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1961 * enable adjunct support via the "ibm,client-architecture-support" 1962 * interface. 1963 */ 1964 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1965 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1966 return 0; 1967 } 1968 machine_device_initcall(pseries, reserve_vrma_context_id); 1969 1970 #ifdef CONFIG_DEBUG_FS 1971 /* debugfs file interface for vpa data */ 1972 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1973 loff_t *pos) 1974 { 1975 int cpu = (long)filp->private_data; 1976 struct lppaca *lppaca = &lppaca_of(cpu); 1977 1978 return simple_read_from_buffer(buf, len, pos, lppaca, 1979 sizeof(struct lppaca)); 1980 } 1981 1982 static const struct file_operations vpa_fops = { 1983 .open = simple_open, 1984 .read = vpa_file_read, 1985 .llseek = default_llseek, 1986 }; 1987 1988 static int __init vpa_debugfs_init(void) 1989 { 1990 char name[16]; 1991 long i; 1992 static struct dentry *vpa_dir; 1993 1994 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 1995 return 0; 1996 1997 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root); 1998 if (!vpa_dir) { 1999 pr_warn("%s: can't create vpa root dir\n", __func__); 2000 return -ENOMEM; 2001 } 2002 2003 /* set up the per-cpu vpa file*/ 2004 for_each_possible_cpu(i) { 2005 struct dentry *d; 2006 2007 sprintf(name, "cpu-%ld", i); 2008 2009 d = debugfs_create_file(name, 0400, vpa_dir, (void *)i, 2010 &vpa_fops); 2011 if (!d) { 2012 pr_warn("%s: can't create per-cpu vpa file\n", 2013 __func__); 2014 return -ENOMEM; 2015 } 2016 } 2017 2018 return 0; 2019 } 2020 machine_arch_initcall(pseries, vpa_debugfs_init); 2021 #endif /* CONFIG_DEBUG_FS */ 2022