1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <asm/processor.h> 25 #include <asm/mmu.h> 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/machdep.h> 29 #include <asm/mmu_context.h> 30 #include <asm/iommu.h> 31 #include <asm/tlb.h> 32 #include <asm/prom.h> 33 #include <asm/cputable.h> 34 #include <asm/udbg.h> 35 #include <asm/smp.h> 36 #include <asm/trace.h> 37 #include <asm/firmware.h> 38 #include <asm/plpar_wrappers.h> 39 #include <asm/kexec.h> 40 #include <asm/fadump.h> 41 #include <asm/asm-prototypes.h> 42 #include <asm/debugfs.h> 43 44 #include "pseries.h" 45 46 /* Flag bits for H_BULK_REMOVE */ 47 #define HBR_REQUEST 0x4000000000000000UL 48 #define HBR_RESPONSE 0x8000000000000000UL 49 #define HBR_END 0xc000000000000000UL 50 #define HBR_AVPN 0x0200000000000000UL 51 #define HBR_ANDCOND 0x0100000000000000UL 52 53 54 /* in hvCall.S */ 55 EXPORT_SYMBOL(plpar_hcall); 56 EXPORT_SYMBOL(plpar_hcall9); 57 EXPORT_SYMBOL(plpar_hcall_norets); 58 59 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 60 static u8 dtl_mask = DTL_LOG_PREEMPT; 61 #else 62 static u8 dtl_mask; 63 #endif 64 65 void alloc_dtl_buffers(unsigned long *time_limit) 66 { 67 int cpu; 68 struct paca_struct *pp; 69 struct dtl_entry *dtl; 70 71 for_each_possible_cpu(cpu) { 72 pp = paca_ptrs[cpu]; 73 if (pp->dispatch_log) 74 continue; 75 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 76 if (!dtl) { 77 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 78 cpu); 79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 80 pr_warn("Stolen time statistics will be unreliable\n"); 81 #endif 82 break; 83 } 84 85 pp->dtl_ridx = 0; 86 pp->dispatch_log = dtl; 87 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 88 pp->dtl_curr = dtl; 89 90 if (time_limit && time_after(jiffies, *time_limit)) { 91 cond_resched(); 92 *time_limit = jiffies + HZ; 93 } 94 } 95 } 96 97 void register_dtl_buffer(int cpu) 98 { 99 long ret; 100 struct paca_struct *pp; 101 struct dtl_entry *dtl; 102 int hwcpu = get_hard_smp_processor_id(cpu); 103 104 pp = paca_ptrs[cpu]; 105 dtl = pp->dispatch_log; 106 if (dtl && dtl_mask) { 107 pp->dtl_ridx = 0; 108 pp->dtl_curr = dtl; 109 lppaca_of(cpu).dtl_idx = 0; 110 111 /* hypervisor reads buffer length from this field */ 112 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 113 ret = register_dtl(hwcpu, __pa(dtl)); 114 if (ret) 115 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 116 cpu, hwcpu, ret); 117 118 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 119 } 120 } 121 122 #ifdef CONFIG_PPC_SPLPAR 123 struct dtl_worker { 124 struct delayed_work work; 125 int cpu; 126 }; 127 128 struct vcpu_dispatch_data { 129 int last_disp_cpu; 130 131 int total_disp; 132 133 int same_cpu_disp; 134 int same_chip_disp; 135 int diff_chip_disp; 136 int far_chip_disp; 137 138 int numa_home_disp; 139 int numa_remote_disp; 140 int numa_far_disp; 141 }; 142 143 /* 144 * This represents the number of cpus in the hypervisor. Since there is no 145 * architected way to discover the number of processors in the host, we 146 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 147 * is sufficient for our purposes. This will need to be tweaked if 148 * CONFIG_NR_CPUS is changed. 149 */ 150 #define NR_CPUS_H NR_CPUS 151 152 DEFINE_RWLOCK(dtl_access_lock); 153 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 154 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 155 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 156 static enum cpuhp_state dtl_worker_state; 157 static DEFINE_MUTEX(dtl_enable_mutex); 158 static int vcpudispatch_stats_on __read_mostly; 159 static int vcpudispatch_stats_freq = 50; 160 static __be32 *vcpu_associativity, *pcpu_associativity; 161 162 163 static void free_dtl_buffers(unsigned long *time_limit) 164 { 165 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 166 int cpu; 167 struct paca_struct *pp; 168 169 for_each_possible_cpu(cpu) { 170 pp = paca_ptrs[cpu]; 171 if (!pp->dispatch_log) 172 continue; 173 kmem_cache_free(dtl_cache, pp->dispatch_log); 174 pp->dtl_ridx = 0; 175 pp->dispatch_log = 0; 176 pp->dispatch_log_end = 0; 177 pp->dtl_curr = 0; 178 179 if (time_limit && time_after(jiffies, *time_limit)) { 180 cond_resched(); 181 *time_limit = jiffies + HZ; 182 } 183 } 184 #endif 185 } 186 187 static int init_cpu_associativity(void) 188 { 189 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 190 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 191 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 192 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 193 194 if (!vcpu_associativity || !pcpu_associativity) { 195 pr_err("error allocating memory for associativity information\n"); 196 return -ENOMEM; 197 } 198 199 return 0; 200 } 201 202 static void destroy_cpu_associativity(void) 203 { 204 kfree(vcpu_associativity); 205 kfree(pcpu_associativity); 206 vcpu_associativity = pcpu_associativity = 0; 207 } 208 209 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 210 { 211 __be32 *assoc; 212 int rc = 0; 213 214 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 215 if (!assoc[0]) { 216 rc = hcall_vphn(cpu, flag, &assoc[0]); 217 if (rc) 218 return NULL; 219 } 220 221 return assoc; 222 } 223 224 static __be32 *get_pcpu_associativity(int cpu) 225 { 226 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 227 } 228 229 static __be32 *get_vcpu_associativity(int cpu) 230 { 231 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 232 } 233 234 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 235 { 236 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 237 238 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 239 return -EINVAL; 240 241 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 242 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 243 244 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 245 return -EIO; 246 247 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 248 } 249 250 static int cpu_home_node_dispatch_distance(int disp_cpu) 251 { 252 __be32 *disp_cpu_assoc, *vcpu_assoc; 253 int vcpu_id = smp_processor_id(); 254 255 if (disp_cpu >= NR_CPUS_H) { 256 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 257 disp_cpu, NR_CPUS_H); 258 return -EINVAL; 259 } 260 261 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 262 vcpu_assoc = get_vcpu_associativity(vcpu_id); 263 264 if (!disp_cpu_assoc || !vcpu_assoc) 265 return -EIO; 266 267 return cpu_distance(disp_cpu_assoc, vcpu_assoc); 268 } 269 270 static void update_vcpu_disp_stat(int disp_cpu) 271 { 272 struct vcpu_dispatch_data *disp; 273 int distance; 274 275 disp = this_cpu_ptr(&vcpu_disp_data); 276 if (disp->last_disp_cpu == -1) { 277 disp->last_disp_cpu = disp_cpu; 278 return; 279 } 280 281 disp->total_disp++; 282 283 if (disp->last_disp_cpu == disp_cpu || 284 (cpu_first_thread_sibling(disp->last_disp_cpu) == 285 cpu_first_thread_sibling(disp_cpu))) 286 disp->same_cpu_disp++; 287 else { 288 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 289 disp_cpu); 290 if (distance < 0) 291 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 292 smp_processor_id()); 293 else { 294 switch (distance) { 295 case 0: 296 disp->same_chip_disp++; 297 break; 298 case 1: 299 disp->diff_chip_disp++; 300 break; 301 case 2: 302 disp->far_chip_disp++; 303 break; 304 default: 305 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 306 smp_processor_id(), 307 disp->last_disp_cpu, 308 disp_cpu, 309 distance); 310 } 311 } 312 } 313 314 distance = cpu_home_node_dispatch_distance(disp_cpu); 315 if (distance < 0) 316 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 317 smp_processor_id()); 318 else { 319 switch (distance) { 320 case 0: 321 disp->numa_home_disp++; 322 break; 323 case 1: 324 disp->numa_remote_disp++; 325 break; 326 case 2: 327 disp->numa_far_disp++; 328 break; 329 default: 330 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 331 smp_processor_id(), 332 disp_cpu, 333 distance); 334 } 335 } 336 337 disp->last_disp_cpu = disp_cpu; 338 } 339 340 static void process_dtl_buffer(struct work_struct *work) 341 { 342 struct dtl_entry dtle; 343 u64 i = __this_cpu_read(dtl_entry_ridx); 344 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 345 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 346 struct lppaca *vpa = local_paca->lppaca_ptr; 347 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 348 349 if (!local_paca->dispatch_log) 350 return; 351 352 /* if we have been migrated away, we cancel ourself */ 353 if (d->cpu != smp_processor_id()) { 354 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 355 smp_processor_id()); 356 return; 357 } 358 359 if (i == be64_to_cpu(vpa->dtl_idx)) 360 goto out; 361 362 while (i < be64_to_cpu(vpa->dtl_idx)) { 363 dtle = *dtl; 364 barrier(); 365 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 366 /* buffer has overflowed */ 367 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 368 d->cpu, 369 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 370 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 371 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 372 continue; 373 } 374 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 375 ++i; 376 ++dtl; 377 if (dtl == dtl_end) 378 dtl = local_paca->dispatch_log; 379 } 380 381 __this_cpu_write(dtl_entry_ridx, i); 382 383 out: 384 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 385 HZ / vcpudispatch_stats_freq); 386 } 387 388 static int dtl_worker_online(unsigned int cpu) 389 { 390 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 391 392 memset(d, 0, sizeof(*d)); 393 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 394 d->cpu = cpu; 395 396 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 397 per_cpu(dtl_entry_ridx, cpu) = 0; 398 register_dtl_buffer(cpu); 399 #else 400 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 401 #endif 402 403 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 404 return 0; 405 } 406 407 static int dtl_worker_offline(unsigned int cpu) 408 { 409 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 410 411 cancel_delayed_work_sync(&d->work); 412 413 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 414 unregister_dtl(get_hard_smp_processor_id(cpu)); 415 #endif 416 417 return 0; 418 } 419 420 static void set_global_dtl_mask(u8 mask) 421 { 422 int cpu; 423 424 dtl_mask = mask; 425 for_each_present_cpu(cpu) 426 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 427 } 428 429 static void reset_global_dtl_mask(void) 430 { 431 int cpu; 432 433 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 434 dtl_mask = DTL_LOG_PREEMPT; 435 #else 436 dtl_mask = 0; 437 #endif 438 for_each_present_cpu(cpu) 439 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 440 } 441 442 static int dtl_worker_enable(unsigned long *time_limit) 443 { 444 int rc = 0, state; 445 446 if (!write_trylock(&dtl_access_lock)) { 447 rc = -EBUSY; 448 goto out; 449 } 450 451 set_global_dtl_mask(DTL_LOG_ALL); 452 453 /* Setup dtl buffers and register those */ 454 alloc_dtl_buffers(time_limit); 455 456 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 457 dtl_worker_online, dtl_worker_offline); 458 if (state < 0) { 459 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 460 free_dtl_buffers(time_limit); 461 reset_global_dtl_mask(); 462 write_unlock(&dtl_access_lock); 463 rc = -EINVAL; 464 goto out; 465 } 466 dtl_worker_state = state; 467 468 out: 469 return rc; 470 } 471 472 static void dtl_worker_disable(unsigned long *time_limit) 473 { 474 cpuhp_remove_state(dtl_worker_state); 475 free_dtl_buffers(time_limit); 476 reset_global_dtl_mask(); 477 write_unlock(&dtl_access_lock); 478 } 479 480 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 481 size_t count, loff_t *ppos) 482 { 483 unsigned long time_limit = jiffies + HZ; 484 struct vcpu_dispatch_data *disp; 485 int rc, cmd, cpu; 486 char buf[16]; 487 488 if (count > 15) 489 return -EINVAL; 490 491 if (copy_from_user(buf, p, count)) 492 return -EFAULT; 493 494 buf[count] = 0; 495 rc = kstrtoint(buf, 0, &cmd); 496 if (rc || cmd < 0 || cmd > 1) { 497 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 498 return rc ? rc : -EINVAL; 499 } 500 501 mutex_lock(&dtl_enable_mutex); 502 503 if ((cmd == 0 && !vcpudispatch_stats_on) || 504 (cmd == 1 && vcpudispatch_stats_on)) 505 goto out; 506 507 if (cmd) { 508 rc = init_cpu_associativity(); 509 if (rc) 510 goto out; 511 512 for_each_possible_cpu(cpu) { 513 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 514 memset(disp, 0, sizeof(*disp)); 515 disp->last_disp_cpu = -1; 516 } 517 518 rc = dtl_worker_enable(&time_limit); 519 if (rc) { 520 destroy_cpu_associativity(); 521 goto out; 522 } 523 } else { 524 dtl_worker_disable(&time_limit); 525 destroy_cpu_associativity(); 526 } 527 528 vcpudispatch_stats_on = cmd; 529 530 out: 531 mutex_unlock(&dtl_enable_mutex); 532 if (rc) 533 return rc; 534 return count; 535 } 536 537 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 538 { 539 int cpu; 540 struct vcpu_dispatch_data *disp; 541 542 if (!vcpudispatch_stats_on) { 543 seq_puts(p, "off\n"); 544 return 0; 545 } 546 547 for_each_online_cpu(cpu) { 548 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 549 seq_printf(p, "cpu%d", cpu); 550 seq_put_decimal_ull(p, " ", disp->total_disp); 551 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 552 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 553 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 554 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 555 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 556 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 557 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 558 seq_puts(p, "\n"); 559 } 560 561 return 0; 562 } 563 564 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 565 { 566 return single_open(file, vcpudispatch_stats_display, NULL); 567 } 568 569 static const struct file_operations vcpudispatch_stats_proc_ops = { 570 .open = vcpudispatch_stats_open, 571 .read = seq_read, 572 .write = vcpudispatch_stats_write, 573 .llseek = seq_lseek, 574 .release = single_release, 575 }; 576 577 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 578 const char __user *p, size_t count, loff_t *ppos) 579 { 580 int rc, freq; 581 char buf[16]; 582 583 if (count > 15) 584 return -EINVAL; 585 586 if (copy_from_user(buf, p, count)) 587 return -EFAULT; 588 589 buf[count] = 0; 590 rc = kstrtoint(buf, 0, &freq); 591 if (rc || freq < 1 || freq > HZ) { 592 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 593 HZ); 594 return rc ? rc : -EINVAL; 595 } 596 597 vcpudispatch_stats_freq = freq; 598 599 return count; 600 } 601 602 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 603 { 604 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 605 return 0; 606 } 607 608 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 609 { 610 return single_open(file, vcpudispatch_stats_freq_display, NULL); 611 } 612 613 static const struct file_operations vcpudispatch_stats_freq_proc_ops = { 614 .open = vcpudispatch_stats_freq_open, 615 .read = seq_read, 616 .write = vcpudispatch_stats_freq_write, 617 .llseek = seq_lseek, 618 .release = single_release, 619 }; 620 621 static int __init vcpudispatch_stats_procfs_init(void) 622 { 623 if (!lppaca_shared_proc(get_lppaca())) 624 return 0; 625 626 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 627 &vcpudispatch_stats_proc_ops)) 628 pr_err("vcpudispatch_stats: error creating procfs file\n"); 629 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 630 &vcpudispatch_stats_freq_proc_ops)) 631 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 632 633 return 0; 634 } 635 636 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 637 #endif /* CONFIG_PPC_SPLPAR */ 638 639 void vpa_init(int cpu) 640 { 641 int hwcpu = get_hard_smp_processor_id(cpu); 642 unsigned long addr; 643 long ret; 644 645 /* 646 * The spec says it "may be problematic" if CPU x registers the VPA of 647 * CPU y. We should never do that, but wail if we ever do. 648 */ 649 WARN_ON(cpu != smp_processor_id()); 650 651 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 652 lppaca_of(cpu).vmxregs_in_use = 1; 653 654 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 655 lppaca_of(cpu).ebb_regs_in_use = 1; 656 657 addr = __pa(&lppaca_of(cpu)); 658 ret = register_vpa(hwcpu, addr); 659 660 if (ret) { 661 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 662 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 663 return; 664 } 665 666 #ifdef CONFIG_PPC_BOOK3S_64 667 /* 668 * PAPR says this feature is SLB-Buffer but firmware never 669 * reports that. All SPLPAR support SLB shadow buffer. 670 */ 671 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 672 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 673 ret = register_slb_shadow(hwcpu, addr); 674 if (ret) 675 pr_err("WARNING: SLB shadow buffer registration for " 676 "cpu %d (hw %d) of area %lx failed with %ld\n", 677 cpu, hwcpu, addr, ret); 678 } 679 #endif /* CONFIG_PPC_BOOK3S_64 */ 680 681 /* 682 * Register dispatch trace log, if one has been allocated. 683 */ 684 register_dtl_buffer(cpu); 685 } 686 687 #ifdef CONFIG_PPC_BOOK3S_64 688 689 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 690 unsigned long vpn, unsigned long pa, 691 unsigned long rflags, unsigned long vflags, 692 int psize, int apsize, int ssize) 693 { 694 unsigned long lpar_rc; 695 unsigned long flags; 696 unsigned long slot; 697 unsigned long hpte_v, hpte_r; 698 699 if (!(vflags & HPTE_V_BOLTED)) 700 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 701 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 702 hpte_group, vpn, pa, rflags, vflags, psize); 703 704 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 705 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 706 707 if (!(vflags & HPTE_V_BOLTED)) 708 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 709 710 /* Now fill in the actual HPTE */ 711 /* Set CEC cookie to 0 */ 712 /* Zero page = 0 */ 713 /* I-cache Invalidate = 0 */ 714 /* I-cache synchronize = 0 */ 715 /* Exact = 0 */ 716 flags = 0; 717 718 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 719 flags |= H_COALESCE_CAND; 720 721 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 722 if (unlikely(lpar_rc == H_PTEG_FULL)) { 723 pr_devel("Hash table group is full\n"); 724 return -1; 725 } 726 727 /* 728 * Since we try and ioremap PHBs we don't own, the pte insert 729 * will fail. However we must catch the failure in hash_page 730 * or we will loop forever, so return -2 in this case. 731 */ 732 if (unlikely(lpar_rc != H_SUCCESS)) { 733 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 734 return -2; 735 } 736 if (!(vflags & HPTE_V_BOLTED)) 737 pr_devel(" -> slot: %lu\n", slot & 7); 738 739 /* Because of iSeries, we have to pass down the secondary 740 * bucket bit here as well 741 */ 742 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 743 } 744 745 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 746 747 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 748 { 749 unsigned long slot_offset; 750 unsigned long lpar_rc; 751 int i; 752 unsigned long dummy1, dummy2; 753 754 /* pick a random slot to start at */ 755 slot_offset = mftb() & 0x7; 756 757 for (i = 0; i < HPTES_PER_GROUP; i++) { 758 759 /* don't remove a bolted entry */ 760 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 761 (0x1UL << 4), &dummy1, &dummy2); 762 if (lpar_rc == H_SUCCESS) 763 return i; 764 765 /* 766 * The test for adjunct partition is performed before the 767 * ANDCOND test. H_RESOURCE may be returned, so we need to 768 * check for that as well. 769 */ 770 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 771 772 slot_offset++; 773 slot_offset &= 0x7; 774 } 775 776 return -1; 777 } 778 779 static void manual_hpte_clear_all(void) 780 { 781 unsigned long size_bytes = 1UL << ppc64_pft_size; 782 unsigned long hpte_count = size_bytes >> 4; 783 struct { 784 unsigned long pteh; 785 unsigned long ptel; 786 } ptes[4]; 787 long lpar_rc; 788 unsigned long i, j; 789 790 /* Read in batches of 4, 791 * invalidate only valid entries not in the VRMA 792 * hpte_count will be a multiple of 4 793 */ 794 for (i = 0; i < hpte_count; i += 4) { 795 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 796 if (lpar_rc != H_SUCCESS) { 797 pr_info("Failed to read hash page table at %ld err %ld\n", 798 i, lpar_rc); 799 continue; 800 } 801 for (j = 0; j < 4; j++){ 802 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 803 HPTE_V_VRMA_MASK) 804 continue; 805 if (ptes[j].pteh & HPTE_V_VALID) 806 plpar_pte_remove_raw(0, i + j, 0, 807 &(ptes[j].pteh), &(ptes[j].ptel)); 808 } 809 } 810 } 811 812 static int hcall_hpte_clear_all(void) 813 { 814 int rc; 815 816 do { 817 rc = plpar_hcall_norets(H_CLEAR_HPT); 818 } while (rc == H_CONTINUE); 819 820 return rc; 821 } 822 823 static void pseries_hpte_clear_all(void) 824 { 825 int rc; 826 827 rc = hcall_hpte_clear_all(); 828 if (rc != H_SUCCESS) 829 manual_hpte_clear_all(); 830 831 #ifdef __LITTLE_ENDIAN__ 832 /* 833 * Reset exceptions to big endian. 834 * 835 * FIXME this is a hack for kexec, we need to reset the exception 836 * endian before starting the new kernel and this is a convenient place 837 * to do it. 838 * 839 * This is also called on boot when a fadump happens. In that case we 840 * must not change the exception endian mode. 841 */ 842 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 843 pseries_big_endian_exceptions(); 844 #endif 845 } 846 847 /* 848 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 849 * the low 3 bits of flags happen to line up. So no transform is needed. 850 * We can probably optimize here and assume the high bits of newpp are 851 * already zero. For now I am paranoid. 852 */ 853 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 854 unsigned long newpp, 855 unsigned long vpn, 856 int psize, int apsize, 857 int ssize, unsigned long inv_flags) 858 { 859 unsigned long lpar_rc; 860 unsigned long flags; 861 unsigned long want_v; 862 863 want_v = hpte_encode_avpn(vpn, psize, ssize); 864 865 flags = (newpp & 7) | H_AVPN; 866 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 867 /* Move pp0 into bit 8 (IBM 55) */ 868 flags |= (newpp & HPTE_R_PP0) >> 55; 869 870 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 871 want_v, slot, flags, psize); 872 873 lpar_rc = plpar_pte_protect(flags, slot, want_v); 874 875 if (lpar_rc == H_NOT_FOUND) { 876 pr_devel("not found !\n"); 877 return -1; 878 } 879 880 pr_devel("ok\n"); 881 882 BUG_ON(lpar_rc != H_SUCCESS); 883 884 return 0; 885 } 886 887 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 888 { 889 long lpar_rc; 890 unsigned long i, j; 891 struct { 892 unsigned long pteh; 893 unsigned long ptel; 894 } ptes[4]; 895 896 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 897 898 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 899 if (lpar_rc != H_SUCCESS) { 900 pr_info("Failed to read hash page table at %ld err %ld\n", 901 hpte_group, lpar_rc); 902 continue; 903 } 904 905 for (j = 0; j < 4; j++) { 906 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 907 (ptes[j].pteh & HPTE_V_VALID)) 908 return i + j; 909 } 910 } 911 912 return -1; 913 } 914 915 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 916 { 917 long slot; 918 unsigned long hash; 919 unsigned long want_v; 920 unsigned long hpte_group; 921 922 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 923 want_v = hpte_encode_avpn(vpn, psize, ssize); 924 925 /* Bolted entries are always in the primary group */ 926 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 927 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 928 if (slot < 0) 929 return -1; 930 return hpte_group + slot; 931 } 932 933 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 934 unsigned long ea, 935 int psize, int ssize) 936 { 937 unsigned long vpn; 938 unsigned long lpar_rc, slot, vsid, flags; 939 940 vsid = get_kernel_vsid(ea, ssize); 941 vpn = hpt_vpn(ea, vsid, ssize); 942 943 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 944 BUG_ON(slot == -1); 945 946 flags = newpp & 7; 947 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 948 /* Move pp0 into bit 8 (IBM 55) */ 949 flags |= (newpp & HPTE_R_PP0) >> 55; 950 951 lpar_rc = plpar_pte_protect(flags, slot, 0); 952 953 BUG_ON(lpar_rc != H_SUCCESS); 954 } 955 956 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 957 int psize, int apsize, 958 int ssize, int local) 959 { 960 unsigned long want_v; 961 unsigned long lpar_rc; 962 unsigned long dummy1, dummy2; 963 964 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 965 slot, vpn, psize, local); 966 967 want_v = hpte_encode_avpn(vpn, psize, ssize); 968 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 969 if (lpar_rc == H_NOT_FOUND) 970 return; 971 972 BUG_ON(lpar_rc != H_SUCCESS); 973 } 974 975 976 /* 977 * As defined in the PAPR's section 14.5.4.1.8 978 * The control mask doesn't include the returned reference and change bit from 979 * the processed PTE. 980 */ 981 #define HBLKR_AVPN 0x0100000000000000UL 982 #define HBLKR_CTRL_MASK 0xf800000000000000UL 983 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 984 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 985 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 986 987 /** 988 * H_BLOCK_REMOVE caller. 989 * @idx should point to the latest @param entry set with a PTEX. 990 * If PTE cannot be processed because another CPUs has already locked that 991 * group, those entries are put back in @param starting at index 1. 992 * If entries has to be retried and @retry_busy is set to true, these entries 993 * are retried until success. If @retry_busy is set to false, the returned 994 * is the number of entries yet to process. 995 */ 996 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 997 bool retry_busy) 998 { 999 unsigned long i, rc, new_idx; 1000 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1001 1002 if (idx < 2) { 1003 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1004 return 0; 1005 } 1006 again: 1007 new_idx = 0; 1008 if (idx > PLPAR_HCALL9_BUFSIZE) { 1009 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1010 idx = PLPAR_HCALL9_BUFSIZE; 1011 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1012 param[idx] = HBR_END; 1013 1014 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1015 param[0], /* AVA */ 1016 param[1], param[2], param[3], param[4], /* TS0-7 */ 1017 param[5], param[6], param[7], param[8]); 1018 if (rc == H_SUCCESS) 1019 return 0; 1020 1021 BUG_ON(rc != H_PARTIAL); 1022 1023 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1024 for (i = 0; i < idx-1; i++) { 1025 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1026 1027 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1028 param[++new_idx] = param[i+1]; 1029 continue; 1030 } 1031 1032 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1033 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1034 } 1035 1036 /* 1037 * If there were entries found busy, retry these entries if requested, 1038 * of if all the entries have to be retried. 1039 */ 1040 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1041 idx = new_idx + 1; 1042 goto again; 1043 } 1044 1045 return new_idx; 1046 } 1047 1048 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1049 /* 1050 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1051 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1052 */ 1053 #define PPC64_HUGE_HPTE_BATCH 12 1054 1055 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1056 int count, int psize, int ssize) 1057 { 1058 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1059 unsigned long shift, current_vpgb, vpgb; 1060 int i, pix = 0; 1061 1062 shift = mmu_psize_defs[psize].shift; 1063 1064 for (i = 0; i < count; i++) { 1065 /* 1066 * Shifting 3 bits more on the right to get a 1067 * 8 pages aligned virtual addresse. 1068 */ 1069 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1070 if (!pix || vpgb != current_vpgb) { 1071 /* 1072 * Need to start a new 8 pages block, flush 1073 * the current one if needed. 1074 */ 1075 if (pix) 1076 (void)call_block_remove(pix, param, true); 1077 current_vpgb = vpgb; 1078 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1079 pix = 1; 1080 } 1081 1082 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1083 if (pix == PLPAR_HCALL9_BUFSIZE) { 1084 pix = call_block_remove(pix, param, false); 1085 /* 1086 * pix = 0 means that all the entries were 1087 * removed, we can start a new block. 1088 * Otherwise, this means that there are entries 1089 * to retry, and pix points to latest one, so 1090 * we should increment it and try to continue 1091 * the same block. 1092 */ 1093 if (pix) 1094 pix++; 1095 } 1096 } 1097 if (pix) 1098 (void)call_block_remove(pix, param, true); 1099 } 1100 1101 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1102 int count, int psize, int ssize) 1103 { 1104 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1105 int i = 0, pix = 0, rc; 1106 1107 for (i = 0; i < count; i++) { 1108 1109 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1110 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1111 ssize, 0); 1112 } else { 1113 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1114 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1115 pix += 2; 1116 if (pix == 8) { 1117 rc = plpar_hcall9(H_BULK_REMOVE, param, 1118 param[0], param[1], param[2], 1119 param[3], param[4], param[5], 1120 param[6], param[7]); 1121 BUG_ON(rc != H_SUCCESS); 1122 pix = 0; 1123 } 1124 } 1125 } 1126 if (pix) { 1127 param[pix] = HBR_END; 1128 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1129 param[2], param[3], param[4], param[5], 1130 param[6], param[7]); 1131 BUG_ON(rc != H_SUCCESS); 1132 } 1133 } 1134 1135 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1136 unsigned long *vpn, 1137 int count, int psize, 1138 int ssize) 1139 { 1140 unsigned long flags = 0; 1141 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1142 1143 if (lock_tlbie) 1144 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1145 1146 if (firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1147 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1148 else 1149 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1150 1151 if (lock_tlbie) 1152 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1153 } 1154 1155 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1156 unsigned long addr, 1157 unsigned char *hpte_slot_array, 1158 int psize, int ssize, int local) 1159 { 1160 int i, index = 0; 1161 unsigned long s_addr = addr; 1162 unsigned int max_hpte_count, valid; 1163 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1164 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1165 unsigned long shift, hidx, vpn = 0, hash, slot; 1166 1167 shift = mmu_psize_defs[psize].shift; 1168 max_hpte_count = 1U << (PMD_SHIFT - shift); 1169 1170 for (i = 0; i < max_hpte_count; i++) { 1171 valid = hpte_valid(hpte_slot_array, i); 1172 if (!valid) 1173 continue; 1174 hidx = hpte_hash_index(hpte_slot_array, i); 1175 1176 /* get the vpn */ 1177 addr = s_addr + (i * (1ul << shift)); 1178 vpn = hpt_vpn(addr, vsid, ssize); 1179 hash = hpt_hash(vpn, shift, ssize); 1180 if (hidx & _PTEIDX_SECONDARY) 1181 hash = ~hash; 1182 1183 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1184 slot += hidx & _PTEIDX_GROUP_IX; 1185 1186 slot_array[index] = slot; 1187 vpn_array[index] = vpn; 1188 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1189 /* 1190 * Now do a bluk invalidate 1191 */ 1192 __pSeries_lpar_hugepage_invalidate(slot_array, 1193 vpn_array, 1194 PPC64_HUGE_HPTE_BATCH, 1195 psize, ssize); 1196 index = 0; 1197 } else 1198 index++; 1199 } 1200 if (index) 1201 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1202 index, psize, ssize); 1203 } 1204 #else 1205 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1206 unsigned long addr, 1207 unsigned char *hpte_slot_array, 1208 int psize, int ssize, int local) 1209 { 1210 WARN(1, "%s called without THP support\n", __func__); 1211 } 1212 #endif 1213 1214 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1215 int psize, int ssize) 1216 { 1217 unsigned long vpn; 1218 unsigned long slot, vsid; 1219 1220 vsid = get_kernel_vsid(ea, ssize); 1221 vpn = hpt_vpn(ea, vsid, ssize); 1222 1223 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1224 if (slot == -1) 1225 return -ENOENT; 1226 1227 /* 1228 * lpar doesn't use the passed actual page size 1229 */ 1230 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1231 return 0; 1232 } 1233 1234 1235 static inline unsigned long compute_slot(real_pte_t pte, 1236 unsigned long vpn, 1237 unsigned long index, 1238 unsigned long shift, 1239 int ssize) 1240 { 1241 unsigned long slot, hash, hidx; 1242 1243 hash = hpt_hash(vpn, shift, ssize); 1244 hidx = __rpte_to_hidx(pte, index); 1245 if (hidx & _PTEIDX_SECONDARY) 1246 hash = ~hash; 1247 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1248 slot += hidx & _PTEIDX_GROUP_IX; 1249 return slot; 1250 } 1251 1252 /** 1253 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1254 * "all within the same naturally aligned 8 page virtual address block". 1255 */ 1256 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1257 unsigned long *param) 1258 { 1259 unsigned long vpn; 1260 unsigned long i, pix = 0; 1261 unsigned long index, shift, slot, current_vpgb, vpgb; 1262 real_pte_t pte; 1263 int psize, ssize; 1264 1265 psize = batch->psize; 1266 ssize = batch->ssize; 1267 1268 for (i = 0; i < number; i++) { 1269 vpn = batch->vpn[i]; 1270 pte = batch->pte[i]; 1271 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1272 /* 1273 * Shifting 3 bits more on the right to get a 1274 * 8 pages aligned virtual addresse. 1275 */ 1276 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1277 if (!pix || vpgb != current_vpgb) { 1278 /* 1279 * Need to start a new 8 pages block, flush 1280 * the current one if needed. 1281 */ 1282 if (pix) 1283 (void)call_block_remove(pix, param, 1284 true); 1285 current_vpgb = vpgb; 1286 param[0] = hpte_encode_avpn(vpn, psize, 1287 ssize); 1288 pix = 1; 1289 } 1290 1291 slot = compute_slot(pte, vpn, index, shift, ssize); 1292 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1293 1294 if (pix == PLPAR_HCALL9_BUFSIZE) { 1295 pix = call_block_remove(pix, param, false); 1296 /* 1297 * pix = 0 means that all the entries were 1298 * removed, we can start a new block. 1299 * Otherwise, this means that there are entries 1300 * to retry, and pix points to latest one, so 1301 * we should increment it and try to continue 1302 * the same block. 1303 */ 1304 if (pix) 1305 pix++; 1306 } 1307 } pte_iterate_hashed_end(); 1308 } 1309 1310 if (pix) 1311 (void)call_block_remove(pix, param, true); 1312 } 1313 1314 /* 1315 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1316 * lock. 1317 */ 1318 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1319 { 1320 unsigned long vpn; 1321 unsigned long i, pix, rc; 1322 unsigned long flags = 0; 1323 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1324 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1325 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1326 unsigned long index, shift, slot; 1327 real_pte_t pte; 1328 int psize, ssize; 1329 1330 if (lock_tlbie) 1331 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1332 1333 if (firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) { 1334 do_block_remove(number, batch, param); 1335 goto out; 1336 } 1337 1338 psize = batch->psize; 1339 ssize = batch->ssize; 1340 pix = 0; 1341 for (i = 0; i < number; i++) { 1342 vpn = batch->vpn[i]; 1343 pte = batch->pte[i]; 1344 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1345 slot = compute_slot(pte, vpn, index, shift, ssize); 1346 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1347 /* 1348 * lpar doesn't use the passed actual page size 1349 */ 1350 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1351 0, ssize, local); 1352 } else { 1353 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1354 param[pix+1] = hpte_encode_avpn(vpn, psize, 1355 ssize); 1356 pix += 2; 1357 if (pix == 8) { 1358 rc = plpar_hcall9(H_BULK_REMOVE, param, 1359 param[0], param[1], param[2], 1360 param[3], param[4], param[5], 1361 param[6], param[7]); 1362 BUG_ON(rc != H_SUCCESS); 1363 pix = 0; 1364 } 1365 } 1366 } pte_iterate_hashed_end(); 1367 } 1368 if (pix) { 1369 param[pix] = HBR_END; 1370 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1371 param[2], param[3], param[4], param[5], 1372 param[6], param[7]); 1373 BUG_ON(rc != H_SUCCESS); 1374 } 1375 1376 out: 1377 if (lock_tlbie) 1378 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1379 } 1380 1381 static int __init disable_bulk_remove(char *str) 1382 { 1383 if (strcmp(str, "off") == 0 && 1384 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1385 pr_info("Disabling BULK_REMOVE firmware feature"); 1386 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1387 } 1388 return 1; 1389 } 1390 1391 __setup("bulk_remove=", disable_bulk_remove); 1392 1393 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1394 1395 struct hpt_resize_state { 1396 unsigned long shift; 1397 int commit_rc; 1398 }; 1399 1400 static int pseries_lpar_resize_hpt_commit(void *data) 1401 { 1402 struct hpt_resize_state *state = data; 1403 1404 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1405 if (state->commit_rc != H_SUCCESS) 1406 return -EIO; 1407 1408 /* Hypervisor has transitioned the HTAB, update our globals */ 1409 ppc64_pft_size = state->shift; 1410 htab_size_bytes = 1UL << ppc64_pft_size; 1411 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1412 1413 return 0; 1414 } 1415 1416 /* Must be called in user context */ 1417 static int pseries_lpar_resize_hpt(unsigned long shift) 1418 { 1419 struct hpt_resize_state state = { 1420 .shift = shift, 1421 .commit_rc = H_FUNCTION, 1422 }; 1423 unsigned int delay, total_delay = 0; 1424 int rc; 1425 ktime_t t0, t1, t2; 1426 1427 might_sleep(); 1428 1429 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1430 return -ENODEV; 1431 1432 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1433 1434 t0 = ktime_get(); 1435 1436 rc = plpar_resize_hpt_prepare(0, shift); 1437 while (H_IS_LONG_BUSY(rc)) { 1438 delay = get_longbusy_msecs(rc); 1439 total_delay += delay; 1440 if (total_delay > HPT_RESIZE_TIMEOUT) { 1441 /* prepare with shift==0 cancels an in-progress resize */ 1442 rc = plpar_resize_hpt_prepare(0, 0); 1443 if (rc != H_SUCCESS) 1444 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1445 rc); 1446 return -ETIMEDOUT; 1447 } 1448 msleep(delay); 1449 rc = plpar_resize_hpt_prepare(0, shift); 1450 }; 1451 1452 switch (rc) { 1453 case H_SUCCESS: 1454 /* Continue on */ 1455 break; 1456 1457 case H_PARAMETER: 1458 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1459 return -EINVAL; 1460 case H_RESOURCE: 1461 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1462 return -EPERM; 1463 default: 1464 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1465 return -EIO; 1466 } 1467 1468 t1 = ktime_get(); 1469 1470 rc = stop_machine(pseries_lpar_resize_hpt_commit, &state, NULL); 1471 1472 t2 = ktime_get(); 1473 1474 if (rc != 0) { 1475 switch (state.commit_rc) { 1476 case H_PTEG_FULL: 1477 return -ENOSPC; 1478 1479 default: 1480 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1481 state.commit_rc); 1482 return -EIO; 1483 }; 1484 } 1485 1486 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1487 shift, (long long) ktime_ms_delta(t1, t0), 1488 (long long) ktime_ms_delta(t2, t1)); 1489 1490 return 0; 1491 } 1492 1493 static int pseries_lpar_register_process_table(unsigned long base, 1494 unsigned long page_size, unsigned long table_size) 1495 { 1496 long rc; 1497 unsigned long flags = 0; 1498 1499 if (table_size) 1500 flags |= PROC_TABLE_NEW; 1501 if (radix_enabled()) 1502 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE; 1503 else 1504 flags |= PROC_TABLE_HPT_SLB; 1505 for (;;) { 1506 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 1507 page_size, table_size); 1508 if (!H_IS_LONG_BUSY(rc)) 1509 break; 1510 mdelay(get_longbusy_msecs(rc)); 1511 } 1512 if (rc != H_SUCCESS) { 1513 pr_err("Failed to register process table (rc=%ld)\n", rc); 1514 BUG(); 1515 } 1516 return rc; 1517 } 1518 1519 void __init hpte_init_pseries(void) 1520 { 1521 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1522 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1523 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1524 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1525 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1526 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1527 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1528 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1529 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1530 register_process_table = pseries_lpar_register_process_table; 1531 1532 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1533 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1534 } 1535 1536 void radix_init_pseries(void) 1537 { 1538 pr_info("Using radix MMU under hypervisor\n"); 1539 register_process_table = pseries_lpar_register_process_table; 1540 } 1541 1542 #ifdef CONFIG_PPC_SMLPAR 1543 #define CMO_FREE_HINT_DEFAULT 1 1544 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1545 1546 static int __init cmo_free_hint(char *str) 1547 { 1548 char *parm; 1549 parm = strstrip(str); 1550 1551 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1552 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1553 cmo_free_hint_flag = 0; 1554 return 1; 1555 } 1556 1557 cmo_free_hint_flag = 1; 1558 pr_info("%s: CMO free page hinting is active.\n", __func__); 1559 1560 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1561 return 1; 1562 1563 return 0; 1564 } 1565 1566 __setup("cmo_free_hint=", cmo_free_hint); 1567 1568 static void pSeries_set_page_state(struct page *page, int order, 1569 unsigned long state) 1570 { 1571 int i, j; 1572 unsigned long cmo_page_sz, addr; 1573 1574 cmo_page_sz = cmo_get_page_size(); 1575 addr = __pa((unsigned long)page_address(page)); 1576 1577 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1578 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1579 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1580 } 1581 } 1582 1583 void arch_free_page(struct page *page, int order) 1584 { 1585 if (radix_enabled()) 1586 return; 1587 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1588 return; 1589 1590 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1591 } 1592 EXPORT_SYMBOL(arch_free_page); 1593 1594 #endif /* CONFIG_PPC_SMLPAR */ 1595 #endif /* CONFIG_PPC_BOOK3S_64 */ 1596 1597 #ifdef CONFIG_TRACEPOINTS 1598 #ifdef CONFIG_JUMP_LABEL 1599 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1600 1601 int hcall_tracepoint_regfunc(void) 1602 { 1603 static_key_slow_inc(&hcall_tracepoint_key); 1604 return 0; 1605 } 1606 1607 void hcall_tracepoint_unregfunc(void) 1608 { 1609 static_key_slow_dec(&hcall_tracepoint_key); 1610 } 1611 #else 1612 /* 1613 * We optimise our hcall path by placing hcall_tracepoint_refcount 1614 * directly in the TOC so we can check if the hcall tracepoints are 1615 * enabled via a single load. 1616 */ 1617 1618 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1619 extern long hcall_tracepoint_refcount; 1620 1621 int hcall_tracepoint_regfunc(void) 1622 { 1623 hcall_tracepoint_refcount++; 1624 return 0; 1625 } 1626 1627 void hcall_tracepoint_unregfunc(void) 1628 { 1629 hcall_tracepoint_refcount--; 1630 } 1631 #endif 1632 1633 /* 1634 * Since the tracing code might execute hcalls we need to guard against 1635 * recursion. One example of this are spinlocks calling H_YIELD on 1636 * shared processor partitions. 1637 */ 1638 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1639 1640 1641 void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1642 { 1643 unsigned long flags; 1644 unsigned int *depth; 1645 1646 /* 1647 * We cannot call tracepoints inside RCU idle regions which 1648 * means we must not trace H_CEDE. 1649 */ 1650 if (opcode == H_CEDE) 1651 return; 1652 1653 local_irq_save(flags); 1654 1655 depth = this_cpu_ptr(&hcall_trace_depth); 1656 1657 if (*depth) 1658 goto out; 1659 1660 (*depth)++; 1661 preempt_disable(); 1662 trace_hcall_entry(opcode, args); 1663 (*depth)--; 1664 1665 out: 1666 local_irq_restore(flags); 1667 } 1668 1669 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1670 { 1671 unsigned long flags; 1672 unsigned int *depth; 1673 1674 if (opcode == H_CEDE) 1675 return; 1676 1677 local_irq_save(flags); 1678 1679 depth = this_cpu_ptr(&hcall_trace_depth); 1680 1681 if (*depth) 1682 goto out; 1683 1684 (*depth)++; 1685 trace_hcall_exit(opcode, retval, retbuf); 1686 preempt_enable(); 1687 (*depth)--; 1688 1689 out: 1690 local_irq_restore(flags); 1691 } 1692 #endif 1693 1694 /** 1695 * h_get_mpp 1696 * H_GET_MPP hcall returns info in 7 parms 1697 */ 1698 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1699 { 1700 int rc; 1701 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1702 1703 rc = plpar_hcall9(H_GET_MPP, retbuf); 1704 1705 mpp_data->entitled_mem = retbuf[0]; 1706 mpp_data->mapped_mem = retbuf[1]; 1707 1708 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1709 mpp_data->pool_num = retbuf[2] & 0xffff; 1710 1711 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1712 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1713 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1714 1715 mpp_data->pool_size = retbuf[4]; 1716 mpp_data->loan_request = retbuf[5]; 1717 mpp_data->backing_mem = retbuf[6]; 1718 1719 return rc; 1720 } 1721 EXPORT_SYMBOL(h_get_mpp); 1722 1723 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1724 { 1725 int rc; 1726 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1727 1728 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1729 1730 mpp_x_data->coalesced_bytes = retbuf[0]; 1731 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1732 mpp_x_data->pool_purr_cycles = retbuf[2]; 1733 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1734 1735 return rc; 1736 } 1737 1738 static unsigned long vsid_unscramble(unsigned long vsid, int ssize) 1739 { 1740 unsigned long protovsid; 1741 unsigned long va_bits = VA_BITS; 1742 unsigned long modinv, vsid_modulus; 1743 unsigned long max_mod_inv, tmp_modinv; 1744 1745 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1746 va_bits = 65; 1747 1748 if (ssize == MMU_SEGSIZE_256M) { 1749 modinv = VSID_MULINV_256M; 1750 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1751 } else { 1752 modinv = VSID_MULINV_1T; 1753 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1754 } 1755 1756 /* 1757 * vsid outside our range. 1758 */ 1759 if (vsid >= vsid_modulus) 1760 return 0; 1761 1762 /* 1763 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1764 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1765 * protovsid = (vsid * modinv) % vsid_modulus 1766 */ 1767 1768 /* Check if (vsid * modinv) overflow (63 bits) */ 1769 max_mod_inv = 0x7fffffffffffffffull / vsid; 1770 if (modinv < max_mod_inv) 1771 return (vsid * modinv) % vsid_modulus; 1772 1773 tmp_modinv = modinv/max_mod_inv; 1774 modinv %= max_mod_inv; 1775 1776 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1777 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1778 1779 return protovsid; 1780 } 1781 1782 static int __init reserve_vrma_context_id(void) 1783 { 1784 unsigned long protovsid; 1785 1786 /* 1787 * Reserve context ids which map to reserved virtual addresses. For now 1788 * we only reserve the context id which maps to the VRMA VSID. We ignore 1789 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1790 * enable adjunct support via the "ibm,client-architecture-support" 1791 * interface. 1792 */ 1793 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1794 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1795 return 0; 1796 } 1797 machine_device_initcall(pseries, reserve_vrma_context_id); 1798 1799 #ifdef CONFIG_DEBUG_FS 1800 /* debugfs file interface for vpa data */ 1801 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1802 loff_t *pos) 1803 { 1804 int cpu = (long)filp->private_data; 1805 struct lppaca *lppaca = &lppaca_of(cpu); 1806 1807 return simple_read_from_buffer(buf, len, pos, lppaca, 1808 sizeof(struct lppaca)); 1809 } 1810 1811 static const struct file_operations vpa_fops = { 1812 .open = simple_open, 1813 .read = vpa_file_read, 1814 .llseek = default_llseek, 1815 }; 1816 1817 static int __init vpa_debugfs_init(void) 1818 { 1819 char name[16]; 1820 long i; 1821 static struct dentry *vpa_dir; 1822 1823 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 1824 return 0; 1825 1826 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root); 1827 if (!vpa_dir) { 1828 pr_warn("%s: can't create vpa root dir\n", __func__); 1829 return -ENOMEM; 1830 } 1831 1832 /* set up the per-cpu vpa file*/ 1833 for_each_possible_cpu(i) { 1834 struct dentry *d; 1835 1836 sprintf(name, "cpu-%ld", i); 1837 1838 d = debugfs_create_file(name, 0400, vpa_dir, (void *)i, 1839 &vpa_fops); 1840 if (!d) { 1841 pr_warn("%s: can't create per-cpu vpa file\n", 1842 __func__); 1843 return -ENOMEM; 1844 } 1845 } 1846 1847 return 0; 1848 } 1849 machine_arch_initcall(pseries, vpa_debugfs_init); 1850 #endif /* CONFIG_DEBUG_FS */ 1851