1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/setup.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/cputable.h> 35 #include <asm/udbg.h> 36 #include <asm/smp.h> 37 #include <asm/trace.h> 38 #include <asm/firmware.h> 39 #include <asm/plpar_wrappers.h> 40 #include <asm/kexec.h> 41 #include <asm/fadump.h> 42 #include <asm/dtl.h> 43 44 #include "pseries.h" 45 46 /* Flag bits for H_BULK_REMOVE */ 47 #define HBR_REQUEST 0x4000000000000000UL 48 #define HBR_RESPONSE 0x8000000000000000UL 49 #define HBR_END 0xc000000000000000UL 50 #define HBR_AVPN 0x0200000000000000UL 51 #define HBR_ANDCOND 0x0100000000000000UL 52 53 54 /* in hvCall.S */ 55 EXPORT_SYMBOL(plpar_hcall); 56 EXPORT_SYMBOL(plpar_hcall9); 57 EXPORT_SYMBOL(plpar_hcall_norets); 58 59 #ifdef CONFIG_PPC_64S_HASH_MMU 60 /* 61 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 62 * page size is that page size. 63 * 64 * The first index is the segment base page size, the second one is the actual 65 * page size. 66 */ 67 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 68 #endif 69 70 /* 71 * Due to the involved complexity, and that the current hypervisor is only 72 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 73 * buffer size to 8 size block. 74 */ 75 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 76 77 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 78 static u8 dtl_mask = DTL_LOG_PREEMPT; 79 #else 80 static u8 dtl_mask; 81 #endif 82 83 void alloc_dtl_buffers(unsigned long *time_limit) 84 { 85 int cpu; 86 struct paca_struct *pp; 87 struct dtl_entry *dtl; 88 89 for_each_possible_cpu(cpu) { 90 pp = paca_ptrs[cpu]; 91 if (pp->dispatch_log) 92 continue; 93 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 94 if (!dtl) { 95 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 96 cpu); 97 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 98 pr_warn("Stolen time statistics will be unreliable\n"); 99 #endif 100 break; 101 } 102 103 pp->dtl_ridx = 0; 104 pp->dispatch_log = dtl; 105 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 106 pp->dtl_curr = dtl; 107 108 if (time_limit && time_after(jiffies, *time_limit)) { 109 cond_resched(); 110 *time_limit = jiffies + HZ; 111 } 112 } 113 } 114 115 void register_dtl_buffer(int cpu) 116 { 117 long ret; 118 struct paca_struct *pp; 119 struct dtl_entry *dtl; 120 int hwcpu = get_hard_smp_processor_id(cpu); 121 122 pp = paca_ptrs[cpu]; 123 dtl = pp->dispatch_log; 124 if (dtl && dtl_mask) { 125 pp->dtl_ridx = 0; 126 pp->dtl_curr = dtl; 127 lppaca_of(cpu).dtl_idx = 0; 128 129 /* hypervisor reads buffer length from this field */ 130 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 131 ret = register_dtl(hwcpu, __pa(dtl)); 132 if (ret) 133 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 134 cpu, hwcpu, ret); 135 136 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 137 } 138 } 139 140 #ifdef CONFIG_PPC_SPLPAR 141 struct dtl_worker { 142 struct delayed_work work; 143 int cpu; 144 }; 145 146 struct vcpu_dispatch_data { 147 int last_disp_cpu; 148 149 int total_disp; 150 151 int same_cpu_disp; 152 int same_chip_disp; 153 int diff_chip_disp; 154 int far_chip_disp; 155 156 int numa_home_disp; 157 int numa_remote_disp; 158 int numa_far_disp; 159 }; 160 161 /* 162 * This represents the number of cpus in the hypervisor. Since there is no 163 * architected way to discover the number of processors in the host, we 164 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 165 * is sufficient for our purposes. This will need to be tweaked if 166 * CONFIG_NR_CPUS is changed. 167 */ 168 #define NR_CPUS_H NR_CPUS 169 170 DEFINE_RWLOCK(dtl_access_lock); 171 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 172 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 173 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 174 static enum cpuhp_state dtl_worker_state; 175 static DEFINE_MUTEX(dtl_enable_mutex); 176 static int vcpudispatch_stats_on __read_mostly; 177 static int vcpudispatch_stats_freq = 50; 178 static __be32 *vcpu_associativity, *pcpu_associativity; 179 180 181 static void free_dtl_buffers(unsigned long *time_limit) 182 { 183 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 184 int cpu; 185 struct paca_struct *pp; 186 187 for_each_possible_cpu(cpu) { 188 pp = paca_ptrs[cpu]; 189 if (!pp->dispatch_log) 190 continue; 191 kmem_cache_free(dtl_cache, pp->dispatch_log); 192 pp->dtl_ridx = 0; 193 pp->dispatch_log = 0; 194 pp->dispatch_log_end = 0; 195 pp->dtl_curr = 0; 196 197 if (time_limit && time_after(jiffies, *time_limit)) { 198 cond_resched(); 199 *time_limit = jiffies + HZ; 200 } 201 } 202 #endif 203 } 204 205 static int init_cpu_associativity(void) 206 { 207 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 209 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 211 212 if (!vcpu_associativity || !pcpu_associativity) { 213 pr_err("error allocating memory for associativity information\n"); 214 return -ENOMEM; 215 } 216 217 return 0; 218 } 219 220 static void destroy_cpu_associativity(void) 221 { 222 kfree(vcpu_associativity); 223 kfree(pcpu_associativity); 224 vcpu_associativity = pcpu_associativity = 0; 225 } 226 227 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 228 { 229 __be32 *assoc; 230 int rc = 0; 231 232 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 233 if (!assoc[0]) { 234 rc = hcall_vphn(cpu, flag, &assoc[0]); 235 if (rc) 236 return NULL; 237 } 238 239 return assoc; 240 } 241 242 static __be32 *get_pcpu_associativity(int cpu) 243 { 244 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 245 } 246 247 static __be32 *get_vcpu_associativity(int cpu) 248 { 249 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 250 } 251 252 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 253 { 254 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 255 256 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 257 return -EINVAL; 258 259 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 260 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 261 262 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 263 return -EIO; 264 265 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 266 } 267 268 static int cpu_home_node_dispatch_distance(int disp_cpu) 269 { 270 __be32 *disp_cpu_assoc, *vcpu_assoc; 271 int vcpu_id = smp_processor_id(); 272 273 if (disp_cpu >= NR_CPUS_H) { 274 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 275 disp_cpu, NR_CPUS_H); 276 return -EINVAL; 277 } 278 279 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 280 vcpu_assoc = get_vcpu_associativity(vcpu_id); 281 282 if (!disp_cpu_assoc || !vcpu_assoc) 283 return -EIO; 284 285 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 286 } 287 288 static void update_vcpu_disp_stat(int disp_cpu) 289 { 290 struct vcpu_dispatch_data *disp; 291 int distance; 292 293 disp = this_cpu_ptr(&vcpu_disp_data); 294 if (disp->last_disp_cpu == -1) { 295 disp->last_disp_cpu = disp_cpu; 296 return; 297 } 298 299 disp->total_disp++; 300 301 if (disp->last_disp_cpu == disp_cpu || 302 (cpu_first_thread_sibling(disp->last_disp_cpu) == 303 cpu_first_thread_sibling(disp_cpu))) 304 disp->same_cpu_disp++; 305 else { 306 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 307 disp_cpu); 308 if (distance < 0) 309 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 310 smp_processor_id()); 311 else { 312 switch (distance) { 313 case 0: 314 disp->same_chip_disp++; 315 break; 316 case 1: 317 disp->diff_chip_disp++; 318 break; 319 case 2: 320 disp->far_chip_disp++; 321 break; 322 default: 323 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 324 smp_processor_id(), 325 disp->last_disp_cpu, 326 disp_cpu, 327 distance); 328 } 329 } 330 } 331 332 distance = cpu_home_node_dispatch_distance(disp_cpu); 333 if (distance < 0) 334 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 335 smp_processor_id()); 336 else { 337 switch (distance) { 338 case 0: 339 disp->numa_home_disp++; 340 break; 341 case 1: 342 disp->numa_remote_disp++; 343 break; 344 case 2: 345 disp->numa_far_disp++; 346 break; 347 default: 348 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 349 smp_processor_id(), 350 disp_cpu, 351 distance); 352 } 353 } 354 355 disp->last_disp_cpu = disp_cpu; 356 } 357 358 static void process_dtl_buffer(struct work_struct *work) 359 { 360 struct dtl_entry dtle; 361 u64 i = __this_cpu_read(dtl_entry_ridx); 362 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 363 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 364 struct lppaca *vpa = local_paca->lppaca_ptr; 365 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 366 367 if (!local_paca->dispatch_log) 368 return; 369 370 /* if we have been migrated away, we cancel ourself */ 371 if (d->cpu != smp_processor_id()) { 372 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 373 smp_processor_id()); 374 return; 375 } 376 377 if (i == be64_to_cpu(vpa->dtl_idx)) 378 goto out; 379 380 while (i < be64_to_cpu(vpa->dtl_idx)) { 381 dtle = *dtl; 382 barrier(); 383 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 384 /* buffer has overflowed */ 385 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 386 d->cpu, 387 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 388 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 389 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 390 continue; 391 } 392 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 393 ++i; 394 ++dtl; 395 if (dtl == dtl_end) 396 dtl = local_paca->dispatch_log; 397 } 398 399 __this_cpu_write(dtl_entry_ridx, i); 400 401 out: 402 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 403 HZ / vcpudispatch_stats_freq); 404 } 405 406 static int dtl_worker_online(unsigned int cpu) 407 { 408 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 409 410 memset(d, 0, sizeof(*d)); 411 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 412 d->cpu = cpu; 413 414 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 415 per_cpu(dtl_entry_ridx, cpu) = 0; 416 register_dtl_buffer(cpu); 417 #else 418 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 419 #endif 420 421 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 422 return 0; 423 } 424 425 static int dtl_worker_offline(unsigned int cpu) 426 { 427 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 428 429 cancel_delayed_work_sync(&d->work); 430 431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 432 unregister_dtl(get_hard_smp_processor_id(cpu)); 433 #endif 434 435 return 0; 436 } 437 438 static void set_global_dtl_mask(u8 mask) 439 { 440 int cpu; 441 442 dtl_mask = mask; 443 for_each_present_cpu(cpu) 444 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 445 } 446 447 static void reset_global_dtl_mask(void) 448 { 449 int cpu; 450 451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 452 dtl_mask = DTL_LOG_PREEMPT; 453 #else 454 dtl_mask = 0; 455 #endif 456 for_each_present_cpu(cpu) 457 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 458 } 459 460 static int dtl_worker_enable(unsigned long *time_limit) 461 { 462 int rc = 0, state; 463 464 if (!write_trylock(&dtl_access_lock)) { 465 rc = -EBUSY; 466 goto out; 467 } 468 469 set_global_dtl_mask(DTL_LOG_ALL); 470 471 /* Setup dtl buffers and register those */ 472 alloc_dtl_buffers(time_limit); 473 474 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 475 dtl_worker_online, dtl_worker_offline); 476 if (state < 0) { 477 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 478 free_dtl_buffers(time_limit); 479 reset_global_dtl_mask(); 480 write_unlock(&dtl_access_lock); 481 rc = -EINVAL; 482 goto out; 483 } 484 dtl_worker_state = state; 485 486 out: 487 return rc; 488 } 489 490 static void dtl_worker_disable(unsigned long *time_limit) 491 { 492 cpuhp_remove_state(dtl_worker_state); 493 free_dtl_buffers(time_limit); 494 reset_global_dtl_mask(); 495 write_unlock(&dtl_access_lock); 496 } 497 498 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 499 size_t count, loff_t *ppos) 500 { 501 unsigned long time_limit = jiffies + HZ; 502 struct vcpu_dispatch_data *disp; 503 int rc, cmd, cpu; 504 char buf[16]; 505 506 if (count > 15) 507 return -EINVAL; 508 509 if (copy_from_user(buf, p, count)) 510 return -EFAULT; 511 512 buf[count] = 0; 513 rc = kstrtoint(buf, 0, &cmd); 514 if (rc || cmd < 0 || cmd > 1) { 515 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 516 return rc ? rc : -EINVAL; 517 } 518 519 mutex_lock(&dtl_enable_mutex); 520 521 if ((cmd == 0 && !vcpudispatch_stats_on) || 522 (cmd == 1 && vcpudispatch_stats_on)) 523 goto out; 524 525 if (cmd) { 526 rc = init_cpu_associativity(); 527 if (rc) 528 goto out; 529 530 for_each_possible_cpu(cpu) { 531 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 532 memset(disp, 0, sizeof(*disp)); 533 disp->last_disp_cpu = -1; 534 } 535 536 rc = dtl_worker_enable(&time_limit); 537 if (rc) { 538 destroy_cpu_associativity(); 539 goto out; 540 } 541 } else { 542 dtl_worker_disable(&time_limit); 543 destroy_cpu_associativity(); 544 } 545 546 vcpudispatch_stats_on = cmd; 547 548 out: 549 mutex_unlock(&dtl_enable_mutex); 550 if (rc) 551 return rc; 552 return count; 553 } 554 555 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 556 { 557 int cpu; 558 struct vcpu_dispatch_data *disp; 559 560 if (!vcpudispatch_stats_on) { 561 seq_puts(p, "off\n"); 562 return 0; 563 } 564 565 for_each_online_cpu(cpu) { 566 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 567 seq_printf(p, "cpu%d", cpu); 568 seq_put_decimal_ull(p, " ", disp->total_disp); 569 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 570 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 571 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 572 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 573 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 574 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 575 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 576 seq_puts(p, "\n"); 577 } 578 579 return 0; 580 } 581 582 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 583 { 584 return single_open(file, vcpudispatch_stats_display, NULL); 585 } 586 587 static const struct proc_ops vcpudispatch_stats_proc_ops = { 588 .proc_open = vcpudispatch_stats_open, 589 .proc_read = seq_read, 590 .proc_write = vcpudispatch_stats_write, 591 .proc_lseek = seq_lseek, 592 .proc_release = single_release, 593 }; 594 595 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 596 const char __user *p, size_t count, loff_t *ppos) 597 { 598 int rc, freq; 599 char buf[16]; 600 601 if (count > 15) 602 return -EINVAL; 603 604 if (copy_from_user(buf, p, count)) 605 return -EFAULT; 606 607 buf[count] = 0; 608 rc = kstrtoint(buf, 0, &freq); 609 if (rc || freq < 1 || freq > HZ) { 610 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 611 HZ); 612 return rc ? rc : -EINVAL; 613 } 614 615 vcpudispatch_stats_freq = freq; 616 617 return count; 618 } 619 620 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 621 { 622 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 623 return 0; 624 } 625 626 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 627 { 628 return single_open(file, vcpudispatch_stats_freq_display, NULL); 629 } 630 631 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 632 .proc_open = vcpudispatch_stats_freq_open, 633 .proc_read = seq_read, 634 .proc_write = vcpudispatch_stats_freq_write, 635 .proc_lseek = seq_lseek, 636 .proc_release = single_release, 637 }; 638 639 static int __init vcpudispatch_stats_procfs_init(void) 640 { 641 /* 642 * Avoid smp_processor_id while preemptible. All CPUs should have 643 * the same value for lppaca_shared_proc. 644 */ 645 preempt_disable(); 646 if (!lppaca_shared_proc(get_lppaca())) { 647 preempt_enable(); 648 return 0; 649 } 650 preempt_enable(); 651 652 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 653 &vcpudispatch_stats_proc_ops)) 654 pr_err("vcpudispatch_stats: error creating procfs file\n"); 655 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 656 &vcpudispatch_stats_freq_proc_ops)) 657 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 658 659 return 0; 660 } 661 662 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 663 664 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 665 u64 pseries_paravirt_steal_clock(int cpu) 666 { 667 struct lppaca *lppaca = &lppaca_of(cpu); 668 669 return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) + 670 be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)); 671 } 672 #endif 673 674 #endif /* CONFIG_PPC_SPLPAR */ 675 676 void vpa_init(int cpu) 677 { 678 int hwcpu = get_hard_smp_processor_id(cpu); 679 unsigned long addr; 680 long ret; 681 682 /* 683 * The spec says it "may be problematic" if CPU x registers the VPA of 684 * CPU y. We should never do that, but wail if we ever do. 685 */ 686 WARN_ON(cpu != smp_processor_id()); 687 688 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 689 lppaca_of(cpu).vmxregs_in_use = 1; 690 691 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 692 lppaca_of(cpu).ebb_regs_in_use = 1; 693 694 addr = __pa(&lppaca_of(cpu)); 695 ret = register_vpa(hwcpu, addr); 696 697 if (ret) { 698 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 699 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 700 return; 701 } 702 703 #ifdef CONFIG_PPC_64S_HASH_MMU 704 /* 705 * PAPR says this feature is SLB-Buffer but firmware never 706 * reports that. All SPLPAR support SLB shadow buffer. 707 */ 708 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 709 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 710 ret = register_slb_shadow(hwcpu, addr); 711 if (ret) 712 pr_err("WARNING: SLB shadow buffer registration for " 713 "cpu %d (hw %d) of area %lx failed with %ld\n", 714 cpu, hwcpu, addr, ret); 715 } 716 #endif /* CONFIG_PPC_64S_HASH_MMU */ 717 718 /* 719 * Register dispatch trace log, if one has been allocated. 720 */ 721 register_dtl_buffer(cpu); 722 } 723 724 #ifdef CONFIG_PPC_BOOK3S_64 725 726 static int __init pseries_lpar_register_process_table(unsigned long base, 727 unsigned long page_size, unsigned long table_size) 728 { 729 long rc; 730 unsigned long flags = 0; 731 732 if (table_size) 733 flags |= PROC_TABLE_NEW; 734 if (radix_enabled()) { 735 flags |= PROC_TABLE_RADIX; 736 if (mmu_has_feature(MMU_FTR_GTSE)) 737 flags |= PROC_TABLE_GTSE; 738 } else 739 flags |= PROC_TABLE_HPT_SLB; 740 for (;;) { 741 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 742 page_size, table_size); 743 if (!H_IS_LONG_BUSY(rc)) 744 break; 745 mdelay(get_longbusy_msecs(rc)); 746 } 747 if (rc != H_SUCCESS) { 748 pr_err("Failed to register process table (rc=%ld)\n", rc); 749 BUG(); 750 } 751 return rc; 752 } 753 754 #ifdef CONFIG_PPC_64S_HASH_MMU 755 756 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 757 unsigned long vpn, unsigned long pa, 758 unsigned long rflags, unsigned long vflags, 759 int psize, int apsize, int ssize) 760 { 761 unsigned long lpar_rc; 762 unsigned long flags; 763 unsigned long slot; 764 unsigned long hpte_v, hpte_r; 765 766 if (!(vflags & HPTE_V_BOLTED)) 767 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 768 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 769 hpte_group, vpn, pa, rflags, vflags, psize); 770 771 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 772 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 773 774 if (!(vflags & HPTE_V_BOLTED)) 775 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 776 777 /* Now fill in the actual HPTE */ 778 /* Set CEC cookie to 0 */ 779 /* Zero page = 0 */ 780 /* I-cache Invalidate = 0 */ 781 /* I-cache synchronize = 0 */ 782 /* Exact = 0 */ 783 flags = 0; 784 785 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 786 flags |= H_COALESCE_CAND; 787 788 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 789 if (unlikely(lpar_rc == H_PTEG_FULL)) { 790 pr_devel("Hash table group is full\n"); 791 return -1; 792 } 793 794 /* 795 * Since we try and ioremap PHBs we don't own, the pte insert 796 * will fail. However we must catch the failure in hash_page 797 * or we will loop forever, so return -2 in this case. 798 */ 799 if (unlikely(lpar_rc != H_SUCCESS)) { 800 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 801 return -2; 802 } 803 if (!(vflags & HPTE_V_BOLTED)) 804 pr_devel(" -> slot: %lu\n", slot & 7); 805 806 /* Because of iSeries, we have to pass down the secondary 807 * bucket bit here as well 808 */ 809 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 810 } 811 812 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 813 814 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 815 { 816 unsigned long slot_offset; 817 unsigned long lpar_rc; 818 int i; 819 unsigned long dummy1, dummy2; 820 821 /* pick a random slot to start at */ 822 slot_offset = mftb() & 0x7; 823 824 for (i = 0; i < HPTES_PER_GROUP; i++) { 825 826 /* don't remove a bolted entry */ 827 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 828 HPTE_V_BOLTED, &dummy1, &dummy2); 829 if (lpar_rc == H_SUCCESS) 830 return i; 831 832 /* 833 * The test for adjunct partition is performed before the 834 * ANDCOND test. H_RESOURCE may be returned, so we need to 835 * check for that as well. 836 */ 837 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 838 839 slot_offset++; 840 slot_offset &= 0x7; 841 } 842 843 return -1; 844 } 845 846 /* Called during kexec sequence with MMU off */ 847 static notrace void manual_hpte_clear_all(void) 848 { 849 unsigned long size_bytes = 1UL << ppc64_pft_size; 850 unsigned long hpte_count = size_bytes >> 4; 851 struct { 852 unsigned long pteh; 853 unsigned long ptel; 854 } ptes[4]; 855 long lpar_rc; 856 unsigned long i, j; 857 858 /* Read in batches of 4, 859 * invalidate only valid entries not in the VRMA 860 * hpte_count will be a multiple of 4 861 */ 862 for (i = 0; i < hpte_count; i += 4) { 863 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 864 if (lpar_rc != H_SUCCESS) { 865 pr_info("Failed to read hash page table at %ld err %ld\n", 866 i, lpar_rc); 867 continue; 868 } 869 for (j = 0; j < 4; j++){ 870 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 871 HPTE_V_VRMA_MASK) 872 continue; 873 if (ptes[j].pteh & HPTE_V_VALID) 874 plpar_pte_remove_raw(0, i + j, 0, 875 &(ptes[j].pteh), &(ptes[j].ptel)); 876 } 877 } 878 } 879 880 /* Called during kexec sequence with MMU off */ 881 static notrace int hcall_hpte_clear_all(void) 882 { 883 int rc; 884 885 do { 886 rc = plpar_hcall_norets(H_CLEAR_HPT); 887 } while (rc == H_CONTINUE); 888 889 return rc; 890 } 891 892 /* Called during kexec sequence with MMU off */ 893 static notrace void pseries_hpte_clear_all(void) 894 { 895 int rc; 896 897 rc = hcall_hpte_clear_all(); 898 if (rc != H_SUCCESS) 899 manual_hpte_clear_all(); 900 901 #ifdef __LITTLE_ENDIAN__ 902 /* 903 * Reset exceptions to big endian. 904 * 905 * FIXME this is a hack for kexec, we need to reset the exception 906 * endian before starting the new kernel and this is a convenient place 907 * to do it. 908 * 909 * This is also called on boot when a fadump happens. In that case we 910 * must not change the exception endian mode. 911 */ 912 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 913 pseries_big_endian_exceptions(); 914 #endif 915 } 916 917 /* 918 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 919 * the low 3 bits of flags happen to line up. So no transform is needed. 920 * We can probably optimize here and assume the high bits of newpp are 921 * already zero. For now I am paranoid. 922 */ 923 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 924 unsigned long newpp, 925 unsigned long vpn, 926 int psize, int apsize, 927 int ssize, unsigned long inv_flags) 928 { 929 unsigned long lpar_rc; 930 unsigned long flags; 931 unsigned long want_v; 932 933 want_v = hpte_encode_avpn(vpn, psize, ssize); 934 935 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 936 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 937 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 938 /* Move pp0 into bit 8 (IBM 55) */ 939 flags |= (newpp & HPTE_R_PP0) >> 55; 940 941 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 942 want_v, slot, flags, psize); 943 944 lpar_rc = plpar_pte_protect(flags, slot, want_v); 945 946 if (lpar_rc == H_NOT_FOUND) { 947 pr_devel("not found !\n"); 948 return -1; 949 } 950 951 pr_devel("ok\n"); 952 953 BUG_ON(lpar_rc != H_SUCCESS); 954 955 return 0; 956 } 957 958 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 959 { 960 long lpar_rc; 961 unsigned long i, j; 962 struct { 963 unsigned long pteh; 964 unsigned long ptel; 965 } ptes[4]; 966 967 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 968 969 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 970 if (lpar_rc != H_SUCCESS) { 971 pr_info("Failed to read hash page table at %ld err %ld\n", 972 hpte_group, lpar_rc); 973 continue; 974 } 975 976 for (j = 0; j < 4; j++) { 977 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 978 (ptes[j].pteh & HPTE_V_VALID)) 979 return i + j; 980 } 981 } 982 983 return -1; 984 } 985 986 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 987 { 988 long slot; 989 unsigned long hash; 990 unsigned long want_v; 991 unsigned long hpte_group; 992 993 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 994 want_v = hpte_encode_avpn(vpn, psize, ssize); 995 996 /* 997 * We try to keep bolted entries always in primary hash 998 * But in some case we can find them in secondary too. 999 */ 1000 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1001 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1002 if (slot < 0) { 1003 /* Try in secondary */ 1004 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 1005 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1006 if (slot < 0) 1007 return -1; 1008 } 1009 return hpte_group + slot; 1010 } 1011 1012 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1013 unsigned long ea, 1014 int psize, int ssize) 1015 { 1016 unsigned long vpn; 1017 unsigned long lpar_rc, slot, vsid, flags; 1018 1019 vsid = get_kernel_vsid(ea, ssize); 1020 vpn = hpt_vpn(ea, vsid, ssize); 1021 1022 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1023 BUG_ON(slot == -1); 1024 1025 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1026 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1027 /* Move pp0 into bit 8 (IBM 55) */ 1028 flags |= (newpp & HPTE_R_PP0) >> 55; 1029 1030 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1031 1032 lpar_rc = plpar_pte_protect(flags, slot, 0); 1033 1034 BUG_ON(lpar_rc != H_SUCCESS); 1035 } 1036 1037 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1038 int psize, int apsize, 1039 int ssize, int local) 1040 { 1041 unsigned long want_v; 1042 unsigned long lpar_rc; 1043 unsigned long dummy1, dummy2; 1044 1045 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1046 slot, vpn, psize, local); 1047 1048 want_v = hpte_encode_avpn(vpn, psize, ssize); 1049 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1050 if (lpar_rc == H_NOT_FOUND) 1051 return; 1052 1053 BUG_ON(lpar_rc != H_SUCCESS); 1054 } 1055 1056 1057 /* 1058 * As defined in the PAPR's section 14.5.4.1.8 1059 * The control mask doesn't include the returned reference and change bit from 1060 * the processed PTE. 1061 */ 1062 #define HBLKR_AVPN 0x0100000000000000UL 1063 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1064 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1065 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1066 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1067 1068 /* 1069 * Returned true if we are supporting this block size for the specified segment 1070 * base page size and actual page size. 1071 * 1072 * Currently, we only support 8 size block. 1073 */ 1074 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1075 { 1076 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1077 } 1078 1079 /** 1080 * H_BLOCK_REMOVE caller. 1081 * @idx should point to the latest @param entry set with a PTEX. 1082 * If PTE cannot be processed because another CPUs has already locked that 1083 * group, those entries are put back in @param starting at index 1. 1084 * If entries has to be retried and @retry_busy is set to true, these entries 1085 * are retried until success. If @retry_busy is set to false, the returned 1086 * is the number of entries yet to process. 1087 */ 1088 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1089 bool retry_busy) 1090 { 1091 unsigned long i, rc, new_idx; 1092 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1093 1094 if (idx < 2) { 1095 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1096 return 0; 1097 } 1098 again: 1099 new_idx = 0; 1100 if (idx > PLPAR_HCALL9_BUFSIZE) { 1101 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1102 idx = PLPAR_HCALL9_BUFSIZE; 1103 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1104 param[idx] = HBR_END; 1105 1106 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1107 param[0], /* AVA */ 1108 param[1], param[2], param[3], param[4], /* TS0-7 */ 1109 param[5], param[6], param[7], param[8]); 1110 if (rc == H_SUCCESS) 1111 return 0; 1112 1113 BUG_ON(rc != H_PARTIAL); 1114 1115 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1116 for (i = 0; i < idx-1; i++) { 1117 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1118 1119 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1120 param[++new_idx] = param[i+1]; 1121 continue; 1122 } 1123 1124 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1125 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1126 } 1127 1128 /* 1129 * If there were entries found busy, retry these entries if requested, 1130 * of if all the entries have to be retried. 1131 */ 1132 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1133 idx = new_idx + 1; 1134 goto again; 1135 } 1136 1137 return new_idx; 1138 } 1139 1140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1141 /* 1142 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1143 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1144 */ 1145 #define PPC64_HUGE_HPTE_BATCH 12 1146 1147 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1148 int count, int psize, int ssize) 1149 { 1150 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1151 unsigned long shift, current_vpgb, vpgb; 1152 int i, pix = 0; 1153 1154 shift = mmu_psize_defs[psize].shift; 1155 1156 for (i = 0; i < count; i++) { 1157 /* 1158 * Shifting 3 bits more on the right to get a 1159 * 8 pages aligned virtual addresse. 1160 */ 1161 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1162 if (!pix || vpgb != current_vpgb) { 1163 /* 1164 * Need to start a new 8 pages block, flush 1165 * the current one if needed. 1166 */ 1167 if (pix) 1168 (void)call_block_remove(pix, param, true); 1169 current_vpgb = vpgb; 1170 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1171 pix = 1; 1172 } 1173 1174 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1175 if (pix == PLPAR_HCALL9_BUFSIZE) { 1176 pix = call_block_remove(pix, param, false); 1177 /* 1178 * pix = 0 means that all the entries were 1179 * removed, we can start a new block. 1180 * Otherwise, this means that there are entries 1181 * to retry, and pix points to latest one, so 1182 * we should increment it and try to continue 1183 * the same block. 1184 */ 1185 if (pix) 1186 pix++; 1187 } 1188 } 1189 if (pix) 1190 (void)call_block_remove(pix, param, true); 1191 } 1192 1193 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1194 int count, int psize, int ssize) 1195 { 1196 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1197 int i = 0, pix = 0, rc; 1198 1199 for (i = 0; i < count; i++) { 1200 1201 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1202 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1203 ssize, 0); 1204 } else { 1205 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1206 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1207 pix += 2; 1208 if (pix == 8) { 1209 rc = plpar_hcall9(H_BULK_REMOVE, param, 1210 param[0], param[1], param[2], 1211 param[3], param[4], param[5], 1212 param[6], param[7]); 1213 BUG_ON(rc != H_SUCCESS); 1214 pix = 0; 1215 } 1216 } 1217 } 1218 if (pix) { 1219 param[pix] = HBR_END; 1220 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1221 param[2], param[3], param[4], param[5], 1222 param[6], param[7]); 1223 BUG_ON(rc != H_SUCCESS); 1224 } 1225 } 1226 1227 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1228 unsigned long *vpn, 1229 int count, int psize, 1230 int ssize) 1231 { 1232 unsigned long flags = 0; 1233 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1234 1235 if (lock_tlbie) 1236 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1237 1238 /* Assuming THP size is 16M */ 1239 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1240 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1241 else 1242 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1243 1244 if (lock_tlbie) 1245 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1246 } 1247 1248 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1249 unsigned long addr, 1250 unsigned char *hpte_slot_array, 1251 int psize, int ssize, int local) 1252 { 1253 int i, index = 0; 1254 unsigned long s_addr = addr; 1255 unsigned int max_hpte_count, valid; 1256 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1257 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1258 unsigned long shift, hidx, vpn = 0, hash, slot; 1259 1260 shift = mmu_psize_defs[psize].shift; 1261 max_hpte_count = 1U << (PMD_SHIFT - shift); 1262 1263 for (i = 0; i < max_hpte_count; i++) { 1264 valid = hpte_valid(hpte_slot_array, i); 1265 if (!valid) 1266 continue; 1267 hidx = hpte_hash_index(hpte_slot_array, i); 1268 1269 /* get the vpn */ 1270 addr = s_addr + (i * (1ul << shift)); 1271 vpn = hpt_vpn(addr, vsid, ssize); 1272 hash = hpt_hash(vpn, shift, ssize); 1273 if (hidx & _PTEIDX_SECONDARY) 1274 hash = ~hash; 1275 1276 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1277 slot += hidx & _PTEIDX_GROUP_IX; 1278 1279 slot_array[index] = slot; 1280 vpn_array[index] = vpn; 1281 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1282 /* 1283 * Now do a bluk invalidate 1284 */ 1285 __pSeries_lpar_hugepage_invalidate(slot_array, 1286 vpn_array, 1287 PPC64_HUGE_HPTE_BATCH, 1288 psize, ssize); 1289 index = 0; 1290 } else 1291 index++; 1292 } 1293 if (index) 1294 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1295 index, psize, ssize); 1296 } 1297 #else 1298 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1299 unsigned long addr, 1300 unsigned char *hpte_slot_array, 1301 int psize, int ssize, int local) 1302 { 1303 WARN(1, "%s called without THP support\n", __func__); 1304 } 1305 #endif 1306 1307 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1308 int psize, int ssize) 1309 { 1310 unsigned long vpn; 1311 unsigned long slot, vsid; 1312 1313 vsid = get_kernel_vsid(ea, ssize); 1314 vpn = hpt_vpn(ea, vsid, ssize); 1315 1316 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1317 if (slot == -1) 1318 return -ENOENT; 1319 1320 /* 1321 * lpar doesn't use the passed actual page size 1322 */ 1323 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1324 return 0; 1325 } 1326 1327 1328 static inline unsigned long compute_slot(real_pte_t pte, 1329 unsigned long vpn, 1330 unsigned long index, 1331 unsigned long shift, 1332 int ssize) 1333 { 1334 unsigned long slot, hash, hidx; 1335 1336 hash = hpt_hash(vpn, shift, ssize); 1337 hidx = __rpte_to_hidx(pte, index); 1338 if (hidx & _PTEIDX_SECONDARY) 1339 hash = ~hash; 1340 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1341 slot += hidx & _PTEIDX_GROUP_IX; 1342 return slot; 1343 } 1344 1345 /** 1346 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1347 * "all within the same naturally aligned 8 page virtual address block". 1348 */ 1349 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1350 unsigned long *param) 1351 { 1352 unsigned long vpn; 1353 unsigned long i, pix = 0; 1354 unsigned long index, shift, slot, current_vpgb, vpgb; 1355 real_pte_t pte; 1356 int psize, ssize; 1357 1358 psize = batch->psize; 1359 ssize = batch->ssize; 1360 1361 for (i = 0; i < number; i++) { 1362 vpn = batch->vpn[i]; 1363 pte = batch->pte[i]; 1364 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1365 /* 1366 * Shifting 3 bits more on the right to get a 1367 * 8 pages aligned virtual addresse. 1368 */ 1369 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1370 if (!pix || vpgb != current_vpgb) { 1371 /* 1372 * Need to start a new 8 pages block, flush 1373 * the current one if needed. 1374 */ 1375 if (pix) 1376 (void)call_block_remove(pix, param, 1377 true); 1378 current_vpgb = vpgb; 1379 param[0] = hpte_encode_avpn(vpn, psize, 1380 ssize); 1381 pix = 1; 1382 } 1383 1384 slot = compute_slot(pte, vpn, index, shift, ssize); 1385 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1386 1387 if (pix == PLPAR_HCALL9_BUFSIZE) { 1388 pix = call_block_remove(pix, param, false); 1389 /* 1390 * pix = 0 means that all the entries were 1391 * removed, we can start a new block. 1392 * Otherwise, this means that there are entries 1393 * to retry, and pix points to latest one, so 1394 * we should increment it and try to continue 1395 * the same block. 1396 */ 1397 if (pix) 1398 pix++; 1399 } 1400 } pte_iterate_hashed_end(); 1401 } 1402 1403 if (pix) 1404 (void)call_block_remove(pix, param, true); 1405 } 1406 1407 /* 1408 * TLB Block Invalidate Characteristics 1409 * 1410 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1411 * is able to process for each couple segment base page size, actual page size. 1412 * 1413 * The ibm,get-system-parameter properties is returning a buffer with the 1414 * following layout: 1415 * 1416 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1417 * ----------------- 1418 * TLB Block Invalidate Specifiers: 1419 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1420 * [ 1 byte Number of page sizes (N) that are supported for the specified 1421 * TLB invalidate block size ] 1422 * [ 1 byte Encoded segment base page size and actual page size 1423 * MSB=0 means 4k segment base page size and actual page size 1424 * MSB=1 the penc value in mmu_psize_def ] 1425 * ... 1426 * ----------------- 1427 * Next TLB Block Invalidate Specifiers... 1428 * ----------------- 1429 * [ 0 ] 1430 */ 1431 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1432 unsigned int block_size) 1433 { 1434 if (block_size > hblkrm_size[bpsize][psize]) 1435 hblkrm_size[bpsize][psize] = block_size; 1436 } 1437 1438 /* 1439 * Decode the Encoded segment base page size and actual page size. 1440 * PAPR specifies: 1441 * - bit 7 is the L bit 1442 * - bits 0-5 are the penc value 1443 * If the L bit is 0, this means 4K segment base page size and actual page size 1444 * otherwise the penc value should be read. 1445 */ 1446 #define HBLKRM_L_MASK 0x80 1447 #define HBLKRM_PENC_MASK 0x3f 1448 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1449 unsigned int block_size) 1450 { 1451 unsigned int bpsize, psize; 1452 1453 /* First, check the L bit, if not set, this means 4K */ 1454 if ((lp & HBLKRM_L_MASK) == 0) { 1455 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1456 return; 1457 } 1458 1459 lp &= HBLKRM_PENC_MASK; 1460 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1461 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1462 1463 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1464 if (def->penc[psize] == lp) { 1465 set_hblkrm_bloc_size(bpsize, psize, block_size); 1466 return; 1467 } 1468 } 1469 } 1470 } 1471 1472 #define SPLPAR_TLB_BIC_TOKEN 50 1473 1474 /* 1475 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1476 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1477 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1478 * (128 bytes) for the buffer to get plenty of space. 1479 */ 1480 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1481 1482 void __init pseries_lpar_read_hblkrm_characteristics(void) 1483 { 1484 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1485 int call_status, len, idx, bpsize; 1486 1487 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1488 return; 1489 1490 spin_lock(&rtas_data_buf_lock); 1491 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1492 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1493 NULL, 1494 SPLPAR_TLB_BIC_TOKEN, 1495 __pa(rtas_data_buf), 1496 RTAS_DATA_BUF_SIZE); 1497 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1498 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1499 spin_unlock(&rtas_data_buf_lock); 1500 1501 if (call_status != 0) { 1502 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1503 __FILE__, __func__, call_status); 1504 return; 1505 } 1506 1507 /* 1508 * The first two (2) bytes of the data in the buffer are the length of 1509 * the returned data, not counting these first two (2) bytes. 1510 */ 1511 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1512 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1513 pr_warn("%s too large returned buffer %d", __func__, len); 1514 return; 1515 } 1516 1517 idx = 2; 1518 while (idx < len) { 1519 u8 block_shift = local_buffer[idx++]; 1520 u32 block_size; 1521 unsigned int npsize; 1522 1523 if (!block_shift) 1524 break; 1525 1526 block_size = 1 << block_shift; 1527 1528 for (npsize = local_buffer[idx++]; 1529 npsize > 0 && idx < len; npsize--) 1530 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1531 block_size); 1532 } 1533 1534 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1535 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1536 if (hblkrm_size[bpsize][idx]) 1537 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1538 bpsize, idx, hblkrm_size[bpsize][idx]); 1539 } 1540 1541 /* 1542 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1543 * lock. 1544 */ 1545 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1546 { 1547 unsigned long vpn; 1548 unsigned long i, pix, rc; 1549 unsigned long flags = 0; 1550 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1551 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1552 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1553 unsigned long index, shift, slot; 1554 real_pte_t pte; 1555 int psize, ssize; 1556 1557 if (lock_tlbie) 1558 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1559 1560 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1561 do_block_remove(number, batch, param); 1562 goto out; 1563 } 1564 1565 psize = batch->psize; 1566 ssize = batch->ssize; 1567 pix = 0; 1568 for (i = 0; i < number; i++) { 1569 vpn = batch->vpn[i]; 1570 pte = batch->pte[i]; 1571 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1572 slot = compute_slot(pte, vpn, index, shift, ssize); 1573 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1574 /* 1575 * lpar doesn't use the passed actual page size 1576 */ 1577 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1578 0, ssize, local); 1579 } else { 1580 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1581 param[pix+1] = hpte_encode_avpn(vpn, psize, 1582 ssize); 1583 pix += 2; 1584 if (pix == 8) { 1585 rc = plpar_hcall9(H_BULK_REMOVE, param, 1586 param[0], param[1], param[2], 1587 param[3], param[4], param[5], 1588 param[6], param[7]); 1589 BUG_ON(rc != H_SUCCESS); 1590 pix = 0; 1591 } 1592 } 1593 } pte_iterate_hashed_end(); 1594 } 1595 if (pix) { 1596 param[pix] = HBR_END; 1597 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1598 param[2], param[3], param[4], param[5], 1599 param[6], param[7]); 1600 BUG_ON(rc != H_SUCCESS); 1601 } 1602 1603 out: 1604 if (lock_tlbie) 1605 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1606 } 1607 1608 static int __init disable_bulk_remove(char *str) 1609 { 1610 if (strcmp(str, "off") == 0 && 1611 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1612 pr_info("Disabling BULK_REMOVE firmware feature"); 1613 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1614 } 1615 return 1; 1616 } 1617 1618 __setup("bulk_remove=", disable_bulk_remove); 1619 1620 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1621 1622 struct hpt_resize_state { 1623 unsigned long shift; 1624 int commit_rc; 1625 }; 1626 1627 static int pseries_lpar_resize_hpt_commit(void *data) 1628 { 1629 struct hpt_resize_state *state = data; 1630 1631 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1632 if (state->commit_rc != H_SUCCESS) 1633 return -EIO; 1634 1635 /* Hypervisor has transitioned the HTAB, update our globals */ 1636 ppc64_pft_size = state->shift; 1637 htab_size_bytes = 1UL << ppc64_pft_size; 1638 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1639 1640 return 0; 1641 } 1642 1643 /* 1644 * Must be called in process context. The caller must hold the 1645 * cpus_lock. 1646 */ 1647 static int pseries_lpar_resize_hpt(unsigned long shift) 1648 { 1649 struct hpt_resize_state state = { 1650 .shift = shift, 1651 .commit_rc = H_FUNCTION, 1652 }; 1653 unsigned int delay, total_delay = 0; 1654 int rc; 1655 ktime_t t0, t1, t2; 1656 1657 might_sleep(); 1658 1659 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1660 return -ENODEV; 1661 1662 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1663 1664 t0 = ktime_get(); 1665 1666 rc = plpar_resize_hpt_prepare(0, shift); 1667 while (H_IS_LONG_BUSY(rc)) { 1668 delay = get_longbusy_msecs(rc); 1669 total_delay += delay; 1670 if (total_delay > HPT_RESIZE_TIMEOUT) { 1671 /* prepare with shift==0 cancels an in-progress resize */ 1672 rc = plpar_resize_hpt_prepare(0, 0); 1673 if (rc != H_SUCCESS) 1674 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1675 rc); 1676 return -ETIMEDOUT; 1677 } 1678 msleep(delay); 1679 rc = plpar_resize_hpt_prepare(0, shift); 1680 } 1681 1682 switch (rc) { 1683 case H_SUCCESS: 1684 /* Continue on */ 1685 break; 1686 1687 case H_PARAMETER: 1688 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1689 return -EINVAL; 1690 case H_RESOURCE: 1691 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1692 return -EPERM; 1693 default: 1694 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1695 return -EIO; 1696 } 1697 1698 t1 = ktime_get(); 1699 1700 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1701 &state, NULL); 1702 1703 t2 = ktime_get(); 1704 1705 if (rc != 0) { 1706 switch (state.commit_rc) { 1707 case H_PTEG_FULL: 1708 return -ENOSPC; 1709 1710 default: 1711 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1712 state.commit_rc); 1713 return -EIO; 1714 }; 1715 } 1716 1717 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1718 shift, (long long) ktime_ms_delta(t1, t0), 1719 (long long) ktime_ms_delta(t2, t1)); 1720 1721 return 0; 1722 } 1723 1724 void __init hpte_init_pseries(void) 1725 { 1726 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1727 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1728 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1729 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1730 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1731 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1732 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1733 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1734 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1735 1736 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1737 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1738 1739 /* 1740 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1741 * to inform the hypervisor that we wish to use the HPT. 1742 */ 1743 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1744 pseries_lpar_register_process_table(0, 0, 0); 1745 } 1746 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1747 1748 #ifdef CONFIG_PPC_RADIX_MMU 1749 void __init radix_init_pseries(void) 1750 { 1751 pr_info("Using radix MMU under hypervisor\n"); 1752 1753 pseries_lpar_register_process_table(__pa(process_tb), 1754 0, PRTB_SIZE_SHIFT - 12); 1755 } 1756 #endif 1757 1758 #ifdef CONFIG_PPC_SMLPAR 1759 #define CMO_FREE_HINT_DEFAULT 1 1760 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1761 1762 static int __init cmo_free_hint(char *str) 1763 { 1764 char *parm; 1765 parm = strstrip(str); 1766 1767 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1768 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1769 cmo_free_hint_flag = 0; 1770 return 1; 1771 } 1772 1773 cmo_free_hint_flag = 1; 1774 pr_info("%s: CMO free page hinting is active.\n", __func__); 1775 1776 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1777 return 1; 1778 1779 return 0; 1780 } 1781 1782 __setup("cmo_free_hint=", cmo_free_hint); 1783 1784 static void pSeries_set_page_state(struct page *page, int order, 1785 unsigned long state) 1786 { 1787 int i, j; 1788 unsigned long cmo_page_sz, addr; 1789 1790 cmo_page_sz = cmo_get_page_size(); 1791 addr = __pa((unsigned long)page_address(page)); 1792 1793 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1794 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1795 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1796 } 1797 } 1798 1799 void arch_free_page(struct page *page, int order) 1800 { 1801 if (radix_enabled()) 1802 return; 1803 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1804 return; 1805 1806 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1807 } 1808 EXPORT_SYMBOL(arch_free_page); 1809 1810 #endif /* CONFIG_PPC_SMLPAR */ 1811 #endif /* CONFIG_PPC_BOOK3S_64 */ 1812 1813 #ifdef CONFIG_TRACEPOINTS 1814 #ifdef CONFIG_JUMP_LABEL 1815 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1816 1817 int hcall_tracepoint_regfunc(void) 1818 { 1819 static_key_slow_inc(&hcall_tracepoint_key); 1820 return 0; 1821 } 1822 1823 void hcall_tracepoint_unregfunc(void) 1824 { 1825 static_key_slow_dec(&hcall_tracepoint_key); 1826 } 1827 #else 1828 /* 1829 * We optimise our hcall path by placing hcall_tracepoint_refcount 1830 * directly in the TOC so we can check if the hcall tracepoints are 1831 * enabled via a single load. 1832 */ 1833 1834 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1835 extern long hcall_tracepoint_refcount; 1836 1837 int hcall_tracepoint_regfunc(void) 1838 { 1839 hcall_tracepoint_refcount++; 1840 return 0; 1841 } 1842 1843 void hcall_tracepoint_unregfunc(void) 1844 { 1845 hcall_tracepoint_refcount--; 1846 } 1847 #endif 1848 1849 /* 1850 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1851 * detected because it may indicate a problem. This will not catch all 1852 * problems with tracing code making hcalls, because the tracing might have 1853 * been invoked from a non-hcall, so the first hcall could recurse into it 1854 * without warning here, but this better than nothing. 1855 * 1856 * Hcalls with specific problems being traced should use the _notrace 1857 * plpar_hcall variants. 1858 */ 1859 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1860 1861 1862 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1863 { 1864 unsigned long flags; 1865 unsigned int *depth; 1866 1867 local_irq_save(flags); 1868 1869 depth = this_cpu_ptr(&hcall_trace_depth); 1870 1871 if (WARN_ON_ONCE(*depth)) 1872 goto out; 1873 1874 (*depth)++; 1875 preempt_disable(); 1876 trace_hcall_entry(opcode, args); 1877 (*depth)--; 1878 1879 out: 1880 local_irq_restore(flags); 1881 } 1882 1883 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1884 { 1885 unsigned long flags; 1886 unsigned int *depth; 1887 1888 local_irq_save(flags); 1889 1890 depth = this_cpu_ptr(&hcall_trace_depth); 1891 1892 if (*depth) /* Don't warn again on the way out */ 1893 goto out; 1894 1895 (*depth)++; 1896 trace_hcall_exit(opcode, retval, retbuf); 1897 preempt_enable(); 1898 (*depth)--; 1899 1900 out: 1901 local_irq_restore(flags); 1902 } 1903 #endif 1904 1905 /** 1906 * h_get_mpp 1907 * H_GET_MPP hcall returns info in 7 parms 1908 */ 1909 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1910 { 1911 int rc; 1912 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1913 1914 rc = plpar_hcall9(H_GET_MPP, retbuf); 1915 1916 mpp_data->entitled_mem = retbuf[0]; 1917 mpp_data->mapped_mem = retbuf[1]; 1918 1919 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1920 mpp_data->pool_num = retbuf[2] & 0xffff; 1921 1922 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1923 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1924 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1925 1926 mpp_data->pool_size = retbuf[4]; 1927 mpp_data->loan_request = retbuf[5]; 1928 mpp_data->backing_mem = retbuf[6]; 1929 1930 return rc; 1931 } 1932 EXPORT_SYMBOL(h_get_mpp); 1933 1934 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1935 { 1936 int rc; 1937 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1938 1939 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1940 1941 mpp_x_data->coalesced_bytes = retbuf[0]; 1942 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1943 mpp_x_data->pool_purr_cycles = retbuf[2]; 1944 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1945 1946 return rc; 1947 } 1948 1949 #ifdef CONFIG_PPC_64S_HASH_MMU 1950 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1951 { 1952 unsigned long protovsid; 1953 unsigned long va_bits = VA_BITS; 1954 unsigned long modinv, vsid_modulus; 1955 unsigned long max_mod_inv, tmp_modinv; 1956 1957 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1958 va_bits = 65; 1959 1960 if (ssize == MMU_SEGSIZE_256M) { 1961 modinv = VSID_MULINV_256M; 1962 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1963 } else { 1964 modinv = VSID_MULINV_1T; 1965 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1966 } 1967 1968 /* 1969 * vsid outside our range. 1970 */ 1971 if (vsid >= vsid_modulus) 1972 return 0; 1973 1974 /* 1975 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1976 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1977 * protovsid = (vsid * modinv) % vsid_modulus 1978 */ 1979 1980 /* Check if (vsid * modinv) overflow (63 bits) */ 1981 max_mod_inv = 0x7fffffffffffffffull / vsid; 1982 if (modinv < max_mod_inv) 1983 return (vsid * modinv) % vsid_modulus; 1984 1985 tmp_modinv = modinv/max_mod_inv; 1986 modinv %= max_mod_inv; 1987 1988 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1989 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1990 1991 return protovsid; 1992 } 1993 1994 static int __init reserve_vrma_context_id(void) 1995 { 1996 unsigned long protovsid; 1997 1998 /* 1999 * Reserve context ids which map to reserved virtual addresses. For now 2000 * we only reserve the context id which maps to the VRMA VSID. We ignore 2001 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 2002 * enable adjunct support via the "ibm,client-architecture-support" 2003 * interface. 2004 */ 2005 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 2006 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 2007 return 0; 2008 } 2009 machine_device_initcall(pseries, reserve_vrma_context_id); 2010 #endif 2011 2012 #ifdef CONFIG_DEBUG_FS 2013 /* debugfs file interface for vpa data */ 2014 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 2015 loff_t *pos) 2016 { 2017 int cpu = (long)filp->private_data; 2018 struct lppaca *lppaca = &lppaca_of(cpu); 2019 2020 return simple_read_from_buffer(buf, len, pos, lppaca, 2021 sizeof(struct lppaca)); 2022 } 2023 2024 static const struct file_operations vpa_fops = { 2025 .open = simple_open, 2026 .read = vpa_file_read, 2027 .llseek = default_llseek, 2028 }; 2029 2030 static int __init vpa_debugfs_init(void) 2031 { 2032 char name[16]; 2033 long i; 2034 struct dentry *vpa_dir; 2035 2036 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2037 return 0; 2038 2039 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2040 2041 /* set up the per-cpu vpa file*/ 2042 for_each_possible_cpu(i) { 2043 sprintf(name, "cpu-%ld", i); 2044 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2045 } 2046 2047 return 0; 2048 } 2049 machine_arch_initcall(pseries, vpa_debugfs_init); 2050 #endif /* CONFIG_DEBUG_FS */ 2051