1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/machdep.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/prom.h> 35 #include <asm/cputable.h> 36 #include <asm/udbg.h> 37 #include <asm/smp.h> 38 #include <asm/trace.h> 39 #include <asm/firmware.h> 40 #include <asm/plpar_wrappers.h> 41 #include <asm/kexec.h> 42 #include <asm/fadump.h> 43 #include <asm/asm-prototypes.h> 44 #include <asm/dtl.h> 45 46 #include "pseries.h" 47 48 /* Flag bits for H_BULK_REMOVE */ 49 #define HBR_REQUEST 0x4000000000000000UL 50 #define HBR_RESPONSE 0x8000000000000000UL 51 #define HBR_END 0xc000000000000000UL 52 #define HBR_AVPN 0x0200000000000000UL 53 #define HBR_ANDCOND 0x0100000000000000UL 54 55 56 /* in hvCall.S */ 57 EXPORT_SYMBOL(plpar_hcall); 58 EXPORT_SYMBOL(plpar_hcall9); 59 EXPORT_SYMBOL(plpar_hcall_norets); 60 61 #ifdef CONFIG_PPC_64S_HASH_MMU 62 /* 63 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 64 * page size is that page size. 65 * 66 * The first index is the segment base page size, the second one is the actual 67 * page size. 68 */ 69 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 70 #endif 71 72 /* 73 * Due to the involved complexity, and that the current hypervisor is only 74 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 75 * buffer size to 8 size block. 76 */ 77 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 78 79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 80 static u8 dtl_mask = DTL_LOG_PREEMPT; 81 #else 82 static u8 dtl_mask; 83 #endif 84 85 void alloc_dtl_buffers(unsigned long *time_limit) 86 { 87 int cpu; 88 struct paca_struct *pp; 89 struct dtl_entry *dtl; 90 91 for_each_possible_cpu(cpu) { 92 pp = paca_ptrs[cpu]; 93 if (pp->dispatch_log) 94 continue; 95 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 96 if (!dtl) { 97 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 98 cpu); 99 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 100 pr_warn("Stolen time statistics will be unreliable\n"); 101 #endif 102 break; 103 } 104 105 pp->dtl_ridx = 0; 106 pp->dispatch_log = dtl; 107 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 108 pp->dtl_curr = dtl; 109 110 if (time_limit && time_after(jiffies, *time_limit)) { 111 cond_resched(); 112 *time_limit = jiffies + HZ; 113 } 114 } 115 } 116 117 void register_dtl_buffer(int cpu) 118 { 119 long ret; 120 struct paca_struct *pp; 121 struct dtl_entry *dtl; 122 int hwcpu = get_hard_smp_processor_id(cpu); 123 124 pp = paca_ptrs[cpu]; 125 dtl = pp->dispatch_log; 126 if (dtl && dtl_mask) { 127 pp->dtl_ridx = 0; 128 pp->dtl_curr = dtl; 129 lppaca_of(cpu).dtl_idx = 0; 130 131 /* hypervisor reads buffer length from this field */ 132 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 133 ret = register_dtl(hwcpu, __pa(dtl)); 134 if (ret) 135 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 136 cpu, hwcpu, ret); 137 138 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 139 } 140 } 141 142 #ifdef CONFIG_PPC_SPLPAR 143 struct dtl_worker { 144 struct delayed_work work; 145 int cpu; 146 }; 147 148 struct vcpu_dispatch_data { 149 int last_disp_cpu; 150 151 int total_disp; 152 153 int same_cpu_disp; 154 int same_chip_disp; 155 int diff_chip_disp; 156 int far_chip_disp; 157 158 int numa_home_disp; 159 int numa_remote_disp; 160 int numa_far_disp; 161 }; 162 163 /* 164 * This represents the number of cpus in the hypervisor. Since there is no 165 * architected way to discover the number of processors in the host, we 166 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 167 * is sufficient for our purposes. This will need to be tweaked if 168 * CONFIG_NR_CPUS is changed. 169 */ 170 #define NR_CPUS_H NR_CPUS 171 172 DEFINE_RWLOCK(dtl_access_lock); 173 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 174 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 175 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 176 static enum cpuhp_state dtl_worker_state; 177 static DEFINE_MUTEX(dtl_enable_mutex); 178 static int vcpudispatch_stats_on __read_mostly; 179 static int vcpudispatch_stats_freq = 50; 180 static __be32 *vcpu_associativity, *pcpu_associativity; 181 182 183 static void free_dtl_buffers(unsigned long *time_limit) 184 { 185 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 186 int cpu; 187 struct paca_struct *pp; 188 189 for_each_possible_cpu(cpu) { 190 pp = paca_ptrs[cpu]; 191 if (!pp->dispatch_log) 192 continue; 193 kmem_cache_free(dtl_cache, pp->dispatch_log); 194 pp->dtl_ridx = 0; 195 pp->dispatch_log = 0; 196 pp->dispatch_log_end = 0; 197 pp->dtl_curr = 0; 198 199 if (time_limit && time_after(jiffies, *time_limit)) { 200 cond_resched(); 201 *time_limit = jiffies + HZ; 202 } 203 } 204 #endif 205 } 206 207 static int init_cpu_associativity(void) 208 { 209 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 211 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 212 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 213 214 if (!vcpu_associativity || !pcpu_associativity) { 215 pr_err("error allocating memory for associativity information\n"); 216 return -ENOMEM; 217 } 218 219 return 0; 220 } 221 222 static void destroy_cpu_associativity(void) 223 { 224 kfree(vcpu_associativity); 225 kfree(pcpu_associativity); 226 vcpu_associativity = pcpu_associativity = 0; 227 } 228 229 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 230 { 231 __be32 *assoc; 232 int rc = 0; 233 234 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 235 if (!assoc[0]) { 236 rc = hcall_vphn(cpu, flag, &assoc[0]); 237 if (rc) 238 return NULL; 239 } 240 241 return assoc; 242 } 243 244 static __be32 *get_pcpu_associativity(int cpu) 245 { 246 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 247 } 248 249 static __be32 *get_vcpu_associativity(int cpu) 250 { 251 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 252 } 253 254 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 255 { 256 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 257 258 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 259 return -EINVAL; 260 261 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 262 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 263 264 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 265 return -EIO; 266 267 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 268 } 269 270 static int cpu_home_node_dispatch_distance(int disp_cpu) 271 { 272 __be32 *disp_cpu_assoc, *vcpu_assoc; 273 int vcpu_id = smp_processor_id(); 274 275 if (disp_cpu >= NR_CPUS_H) { 276 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 277 disp_cpu, NR_CPUS_H); 278 return -EINVAL; 279 } 280 281 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 282 vcpu_assoc = get_vcpu_associativity(vcpu_id); 283 284 if (!disp_cpu_assoc || !vcpu_assoc) 285 return -EIO; 286 287 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 288 } 289 290 static void update_vcpu_disp_stat(int disp_cpu) 291 { 292 struct vcpu_dispatch_data *disp; 293 int distance; 294 295 disp = this_cpu_ptr(&vcpu_disp_data); 296 if (disp->last_disp_cpu == -1) { 297 disp->last_disp_cpu = disp_cpu; 298 return; 299 } 300 301 disp->total_disp++; 302 303 if (disp->last_disp_cpu == disp_cpu || 304 (cpu_first_thread_sibling(disp->last_disp_cpu) == 305 cpu_first_thread_sibling(disp_cpu))) 306 disp->same_cpu_disp++; 307 else { 308 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 309 disp_cpu); 310 if (distance < 0) 311 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 312 smp_processor_id()); 313 else { 314 switch (distance) { 315 case 0: 316 disp->same_chip_disp++; 317 break; 318 case 1: 319 disp->diff_chip_disp++; 320 break; 321 case 2: 322 disp->far_chip_disp++; 323 break; 324 default: 325 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 326 smp_processor_id(), 327 disp->last_disp_cpu, 328 disp_cpu, 329 distance); 330 } 331 } 332 } 333 334 distance = cpu_home_node_dispatch_distance(disp_cpu); 335 if (distance < 0) 336 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 337 smp_processor_id()); 338 else { 339 switch (distance) { 340 case 0: 341 disp->numa_home_disp++; 342 break; 343 case 1: 344 disp->numa_remote_disp++; 345 break; 346 case 2: 347 disp->numa_far_disp++; 348 break; 349 default: 350 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 351 smp_processor_id(), 352 disp_cpu, 353 distance); 354 } 355 } 356 357 disp->last_disp_cpu = disp_cpu; 358 } 359 360 static void process_dtl_buffer(struct work_struct *work) 361 { 362 struct dtl_entry dtle; 363 u64 i = __this_cpu_read(dtl_entry_ridx); 364 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 365 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 366 struct lppaca *vpa = local_paca->lppaca_ptr; 367 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 368 369 if (!local_paca->dispatch_log) 370 return; 371 372 /* if we have been migrated away, we cancel ourself */ 373 if (d->cpu != smp_processor_id()) { 374 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 375 smp_processor_id()); 376 return; 377 } 378 379 if (i == be64_to_cpu(vpa->dtl_idx)) 380 goto out; 381 382 while (i < be64_to_cpu(vpa->dtl_idx)) { 383 dtle = *dtl; 384 barrier(); 385 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 386 /* buffer has overflowed */ 387 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 388 d->cpu, 389 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 390 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 391 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 392 continue; 393 } 394 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 395 ++i; 396 ++dtl; 397 if (dtl == dtl_end) 398 dtl = local_paca->dispatch_log; 399 } 400 401 __this_cpu_write(dtl_entry_ridx, i); 402 403 out: 404 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 405 HZ / vcpudispatch_stats_freq); 406 } 407 408 static int dtl_worker_online(unsigned int cpu) 409 { 410 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 411 412 memset(d, 0, sizeof(*d)); 413 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 414 d->cpu = cpu; 415 416 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 417 per_cpu(dtl_entry_ridx, cpu) = 0; 418 register_dtl_buffer(cpu); 419 #else 420 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 421 #endif 422 423 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 424 return 0; 425 } 426 427 static int dtl_worker_offline(unsigned int cpu) 428 { 429 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 430 431 cancel_delayed_work_sync(&d->work); 432 433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 434 unregister_dtl(get_hard_smp_processor_id(cpu)); 435 #endif 436 437 return 0; 438 } 439 440 static void set_global_dtl_mask(u8 mask) 441 { 442 int cpu; 443 444 dtl_mask = mask; 445 for_each_present_cpu(cpu) 446 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 447 } 448 449 static void reset_global_dtl_mask(void) 450 { 451 int cpu; 452 453 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 454 dtl_mask = DTL_LOG_PREEMPT; 455 #else 456 dtl_mask = 0; 457 #endif 458 for_each_present_cpu(cpu) 459 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 460 } 461 462 static int dtl_worker_enable(unsigned long *time_limit) 463 { 464 int rc = 0, state; 465 466 if (!write_trylock(&dtl_access_lock)) { 467 rc = -EBUSY; 468 goto out; 469 } 470 471 set_global_dtl_mask(DTL_LOG_ALL); 472 473 /* Setup dtl buffers and register those */ 474 alloc_dtl_buffers(time_limit); 475 476 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 477 dtl_worker_online, dtl_worker_offline); 478 if (state < 0) { 479 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 480 free_dtl_buffers(time_limit); 481 reset_global_dtl_mask(); 482 write_unlock(&dtl_access_lock); 483 rc = -EINVAL; 484 goto out; 485 } 486 dtl_worker_state = state; 487 488 out: 489 return rc; 490 } 491 492 static void dtl_worker_disable(unsigned long *time_limit) 493 { 494 cpuhp_remove_state(dtl_worker_state); 495 free_dtl_buffers(time_limit); 496 reset_global_dtl_mask(); 497 write_unlock(&dtl_access_lock); 498 } 499 500 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 501 size_t count, loff_t *ppos) 502 { 503 unsigned long time_limit = jiffies + HZ; 504 struct vcpu_dispatch_data *disp; 505 int rc, cmd, cpu; 506 char buf[16]; 507 508 if (count > 15) 509 return -EINVAL; 510 511 if (copy_from_user(buf, p, count)) 512 return -EFAULT; 513 514 buf[count] = 0; 515 rc = kstrtoint(buf, 0, &cmd); 516 if (rc || cmd < 0 || cmd > 1) { 517 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 518 return rc ? rc : -EINVAL; 519 } 520 521 mutex_lock(&dtl_enable_mutex); 522 523 if ((cmd == 0 && !vcpudispatch_stats_on) || 524 (cmd == 1 && vcpudispatch_stats_on)) 525 goto out; 526 527 if (cmd) { 528 rc = init_cpu_associativity(); 529 if (rc) 530 goto out; 531 532 for_each_possible_cpu(cpu) { 533 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 534 memset(disp, 0, sizeof(*disp)); 535 disp->last_disp_cpu = -1; 536 } 537 538 rc = dtl_worker_enable(&time_limit); 539 if (rc) { 540 destroy_cpu_associativity(); 541 goto out; 542 } 543 } else { 544 dtl_worker_disable(&time_limit); 545 destroy_cpu_associativity(); 546 } 547 548 vcpudispatch_stats_on = cmd; 549 550 out: 551 mutex_unlock(&dtl_enable_mutex); 552 if (rc) 553 return rc; 554 return count; 555 } 556 557 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 558 { 559 int cpu; 560 struct vcpu_dispatch_data *disp; 561 562 if (!vcpudispatch_stats_on) { 563 seq_puts(p, "off\n"); 564 return 0; 565 } 566 567 for_each_online_cpu(cpu) { 568 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 569 seq_printf(p, "cpu%d", cpu); 570 seq_put_decimal_ull(p, " ", disp->total_disp); 571 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 572 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 573 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 574 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 575 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 576 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 577 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 578 seq_puts(p, "\n"); 579 } 580 581 return 0; 582 } 583 584 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 585 { 586 return single_open(file, vcpudispatch_stats_display, NULL); 587 } 588 589 static const struct proc_ops vcpudispatch_stats_proc_ops = { 590 .proc_open = vcpudispatch_stats_open, 591 .proc_read = seq_read, 592 .proc_write = vcpudispatch_stats_write, 593 .proc_lseek = seq_lseek, 594 .proc_release = single_release, 595 }; 596 597 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 598 const char __user *p, size_t count, loff_t *ppos) 599 { 600 int rc, freq; 601 char buf[16]; 602 603 if (count > 15) 604 return -EINVAL; 605 606 if (copy_from_user(buf, p, count)) 607 return -EFAULT; 608 609 buf[count] = 0; 610 rc = kstrtoint(buf, 0, &freq); 611 if (rc || freq < 1 || freq > HZ) { 612 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 613 HZ); 614 return rc ? rc : -EINVAL; 615 } 616 617 vcpudispatch_stats_freq = freq; 618 619 return count; 620 } 621 622 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 623 { 624 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 625 return 0; 626 } 627 628 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 629 { 630 return single_open(file, vcpudispatch_stats_freq_display, NULL); 631 } 632 633 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 634 .proc_open = vcpudispatch_stats_freq_open, 635 .proc_read = seq_read, 636 .proc_write = vcpudispatch_stats_freq_write, 637 .proc_lseek = seq_lseek, 638 .proc_release = single_release, 639 }; 640 641 static int __init vcpudispatch_stats_procfs_init(void) 642 { 643 /* 644 * Avoid smp_processor_id while preemptible. All CPUs should have 645 * the same value for lppaca_shared_proc. 646 */ 647 preempt_disable(); 648 if (!lppaca_shared_proc(get_lppaca())) { 649 preempt_enable(); 650 return 0; 651 } 652 preempt_enable(); 653 654 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 655 &vcpudispatch_stats_proc_ops)) 656 pr_err("vcpudispatch_stats: error creating procfs file\n"); 657 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 658 &vcpudispatch_stats_freq_proc_ops)) 659 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 660 661 return 0; 662 } 663 664 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 665 #endif /* CONFIG_PPC_SPLPAR */ 666 667 void vpa_init(int cpu) 668 { 669 int hwcpu = get_hard_smp_processor_id(cpu); 670 unsigned long addr; 671 long ret; 672 673 /* 674 * The spec says it "may be problematic" if CPU x registers the VPA of 675 * CPU y. We should never do that, but wail if we ever do. 676 */ 677 WARN_ON(cpu != smp_processor_id()); 678 679 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 680 lppaca_of(cpu).vmxregs_in_use = 1; 681 682 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 683 lppaca_of(cpu).ebb_regs_in_use = 1; 684 685 addr = __pa(&lppaca_of(cpu)); 686 ret = register_vpa(hwcpu, addr); 687 688 if (ret) { 689 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 690 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 691 return; 692 } 693 694 #ifdef CONFIG_PPC_64S_HASH_MMU 695 /* 696 * PAPR says this feature is SLB-Buffer but firmware never 697 * reports that. All SPLPAR support SLB shadow buffer. 698 */ 699 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 700 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 701 ret = register_slb_shadow(hwcpu, addr); 702 if (ret) 703 pr_err("WARNING: SLB shadow buffer registration for " 704 "cpu %d (hw %d) of area %lx failed with %ld\n", 705 cpu, hwcpu, addr, ret); 706 } 707 #endif /* CONFIG_PPC_64S_HASH_MMU */ 708 709 /* 710 * Register dispatch trace log, if one has been allocated. 711 */ 712 register_dtl_buffer(cpu); 713 } 714 715 #ifdef CONFIG_PPC_BOOK3S_64 716 717 static int __init pseries_lpar_register_process_table(unsigned long base, 718 unsigned long page_size, unsigned long table_size) 719 { 720 long rc; 721 unsigned long flags = 0; 722 723 if (table_size) 724 flags |= PROC_TABLE_NEW; 725 if (radix_enabled()) { 726 flags |= PROC_TABLE_RADIX; 727 if (mmu_has_feature(MMU_FTR_GTSE)) 728 flags |= PROC_TABLE_GTSE; 729 } else 730 flags |= PROC_TABLE_HPT_SLB; 731 for (;;) { 732 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 733 page_size, table_size); 734 if (!H_IS_LONG_BUSY(rc)) 735 break; 736 mdelay(get_longbusy_msecs(rc)); 737 } 738 if (rc != H_SUCCESS) { 739 pr_err("Failed to register process table (rc=%ld)\n", rc); 740 BUG(); 741 } 742 return rc; 743 } 744 745 #ifdef CONFIG_PPC_64S_HASH_MMU 746 747 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 748 unsigned long vpn, unsigned long pa, 749 unsigned long rflags, unsigned long vflags, 750 int psize, int apsize, int ssize) 751 { 752 unsigned long lpar_rc; 753 unsigned long flags; 754 unsigned long slot; 755 unsigned long hpte_v, hpte_r; 756 757 if (!(vflags & HPTE_V_BOLTED)) 758 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 759 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 760 hpte_group, vpn, pa, rflags, vflags, psize); 761 762 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 763 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 764 765 if (!(vflags & HPTE_V_BOLTED)) 766 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 767 768 /* Now fill in the actual HPTE */ 769 /* Set CEC cookie to 0 */ 770 /* Zero page = 0 */ 771 /* I-cache Invalidate = 0 */ 772 /* I-cache synchronize = 0 */ 773 /* Exact = 0 */ 774 flags = 0; 775 776 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 777 flags |= H_COALESCE_CAND; 778 779 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 780 if (unlikely(lpar_rc == H_PTEG_FULL)) { 781 pr_devel("Hash table group is full\n"); 782 return -1; 783 } 784 785 /* 786 * Since we try and ioremap PHBs we don't own, the pte insert 787 * will fail. However we must catch the failure in hash_page 788 * or we will loop forever, so return -2 in this case. 789 */ 790 if (unlikely(lpar_rc != H_SUCCESS)) { 791 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 792 return -2; 793 } 794 if (!(vflags & HPTE_V_BOLTED)) 795 pr_devel(" -> slot: %lu\n", slot & 7); 796 797 /* Because of iSeries, we have to pass down the secondary 798 * bucket bit here as well 799 */ 800 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 801 } 802 803 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 804 805 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 806 { 807 unsigned long slot_offset; 808 unsigned long lpar_rc; 809 int i; 810 unsigned long dummy1, dummy2; 811 812 /* pick a random slot to start at */ 813 slot_offset = mftb() & 0x7; 814 815 for (i = 0; i < HPTES_PER_GROUP; i++) { 816 817 /* don't remove a bolted entry */ 818 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 819 HPTE_V_BOLTED, &dummy1, &dummy2); 820 if (lpar_rc == H_SUCCESS) 821 return i; 822 823 /* 824 * The test for adjunct partition is performed before the 825 * ANDCOND test. H_RESOURCE may be returned, so we need to 826 * check for that as well. 827 */ 828 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 829 830 slot_offset++; 831 slot_offset &= 0x7; 832 } 833 834 return -1; 835 } 836 837 /* Called during kexec sequence with MMU off */ 838 static notrace void manual_hpte_clear_all(void) 839 { 840 unsigned long size_bytes = 1UL << ppc64_pft_size; 841 unsigned long hpte_count = size_bytes >> 4; 842 struct { 843 unsigned long pteh; 844 unsigned long ptel; 845 } ptes[4]; 846 long lpar_rc; 847 unsigned long i, j; 848 849 /* Read in batches of 4, 850 * invalidate only valid entries not in the VRMA 851 * hpte_count will be a multiple of 4 852 */ 853 for (i = 0; i < hpte_count; i += 4) { 854 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 855 if (lpar_rc != H_SUCCESS) { 856 pr_info("Failed to read hash page table at %ld err %ld\n", 857 i, lpar_rc); 858 continue; 859 } 860 for (j = 0; j < 4; j++){ 861 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 862 HPTE_V_VRMA_MASK) 863 continue; 864 if (ptes[j].pteh & HPTE_V_VALID) 865 plpar_pte_remove_raw(0, i + j, 0, 866 &(ptes[j].pteh), &(ptes[j].ptel)); 867 } 868 } 869 } 870 871 /* Called during kexec sequence with MMU off */ 872 static notrace int hcall_hpte_clear_all(void) 873 { 874 int rc; 875 876 do { 877 rc = plpar_hcall_norets(H_CLEAR_HPT); 878 } while (rc == H_CONTINUE); 879 880 return rc; 881 } 882 883 /* Called during kexec sequence with MMU off */ 884 static notrace void pseries_hpte_clear_all(void) 885 { 886 int rc; 887 888 rc = hcall_hpte_clear_all(); 889 if (rc != H_SUCCESS) 890 manual_hpte_clear_all(); 891 892 #ifdef __LITTLE_ENDIAN__ 893 /* 894 * Reset exceptions to big endian. 895 * 896 * FIXME this is a hack for kexec, we need to reset the exception 897 * endian before starting the new kernel and this is a convenient place 898 * to do it. 899 * 900 * This is also called on boot when a fadump happens. In that case we 901 * must not change the exception endian mode. 902 */ 903 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 904 pseries_big_endian_exceptions(); 905 #endif 906 } 907 908 /* 909 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 910 * the low 3 bits of flags happen to line up. So no transform is needed. 911 * We can probably optimize here and assume the high bits of newpp are 912 * already zero. For now I am paranoid. 913 */ 914 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 915 unsigned long newpp, 916 unsigned long vpn, 917 int psize, int apsize, 918 int ssize, unsigned long inv_flags) 919 { 920 unsigned long lpar_rc; 921 unsigned long flags; 922 unsigned long want_v; 923 924 want_v = hpte_encode_avpn(vpn, psize, ssize); 925 926 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 927 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 928 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 929 /* Move pp0 into bit 8 (IBM 55) */ 930 flags |= (newpp & HPTE_R_PP0) >> 55; 931 932 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 933 want_v, slot, flags, psize); 934 935 lpar_rc = plpar_pte_protect(flags, slot, want_v); 936 937 if (lpar_rc == H_NOT_FOUND) { 938 pr_devel("not found !\n"); 939 return -1; 940 } 941 942 pr_devel("ok\n"); 943 944 BUG_ON(lpar_rc != H_SUCCESS); 945 946 return 0; 947 } 948 949 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 950 { 951 long lpar_rc; 952 unsigned long i, j; 953 struct { 954 unsigned long pteh; 955 unsigned long ptel; 956 } ptes[4]; 957 958 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 959 960 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 961 if (lpar_rc != H_SUCCESS) { 962 pr_info("Failed to read hash page table at %ld err %ld\n", 963 hpte_group, lpar_rc); 964 continue; 965 } 966 967 for (j = 0; j < 4; j++) { 968 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 969 (ptes[j].pteh & HPTE_V_VALID)) 970 return i + j; 971 } 972 } 973 974 return -1; 975 } 976 977 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 978 { 979 long slot; 980 unsigned long hash; 981 unsigned long want_v; 982 unsigned long hpte_group; 983 984 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 985 want_v = hpte_encode_avpn(vpn, psize, ssize); 986 987 /* 988 * We try to keep bolted entries always in primary hash 989 * But in some case we can find them in secondary too. 990 */ 991 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 992 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 993 if (slot < 0) { 994 /* Try in secondary */ 995 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 996 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 997 if (slot < 0) 998 return -1; 999 } 1000 return hpte_group + slot; 1001 } 1002 1003 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1004 unsigned long ea, 1005 int psize, int ssize) 1006 { 1007 unsigned long vpn; 1008 unsigned long lpar_rc, slot, vsid, flags; 1009 1010 vsid = get_kernel_vsid(ea, ssize); 1011 vpn = hpt_vpn(ea, vsid, ssize); 1012 1013 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1014 BUG_ON(slot == -1); 1015 1016 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1017 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1018 /* Move pp0 into bit 8 (IBM 55) */ 1019 flags |= (newpp & HPTE_R_PP0) >> 55; 1020 1021 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1022 1023 lpar_rc = plpar_pte_protect(flags, slot, 0); 1024 1025 BUG_ON(lpar_rc != H_SUCCESS); 1026 } 1027 1028 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1029 int psize, int apsize, 1030 int ssize, int local) 1031 { 1032 unsigned long want_v; 1033 unsigned long lpar_rc; 1034 unsigned long dummy1, dummy2; 1035 1036 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1037 slot, vpn, psize, local); 1038 1039 want_v = hpte_encode_avpn(vpn, psize, ssize); 1040 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1041 if (lpar_rc == H_NOT_FOUND) 1042 return; 1043 1044 BUG_ON(lpar_rc != H_SUCCESS); 1045 } 1046 1047 1048 /* 1049 * As defined in the PAPR's section 14.5.4.1.8 1050 * The control mask doesn't include the returned reference and change bit from 1051 * the processed PTE. 1052 */ 1053 #define HBLKR_AVPN 0x0100000000000000UL 1054 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1055 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1056 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1057 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1058 1059 /* 1060 * Returned true if we are supporting this block size for the specified segment 1061 * base page size and actual page size. 1062 * 1063 * Currently, we only support 8 size block. 1064 */ 1065 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1066 { 1067 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1068 } 1069 1070 /** 1071 * H_BLOCK_REMOVE caller. 1072 * @idx should point to the latest @param entry set with a PTEX. 1073 * If PTE cannot be processed because another CPUs has already locked that 1074 * group, those entries are put back in @param starting at index 1. 1075 * If entries has to be retried and @retry_busy is set to true, these entries 1076 * are retried until success. If @retry_busy is set to false, the returned 1077 * is the number of entries yet to process. 1078 */ 1079 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1080 bool retry_busy) 1081 { 1082 unsigned long i, rc, new_idx; 1083 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1084 1085 if (idx < 2) { 1086 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1087 return 0; 1088 } 1089 again: 1090 new_idx = 0; 1091 if (idx > PLPAR_HCALL9_BUFSIZE) { 1092 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1093 idx = PLPAR_HCALL9_BUFSIZE; 1094 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1095 param[idx] = HBR_END; 1096 1097 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1098 param[0], /* AVA */ 1099 param[1], param[2], param[3], param[4], /* TS0-7 */ 1100 param[5], param[6], param[7], param[8]); 1101 if (rc == H_SUCCESS) 1102 return 0; 1103 1104 BUG_ON(rc != H_PARTIAL); 1105 1106 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1107 for (i = 0; i < idx-1; i++) { 1108 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1109 1110 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1111 param[++new_idx] = param[i+1]; 1112 continue; 1113 } 1114 1115 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1116 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1117 } 1118 1119 /* 1120 * If there were entries found busy, retry these entries if requested, 1121 * of if all the entries have to be retried. 1122 */ 1123 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1124 idx = new_idx + 1; 1125 goto again; 1126 } 1127 1128 return new_idx; 1129 } 1130 1131 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1132 /* 1133 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1134 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1135 */ 1136 #define PPC64_HUGE_HPTE_BATCH 12 1137 1138 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1139 int count, int psize, int ssize) 1140 { 1141 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1142 unsigned long shift, current_vpgb, vpgb; 1143 int i, pix = 0; 1144 1145 shift = mmu_psize_defs[psize].shift; 1146 1147 for (i = 0; i < count; i++) { 1148 /* 1149 * Shifting 3 bits more on the right to get a 1150 * 8 pages aligned virtual addresse. 1151 */ 1152 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1153 if (!pix || vpgb != current_vpgb) { 1154 /* 1155 * Need to start a new 8 pages block, flush 1156 * the current one if needed. 1157 */ 1158 if (pix) 1159 (void)call_block_remove(pix, param, true); 1160 current_vpgb = vpgb; 1161 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1162 pix = 1; 1163 } 1164 1165 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1166 if (pix == PLPAR_HCALL9_BUFSIZE) { 1167 pix = call_block_remove(pix, param, false); 1168 /* 1169 * pix = 0 means that all the entries were 1170 * removed, we can start a new block. 1171 * Otherwise, this means that there are entries 1172 * to retry, and pix points to latest one, so 1173 * we should increment it and try to continue 1174 * the same block. 1175 */ 1176 if (pix) 1177 pix++; 1178 } 1179 } 1180 if (pix) 1181 (void)call_block_remove(pix, param, true); 1182 } 1183 1184 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1185 int count, int psize, int ssize) 1186 { 1187 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1188 int i = 0, pix = 0, rc; 1189 1190 for (i = 0; i < count; i++) { 1191 1192 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1193 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1194 ssize, 0); 1195 } else { 1196 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1197 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1198 pix += 2; 1199 if (pix == 8) { 1200 rc = plpar_hcall9(H_BULK_REMOVE, param, 1201 param[0], param[1], param[2], 1202 param[3], param[4], param[5], 1203 param[6], param[7]); 1204 BUG_ON(rc != H_SUCCESS); 1205 pix = 0; 1206 } 1207 } 1208 } 1209 if (pix) { 1210 param[pix] = HBR_END; 1211 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1212 param[2], param[3], param[4], param[5], 1213 param[6], param[7]); 1214 BUG_ON(rc != H_SUCCESS); 1215 } 1216 } 1217 1218 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1219 unsigned long *vpn, 1220 int count, int psize, 1221 int ssize) 1222 { 1223 unsigned long flags = 0; 1224 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1225 1226 if (lock_tlbie) 1227 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1228 1229 /* Assuming THP size is 16M */ 1230 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1231 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1232 else 1233 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1234 1235 if (lock_tlbie) 1236 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1237 } 1238 1239 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1240 unsigned long addr, 1241 unsigned char *hpte_slot_array, 1242 int psize, int ssize, int local) 1243 { 1244 int i, index = 0; 1245 unsigned long s_addr = addr; 1246 unsigned int max_hpte_count, valid; 1247 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1248 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1249 unsigned long shift, hidx, vpn = 0, hash, slot; 1250 1251 shift = mmu_psize_defs[psize].shift; 1252 max_hpte_count = 1U << (PMD_SHIFT - shift); 1253 1254 for (i = 0; i < max_hpte_count; i++) { 1255 valid = hpte_valid(hpte_slot_array, i); 1256 if (!valid) 1257 continue; 1258 hidx = hpte_hash_index(hpte_slot_array, i); 1259 1260 /* get the vpn */ 1261 addr = s_addr + (i * (1ul << shift)); 1262 vpn = hpt_vpn(addr, vsid, ssize); 1263 hash = hpt_hash(vpn, shift, ssize); 1264 if (hidx & _PTEIDX_SECONDARY) 1265 hash = ~hash; 1266 1267 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1268 slot += hidx & _PTEIDX_GROUP_IX; 1269 1270 slot_array[index] = slot; 1271 vpn_array[index] = vpn; 1272 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1273 /* 1274 * Now do a bluk invalidate 1275 */ 1276 __pSeries_lpar_hugepage_invalidate(slot_array, 1277 vpn_array, 1278 PPC64_HUGE_HPTE_BATCH, 1279 psize, ssize); 1280 index = 0; 1281 } else 1282 index++; 1283 } 1284 if (index) 1285 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1286 index, psize, ssize); 1287 } 1288 #else 1289 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1290 unsigned long addr, 1291 unsigned char *hpte_slot_array, 1292 int psize, int ssize, int local) 1293 { 1294 WARN(1, "%s called without THP support\n", __func__); 1295 } 1296 #endif 1297 1298 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1299 int psize, int ssize) 1300 { 1301 unsigned long vpn; 1302 unsigned long slot, vsid; 1303 1304 vsid = get_kernel_vsid(ea, ssize); 1305 vpn = hpt_vpn(ea, vsid, ssize); 1306 1307 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1308 if (slot == -1) 1309 return -ENOENT; 1310 1311 /* 1312 * lpar doesn't use the passed actual page size 1313 */ 1314 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1315 return 0; 1316 } 1317 1318 1319 static inline unsigned long compute_slot(real_pte_t pte, 1320 unsigned long vpn, 1321 unsigned long index, 1322 unsigned long shift, 1323 int ssize) 1324 { 1325 unsigned long slot, hash, hidx; 1326 1327 hash = hpt_hash(vpn, shift, ssize); 1328 hidx = __rpte_to_hidx(pte, index); 1329 if (hidx & _PTEIDX_SECONDARY) 1330 hash = ~hash; 1331 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1332 slot += hidx & _PTEIDX_GROUP_IX; 1333 return slot; 1334 } 1335 1336 /** 1337 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1338 * "all within the same naturally aligned 8 page virtual address block". 1339 */ 1340 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1341 unsigned long *param) 1342 { 1343 unsigned long vpn; 1344 unsigned long i, pix = 0; 1345 unsigned long index, shift, slot, current_vpgb, vpgb; 1346 real_pte_t pte; 1347 int psize, ssize; 1348 1349 psize = batch->psize; 1350 ssize = batch->ssize; 1351 1352 for (i = 0; i < number; i++) { 1353 vpn = batch->vpn[i]; 1354 pte = batch->pte[i]; 1355 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1356 /* 1357 * Shifting 3 bits more on the right to get a 1358 * 8 pages aligned virtual addresse. 1359 */ 1360 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1361 if (!pix || vpgb != current_vpgb) { 1362 /* 1363 * Need to start a new 8 pages block, flush 1364 * the current one if needed. 1365 */ 1366 if (pix) 1367 (void)call_block_remove(pix, param, 1368 true); 1369 current_vpgb = vpgb; 1370 param[0] = hpte_encode_avpn(vpn, psize, 1371 ssize); 1372 pix = 1; 1373 } 1374 1375 slot = compute_slot(pte, vpn, index, shift, ssize); 1376 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1377 1378 if (pix == PLPAR_HCALL9_BUFSIZE) { 1379 pix = call_block_remove(pix, param, false); 1380 /* 1381 * pix = 0 means that all the entries were 1382 * removed, we can start a new block. 1383 * Otherwise, this means that there are entries 1384 * to retry, and pix points to latest one, so 1385 * we should increment it and try to continue 1386 * the same block. 1387 */ 1388 if (pix) 1389 pix++; 1390 } 1391 } pte_iterate_hashed_end(); 1392 } 1393 1394 if (pix) 1395 (void)call_block_remove(pix, param, true); 1396 } 1397 1398 /* 1399 * TLB Block Invalidate Characteristics 1400 * 1401 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1402 * is able to process for each couple segment base page size, actual page size. 1403 * 1404 * The ibm,get-system-parameter properties is returning a buffer with the 1405 * following layout: 1406 * 1407 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1408 * ----------------- 1409 * TLB Block Invalidate Specifiers: 1410 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1411 * [ 1 byte Number of page sizes (N) that are supported for the specified 1412 * TLB invalidate block size ] 1413 * [ 1 byte Encoded segment base page size and actual page size 1414 * MSB=0 means 4k segment base page size and actual page size 1415 * MSB=1 the penc value in mmu_psize_def ] 1416 * ... 1417 * ----------------- 1418 * Next TLB Block Invalidate Specifiers... 1419 * ----------------- 1420 * [ 0 ] 1421 */ 1422 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1423 unsigned int block_size) 1424 { 1425 if (block_size > hblkrm_size[bpsize][psize]) 1426 hblkrm_size[bpsize][psize] = block_size; 1427 } 1428 1429 /* 1430 * Decode the Encoded segment base page size and actual page size. 1431 * PAPR specifies: 1432 * - bit 7 is the L bit 1433 * - bits 0-5 are the penc value 1434 * If the L bit is 0, this means 4K segment base page size and actual page size 1435 * otherwise the penc value should be read. 1436 */ 1437 #define HBLKRM_L_MASK 0x80 1438 #define HBLKRM_PENC_MASK 0x3f 1439 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1440 unsigned int block_size) 1441 { 1442 unsigned int bpsize, psize; 1443 1444 /* First, check the L bit, if not set, this means 4K */ 1445 if ((lp & HBLKRM_L_MASK) == 0) { 1446 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1447 return; 1448 } 1449 1450 lp &= HBLKRM_PENC_MASK; 1451 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1452 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1453 1454 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1455 if (def->penc[psize] == lp) { 1456 set_hblkrm_bloc_size(bpsize, psize, block_size); 1457 return; 1458 } 1459 } 1460 } 1461 } 1462 1463 #define SPLPAR_TLB_BIC_TOKEN 50 1464 1465 /* 1466 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1467 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1468 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1469 * (128 bytes) for the buffer to get plenty of space. 1470 */ 1471 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1472 1473 void __init pseries_lpar_read_hblkrm_characteristics(void) 1474 { 1475 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1476 int call_status, len, idx, bpsize; 1477 1478 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1479 return; 1480 1481 spin_lock(&rtas_data_buf_lock); 1482 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1483 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1484 NULL, 1485 SPLPAR_TLB_BIC_TOKEN, 1486 __pa(rtas_data_buf), 1487 RTAS_DATA_BUF_SIZE); 1488 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1489 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1490 spin_unlock(&rtas_data_buf_lock); 1491 1492 if (call_status != 0) { 1493 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1494 __FILE__, __func__, call_status); 1495 return; 1496 } 1497 1498 /* 1499 * The first two (2) bytes of the data in the buffer are the length of 1500 * the returned data, not counting these first two (2) bytes. 1501 */ 1502 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1503 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1504 pr_warn("%s too large returned buffer %d", __func__, len); 1505 return; 1506 } 1507 1508 idx = 2; 1509 while (idx < len) { 1510 u8 block_shift = local_buffer[idx++]; 1511 u32 block_size; 1512 unsigned int npsize; 1513 1514 if (!block_shift) 1515 break; 1516 1517 block_size = 1 << block_shift; 1518 1519 for (npsize = local_buffer[idx++]; 1520 npsize > 0 && idx < len; npsize--) 1521 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1522 block_size); 1523 } 1524 1525 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1526 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1527 if (hblkrm_size[bpsize][idx]) 1528 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1529 bpsize, idx, hblkrm_size[bpsize][idx]); 1530 } 1531 1532 /* 1533 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1534 * lock. 1535 */ 1536 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1537 { 1538 unsigned long vpn; 1539 unsigned long i, pix, rc; 1540 unsigned long flags = 0; 1541 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1542 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1543 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1544 unsigned long index, shift, slot; 1545 real_pte_t pte; 1546 int psize, ssize; 1547 1548 if (lock_tlbie) 1549 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1550 1551 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1552 do_block_remove(number, batch, param); 1553 goto out; 1554 } 1555 1556 psize = batch->psize; 1557 ssize = batch->ssize; 1558 pix = 0; 1559 for (i = 0; i < number; i++) { 1560 vpn = batch->vpn[i]; 1561 pte = batch->pte[i]; 1562 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1563 slot = compute_slot(pte, vpn, index, shift, ssize); 1564 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1565 /* 1566 * lpar doesn't use the passed actual page size 1567 */ 1568 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1569 0, ssize, local); 1570 } else { 1571 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1572 param[pix+1] = hpte_encode_avpn(vpn, psize, 1573 ssize); 1574 pix += 2; 1575 if (pix == 8) { 1576 rc = plpar_hcall9(H_BULK_REMOVE, param, 1577 param[0], param[1], param[2], 1578 param[3], param[4], param[5], 1579 param[6], param[7]); 1580 BUG_ON(rc != H_SUCCESS); 1581 pix = 0; 1582 } 1583 } 1584 } pte_iterate_hashed_end(); 1585 } 1586 if (pix) { 1587 param[pix] = HBR_END; 1588 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1589 param[2], param[3], param[4], param[5], 1590 param[6], param[7]); 1591 BUG_ON(rc != H_SUCCESS); 1592 } 1593 1594 out: 1595 if (lock_tlbie) 1596 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1597 } 1598 1599 static int __init disable_bulk_remove(char *str) 1600 { 1601 if (strcmp(str, "off") == 0 && 1602 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1603 pr_info("Disabling BULK_REMOVE firmware feature"); 1604 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1605 } 1606 return 1; 1607 } 1608 1609 __setup("bulk_remove=", disable_bulk_remove); 1610 1611 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1612 1613 struct hpt_resize_state { 1614 unsigned long shift; 1615 int commit_rc; 1616 }; 1617 1618 static int pseries_lpar_resize_hpt_commit(void *data) 1619 { 1620 struct hpt_resize_state *state = data; 1621 1622 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1623 if (state->commit_rc != H_SUCCESS) 1624 return -EIO; 1625 1626 /* Hypervisor has transitioned the HTAB, update our globals */ 1627 ppc64_pft_size = state->shift; 1628 htab_size_bytes = 1UL << ppc64_pft_size; 1629 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1630 1631 return 0; 1632 } 1633 1634 /* 1635 * Must be called in process context. The caller must hold the 1636 * cpus_lock. 1637 */ 1638 static int pseries_lpar_resize_hpt(unsigned long shift) 1639 { 1640 struct hpt_resize_state state = { 1641 .shift = shift, 1642 .commit_rc = H_FUNCTION, 1643 }; 1644 unsigned int delay, total_delay = 0; 1645 int rc; 1646 ktime_t t0, t1, t2; 1647 1648 might_sleep(); 1649 1650 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1651 return -ENODEV; 1652 1653 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1654 1655 t0 = ktime_get(); 1656 1657 rc = plpar_resize_hpt_prepare(0, shift); 1658 while (H_IS_LONG_BUSY(rc)) { 1659 delay = get_longbusy_msecs(rc); 1660 total_delay += delay; 1661 if (total_delay > HPT_RESIZE_TIMEOUT) { 1662 /* prepare with shift==0 cancels an in-progress resize */ 1663 rc = plpar_resize_hpt_prepare(0, 0); 1664 if (rc != H_SUCCESS) 1665 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1666 rc); 1667 return -ETIMEDOUT; 1668 } 1669 msleep(delay); 1670 rc = plpar_resize_hpt_prepare(0, shift); 1671 } 1672 1673 switch (rc) { 1674 case H_SUCCESS: 1675 /* Continue on */ 1676 break; 1677 1678 case H_PARAMETER: 1679 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1680 return -EINVAL; 1681 case H_RESOURCE: 1682 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1683 return -EPERM; 1684 default: 1685 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1686 return -EIO; 1687 } 1688 1689 t1 = ktime_get(); 1690 1691 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1692 &state, NULL); 1693 1694 t2 = ktime_get(); 1695 1696 if (rc != 0) { 1697 switch (state.commit_rc) { 1698 case H_PTEG_FULL: 1699 return -ENOSPC; 1700 1701 default: 1702 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1703 state.commit_rc); 1704 return -EIO; 1705 }; 1706 } 1707 1708 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1709 shift, (long long) ktime_ms_delta(t1, t0), 1710 (long long) ktime_ms_delta(t2, t1)); 1711 1712 return 0; 1713 } 1714 1715 void __init hpte_init_pseries(void) 1716 { 1717 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1718 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1719 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1720 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1721 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1722 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1723 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1724 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1725 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1726 1727 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1728 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1729 1730 /* 1731 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1732 * to inform the hypervisor that we wish to use the HPT. 1733 */ 1734 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1735 pseries_lpar_register_process_table(0, 0, 0); 1736 } 1737 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1738 1739 #ifdef CONFIG_PPC_RADIX_MMU 1740 void __init radix_init_pseries(void) 1741 { 1742 pr_info("Using radix MMU under hypervisor\n"); 1743 1744 pseries_lpar_register_process_table(__pa(process_tb), 1745 0, PRTB_SIZE_SHIFT - 12); 1746 } 1747 #endif 1748 1749 #ifdef CONFIG_PPC_SMLPAR 1750 #define CMO_FREE_HINT_DEFAULT 1 1751 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1752 1753 static int __init cmo_free_hint(char *str) 1754 { 1755 char *parm; 1756 parm = strstrip(str); 1757 1758 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1759 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1760 cmo_free_hint_flag = 0; 1761 return 1; 1762 } 1763 1764 cmo_free_hint_flag = 1; 1765 pr_info("%s: CMO free page hinting is active.\n", __func__); 1766 1767 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1768 return 1; 1769 1770 return 0; 1771 } 1772 1773 __setup("cmo_free_hint=", cmo_free_hint); 1774 1775 static void pSeries_set_page_state(struct page *page, int order, 1776 unsigned long state) 1777 { 1778 int i, j; 1779 unsigned long cmo_page_sz, addr; 1780 1781 cmo_page_sz = cmo_get_page_size(); 1782 addr = __pa((unsigned long)page_address(page)); 1783 1784 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1785 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1786 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1787 } 1788 } 1789 1790 void arch_free_page(struct page *page, int order) 1791 { 1792 if (radix_enabled()) 1793 return; 1794 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1795 return; 1796 1797 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1798 } 1799 EXPORT_SYMBOL(arch_free_page); 1800 1801 #endif /* CONFIG_PPC_SMLPAR */ 1802 #endif /* CONFIG_PPC_BOOK3S_64 */ 1803 1804 #ifdef CONFIG_TRACEPOINTS 1805 #ifdef CONFIG_JUMP_LABEL 1806 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1807 1808 int hcall_tracepoint_regfunc(void) 1809 { 1810 static_key_slow_inc(&hcall_tracepoint_key); 1811 return 0; 1812 } 1813 1814 void hcall_tracepoint_unregfunc(void) 1815 { 1816 static_key_slow_dec(&hcall_tracepoint_key); 1817 } 1818 #else 1819 /* 1820 * We optimise our hcall path by placing hcall_tracepoint_refcount 1821 * directly in the TOC so we can check if the hcall tracepoints are 1822 * enabled via a single load. 1823 */ 1824 1825 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1826 extern long hcall_tracepoint_refcount; 1827 1828 int hcall_tracepoint_regfunc(void) 1829 { 1830 hcall_tracepoint_refcount++; 1831 return 0; 1832 } 1833 1834 void hcall_tracepoint_unregfunc(void) 1835 { 1836 hcall_tracepoint_refcount--; 1837 } 1838 #endif 1839 1840 /* 1841 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1842 * detected because it may indicate a problem. This will not catch all 1843 * problems with tracing code making hcalls, because the tracing might have 1844 * been invoked from a non-hcall, so the first hcall could recurse into it 1845 * without warning here, but this better than nothing. 1846 * 1847 * Hcalls with specific problems being traced should use the _notrace 1848 * plpar_hcall variants. 1849 */ 1850 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1851 1852 1853 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1854 { 1855 unsigned long flags; 1856 unsigned int *depth; 1857 1858 local_irq_save(flags); 1859 1860 depth = this_cpu_ptr(&hcall_trace_depth); 1861 1862 if (WARN_ON_ONCE(*depth)) 1863 goto out; 1864 1865 (*depth)++; 1866 preempt_disable(); 1867 trace_hcall_entry(opcode, args); 1868 (*depth)--; 1869 1870 out: 1871 local_irq_restore(flags); 1872 } 1873 1874 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1875 { 1876 unsigned long flags; 1877 unsigned int *depth; 1878 1879 local_irq_save(flags); 1880 1881 depth = this_cpu_ptr(&hcall_trace_depth); 1882 1883 if (*depth) /* Don't warn again on the way out */ 1884 goto out; 1885 1886 (*depth)++; 1887 trace_hcall_exit(opcode, retval, retbuf); 1888 preempt_enable(); 1889 (*depth)--; 1890 1891 out: 1892 local_irq_restore(flags); 1893 } 1894 #endif 1895 1896 /** 1897 * h_get_mpp 1898 * H_GET_MPP hcall returns info in 7 parms 1899 */ 1900 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1901 { 1902 int rc; 1903 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1904 1905 rc = plpar_hcall9(H_GET_MPP, retbuf); 1906 1907 mpp_data->entitled_mem = retbuf[0]; 1908 mpp_data->mapped_mem = retbuf[1]; 1909 1910 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1911 mpp_data->pool_num = retbuf[2] & 0xffff; 1912 1913 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1914 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1915 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1916 1917 mpp_data->pool_size = retbuf[4]; 1918 mpp_data->loan_request = retbuf[5]; 1919 mpp_data->backing_mem = retbuf[6]; 1920 1921 return rc; 1922 } 1923 EXPORT_SYMBOL(h_get_mpp); 1924 1925 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1926 { 1927 int rc; 1928 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1929 1930 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1931 1932 mpp_x_data->coalesced_bytes = retbuf[0]; 1933 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1934 mpp_x_data->pool_purr_cycles = retbuf[2]; 1935 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1936 1937 return rc; 1938 } 1939 1940 #ifdef CONFIG_PPC_64S_HASH_MMU 1941 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1942 { 1943 unsigned long protovsid; 1944 unsigned long va_bits = VA_BITS; 1945 unsigned long modinv, vsid_modulus; 1946 unsigned long max_mod_inv, tmp_modinv; 1947 1948 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1949 va_bits = 65; 1950 1951 if (ssize == MMU_SEGSIZE_256M) { 1952 modinv = VSID_MULINV_256M; 1953 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1954 } else { 1955 modinv = VSID_MULINV_1T; 1956 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1957 } 1958 1959 /* 1960 * vsid outside our range. 1961 */ 1962 if (vsid >= vsid_modulus) 1963 return 0; 1964 1965 /* 1966 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1967 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1968 * protovsid = (vsid * modinv) % vsid_modulus 1969 */ 1970 1971 /* Check if (vsid * modinv) overflow (63 bits) */ 1972 max_mod_inv = 0x7fffffffffffffffull / vsid; 1973 if (modinv < max_mod_inv) 1974 return (vsid * modinv) % vsid_modulus; 1975 1976 tmp_modinv = modinv/max_mod_inv; 1977 modinv %= max_mod_inv; 1978 1979 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1980 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1981 1982 return protovsid; 1983 } 1984 1985 static int __init reserve_vrma_context_id(void) 1986 { 1987 unsigned long protovsid; 1988 1989 /* 1990 * Reserve context ids which map to reserved virtual addresses. For now 1991 * we only reserve the context id which maps to the VRMA VSID. We ignore 1992 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1993 * enable adjunct support via the "ibm,client-architecture-support" 1994 * interface. 1995 */ 1996 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1997 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1998 return 0; 1999 } 2000 machine_device_initcall(pseries, reserve_vrma_context_id); 2001 #endif 2002 2003 #ifdef CONFIG_DEBUG_FS 2004 /* debugfs file interface for vpa data */ 2005 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 2006 loff_t *pos) 2007 { 2008 int cpu = (long)filp->private_data; 2009 struct lppaca *lppaca = &lppaca_of(cpu); 2010 2011 return simple_read_from_buffer(buf, len, pos, lppaca, 2012 sizeof(struct lppaca)); 2013 } 2014 2015 static const struct file_operations vpa_fops = { 2016 .open = simple_open, 2017 .read = vpa_file_read, 2018 .llseek = default_llseek, 2019 }; 2020 2021 static int __init vpa_debugfs_init(void) 2022 { 2023 char name[16]; 2024 long i; 2025 struct dentry *vpa_dir; 2026 2027 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2028 return 0; 2029 2030 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2031 2032 /* set up the per-cpu vpa file*/ 2033 for_each_possible_cpu(i) { 2034 sprintf(name, "cpu-%ld", i); 2035 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2036 } 2037 2038 return 0; 2039 } 2040 machine_arch_initcall(pseries, vpa_debugfs_init); 2041 #endif /* CONFIG_DEBUG_FS */ 2042