1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/machdep.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/prom.h> 35 #include <asm/cputable.h> 36 #include <asm/udbg.h> 37 #include <asm/smp.h> 38 #include <asm/trace.h> 39 #include <asm/firmware.h> 40 #include <asm/plpar_wrappers.h> 41 #include <asm/kexec.h> 42 #include <asm/fadump.h> 43 #include <asm/dtl.h> 44 45 #include "pseries.h" 46 47 /* Flag bits for H_BULK_REMOVE */ 48 #define HBR_REQUEST 0x4000000000000000UL 49 #define HBR_RESPONSE 0x8000000000000000UL 50 #define HBR_END 0xc000000000000000UL 51 #define HBR_AVPN 0x0200000000000000UL 52 #define HBR_ANDCOND 0x0100000000000000UL 53 54 55 /* in hvCall.S */ 56 EXPORT_SYMBOL(plpar_hcall); 57 EXPORT_SYMBOL(plpar_hcall9); 58 EXPORT_SYMBOL(plpar_hcall_norets); 59 60 #ifdef CONFIG_PPC_64S_HASH_MMU 61 /* 62 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 63 * page size is that page size. 64 * 65 * The first index is the segment base page size, the second one is the actual 66 * page size. 67 */ 68 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 69 #endif 70 71 /* 72 * Due to the involved complexity, and that the current hypervisor is only 73 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 74 * buffer size to 8 size block. 75 */ 76 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 77 78 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 79 static u8 dtl_mask = DTL_LOG_PREEMPT; 80 #else 81 static u8 dtl_mask; 82 #endif 83 84 void alloc_dtl_buffers(unsigned long *time_limit) 85 { 86 int cpu; 87 struct paca_struct *pp; 88 struct dtl_entry *dtl; 89 90 for_each_possible_cpu(cpu) { 91 pp = paca_ptrs[cpu]; 92 if (pp->dispatch_log) 93 continue; 94 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 95 if (!dtl) { 96 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 97 cpu); 98 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 99 pr_warn("Stolen time statistics will be unreliable\n"); 100 #endif 101 break; 102 } 103 104 pp->dtl_ridx = 0; 105 pp->dispatch_log = dtl; 106 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 107 pp->dtl_curr = dtl; 108 109 if (time_limit && time_after(jiffies, *time_limit)) { 110 cond_resched(); 111 *time_limit = jiffies + HZ; 112 } 113 } 114 } 115 116 void register_dtl_buffer(int cpu) 117 { 118 long ret; 119 struct paca_struct *pp; 120 struct dtl_entry *dtl; 121 int hwcpu = get_hard_smp_processor_id(cpu); 122 123 pp = paca_ptrs[cpu]; 124 dtl = pp->dispatch_log; 125 if (dtl && dtl_mask) { 126 pp->dtl_ridx = 0; 127 pp->dtl_curr = dtl; 128 lppaca_of(cpu).dtl_idx = 0; 129 130 /* hypervisor reads buffer length from this field */ 131 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 132 ret = register_dtl(hwcpu, __pa(dtl)); 133 if (ret) 134 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 135 cpu, hwcpu, ret); 136 137 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 138 } 139 } 140 141 #ifdef CONFIG_PPC_SPLPAR 142 struct dtl_worker { 143 struct delayed_work work; 144 int cpu; 145 }; 146 147 struct vcpu_dispatch_data { 148 int last_disp_cpu; 149 150 int total_disp; 151 152 int same_cpu_disp; 153 int same_chip_disp; 154 int diff_chip_disp; 155 int far_chip_disp; 156 157 int numa_home_disp; 158 int numa_remote_disp; 159 int numa_far_disp; 160 }; 161 162 /* 163 * This represents the number of cpus in the hypervisor. Since there is no 164 * architected way to discover the number of processors in the host, we 165 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 166 * is sufficient for our purposes. This will need to be tweaked if 167 * CONFIG_NR_CPUS is changed. 168 */ 169 #define NR_CPUS_H NR_CPUS 170 171 DEFINE_RWLOCK(dtl_access_lock); 172 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 173 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 174 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 175 static enum cpuhp_state dtl_worker_state; 176 static DEFINE_MUTEX(dtl_enable_mutex); 177 static int vcpudispatch_stats_on __read_mostly; 178 static int vcpudispatch_stats_freq = 50; 179 static __be32 *vcpu_associativity, *pcpu_associativity; 180 181 182 static void free_dtl_buffers(unsigned long *time_limit) 183 { 184 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 185 int cpu; 186 struct paca_struct *pp; 187 188 for_each_possible_cpu(cpu) { 189 pp = paca_ptrs[cpu]; 190 if (!pp->dispatch_log) 191 continue; 192 kmem_cache_free(dtl_cache, pp->dispatch_log); 193 pp->dtl_ridx = 0; 194 pp->dispatch_log = 0; 195 pp->dispatch_log_end = 0; 196 pp->dtl_curr = 0; 197 198 if (time_limit && time_after(jiffies, *time_limit)) { 199 cond_resched(); 200 *time_limit = jiffies + HZ; 201 } 202 } 203 #endif 204 } 205 206 static int init_cpu_associativity(void) 207 { 208 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 209 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 210 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 211 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 212 213 if (!vcpu_associativity || !pcpu_associativity) { 214 pr_err("error allocating memory for associativity information\n"); 215 return -ENOMEM; 216 } 217 218 return 0; 219 } 220 221 static void destroy_cpu_associativity(void) 222 { 223 kfree(vcpu_associativity); 224 kfree(pcpu_associativity); 225 vcpu_associativity = pcpu_associativity = 0; 226 } 227 228 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 229 { 230 __be32 *assoc; 231 int rc = 0; 232 233 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 234 if (!assoc[0]) { 235 rc = hcall_vphn(cpu, flag, &assoc[0]); 236 if (rc) 237 return NULL; 238 } 239 240 return assoc; 241 } 242 243 static __be32 *get_pcpu_associativity(int cpu) 244 { 245 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 246 } 247 248 static __be32 *get_vcpu_associativity(int cpu) 249 { 250 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 251 } 252 253 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 254 { 255 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 256 257 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 258 return -EINVAL; 259 260 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 261 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 262 263 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 264 return -EIO; 265 266 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 267 } 268 269 static int cpu_home_node_dispatch_distance(int disp_cpu) 270 { 271 __be32 *disp_cpu_assoc, *vcpu_assoc; 272 int vcpu_id = smp_processor_id(); 273 274 if (disp_cpu >= NR_CPUS_H) { 275 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 276 disp_cpu, NR_CPUS_H); 277 return -EINVAL; 278 } 279 280 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 281 vcpu_assoc = get_vcpu_associativity(vcpu_id); 282 283 if (!disp_cpu_assoc || !vcpu_assoc) 284 return -EIO; 285 286 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 287 } 288 289 static void update_vcpu_disp_stat(int disp_cpu) 290 { 291 struct vcpu_dispatch_data *disp; 292 int distance; 293 294 disp = this_cpu_ptr(&vcpu_disp_data); 295 if (disp->last_disp_cpu == -1) { 296 disp->last_disp_cpu = disp_cpu; 297 return; 298 } 299 300 disp->total_disp++; 301 302 if (disp->last_disp_cpu == disp_cpu || 303 (cpu_first_thread_sibling(disp->last_disp_cpu) == 304 cpu_first_thread_sibling(disp_cpu))) 305 disp->same_cpu_disp++; 306 else { 307 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 308 disp_cpu); 309 if (distance < 0) 310 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 311 smp_processor_id()); 312 else { 313 switch (distance) { 314 case 0: 315 disp->same_chip_disp++; 316 break; 317 case 1: 318 disp->diff_chip_disp++; 319 break; 320 case 2: 321 disp->far_chip_disp++; 322 break; 323 default: 324 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 325 smp_processor_id(), 326 disp->last_disp_cpu, 327 disp_cpu, 328 distance); 329 } 330 } 331 } 332 333 distance = cpu_home_node_dispatch_distance(disp_cpu); 334 if (distance < 0) 335 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 336 smp_processor_id()); 337 else { 338 switch (distance) { 339 case 0: 340 disp->numa_home_disp++; 341 break; 342 case 1: 343 disp->numa_remote_disp++; 344 break; 345 case 2: 346 disp->numa_far_disp++; 347 break; 348 default: 349 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 350 smp_processor_id(), 351 disp_cpu, 352 distance); 353 } 354 } 355 356 disp->last_disp_cpu = disp_cpu; 357 } 358 359 static void process_dtl_buffer(struct work_struct *work) 360 { 361 struct dtl_entry dtle; 362 u64 i = __this_cpu_read(dtl_entry_ridx); 363 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 364 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 365 struct lppaca *vpa = local_paca->lppaca_ptr; 366 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 367 368 if (!local_paca->dispatch_log) 369 return; 370 371 /* if we have been migrated away, we cancel ourself */ 372 if (d->cpu != smp_processor_id()) { 373 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 374 smp_processor_id()); 375 return; 376 } 377 378 if (i == be64_to_cpu(vpa->dtl_idx)) 379 goto out; 380 381 while (i < be64_to_cpu(vpa->dtl_idx)) { 382 dtle = *dtl; 383 barrier(); 384 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 385 /* buffer has overflowed */ 386 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 387 d->cpu, 388 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 389 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 390 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 391 continue; 392 } 393 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 394 ++i; 395 ++dtl; 396 if (dtl == dtl_end) 397 dtl = local_paca->dispatch_log; 398 } 399 400 __this_cpu_write(dtl_entry_ridx, i); 401 402 out: 403 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 404 HZ / vcpudispatch_stats_freq); 405 } 406 407 static int dtl_worker_online(unsigned int cpu) 408 { 409 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 410 411 memset(d, 0, sizeof(*d)); 412 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 413 d->cpu = cpu; 414 415 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 416 per_cpu(dtl_entry_ridx, cpu) = 0; 417 register_dtl_buffer(cpu); 418 #else 419 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 420 #endif 421 422 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 423 return 0; 424 } 425 426 static int dtl_worker_offline(unsigned int cpu) 427 { 428 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 429 430 cancel_delayed_work_sync(&d->work); 431 432 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 433 unregister_dtl(get_hard_smp_processor_id(cpu)); 434 #endif 435 436 return 0; 437 } 438 439 static void set_global_dtl_mask(u8 mask) 440 { 441 int cpu; 442 443 dtl_mask = mask; 444 for_each_present_cpu(cpu) 445 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 446 } 447 448 static void reset_global_dtl_mask(void) 449 { 450 int cpu; 451 452 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 453 dtl_mask = DTL_LOG_PREEMPT; 454 #else 455 dtl_mask = 0; 456 #endif 457 for_each_present_cpu(cpu) 458 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 459 } 460 461 static int dtl_worker_enable(unsigned long *time_limit) 462 { 463 int rc = 0, state; 464 465 if (!write_trylock(&dtl_access_lock)) { 466 rc = -EBUSY; 467 goto out; 468 } 469 470 set_global_dtl_mask(DTL_LOG_ALL); 471 472 /* Setup dtl buffers and register those */ 473 alloc_dtl_buffers(time_limit); 474 475 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 476 dtl_worker_online, dtl_worker_offline); 477 if (state < 0) { 478 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 479 free_dtl_buffers(time_limit); 480 reset_global_dtl_mask(); 481 write_unlock(&dtl_access_lock); 482 rc = -EINVAL; 483 goto out; 484 } 485 dtl_worker_state = state; 486 487 out: 488 return rc; 489 } 490 491 static void dtl_worker_disable(unsigned long *time_limit) 492 { 493 cpuhp_remove_state(dtl_worker_state); 494 free_dtl_buffers(time_limit); 495 reset_global_dtl_mask(); 496 write_unlock(&dtl_access_lock); 497 } 498 499 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 500 size_t count, loff_t *ppos) 501 { 502 unsigned long time_limit = jiffies + HZ; 503 struct vcpu_dispatch_data *disp; 504 int rc, cmd, cpu; 505 char buf[16]; 506 507 if (count > 15) 508 return -EINVAL; 509 510 if (copy_from_user(buf, p, count)) 511 return -EFAULT; 512 513 buf[count] = 0; 514 rc = kstrtoint(buf, 0, &cmd); 515 if (rc || cmd < 0 || cmd > 1) { 516 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 517 return rc ? rc : -EINVAL; 518 } 519 520 mutex_lock(&dtl_enable_mutex); 521 522 if ((cmd == 0 && !vcpudispatch_stats_on) || 523 (cmd == 1 && vcpudispatch_stats_on)) 524 goto out; 525 526 if (cmd) { 527 rc = init_cpu_associativity(); 528 if (rc) 529 goto out; 530 531 for_each_possible_cpu(cpu) { 532 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 533 memset(disp, 0, sizeof(*disp)); 534 disp->last_disp_cpu = -1; 535 } 536 537 rc = dtl_worker_enable(&time_limit); 538 if (rc) { 539 destroy_cpu_associativity(); 540 goto out; 541 } 542 } else { 543 dtl_worker_disable(&time_limit); 544 destroy_cpu_associativity(); 545 } 546 547 vcpudispatch_stats_on = cmd; 548 549 out: 550 mutex_unlock(&dtl_enable_mutex); 551 if (rc) 552 return rc; 553 return count; 554 } 555 556 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 557 { 558 int cpu; 559 struct vcpu_dispatch_data *disp; 560 561 if (!vcpudispatch_stats_on) { 562 seq_puts(p, "off\n"); 563 return 0; 564 } 565 566 for_each_online_cpu(cpu) { 567 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 568 seq_printf(p, "cpu%d", cpu); 569 seq_put_decimal_ull(p, " ", disp->total_disp); 570 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 571 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 572 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 573 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 574 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 575 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 576 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 577 seq_puts(p, "\n"); 578 } 579 580 return 0; 581 } 582 583 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 584 { 585 return single_open(file, vcpudispatch_stats_display, NULL); 586 } 587 588 static const struct proc_ops vcpudispatch_stats_proc_ops = { 589 .proc_open = vcpudispatch_stats_open, 590 .proc_read = seq_read, 591 .proc_write = vcpudispatch_stats_write, 592 .proc_lseek = seq_lseek, 593 .proc_release = single_release, 594 }; 595 596 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 597 const char __user *p, size_t count, loff_t *ppos) 598 { 599 int rc, freq; 600 char buf[16]; 601 602 if (count > 15) 603 return -EINVAL; 604 605 if (copy_from_user(buf, p, count)) 606 return -EFAULT; 607 608 buf[count] = 0; 609 rc = kstrtoint(buf, 0, &freq); 610 if (rc || freq < 1 || freq > HZ) { 611 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 612 HZ); 613 return rc ? rc : -EINVAL; 614 } 615 616 vcpudispatch_stats_freq = freq; 617 618 return count; 619 } 620 621 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 622 { 623 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 624 return 0; 625 } 626 627 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 628 { 629 return single_open(file, vcpudispatch_stats_freq_display, NULL); 630 } 631 632 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 633 .proc_open = vcpudispatch_stats_freq_open, 634 .proc_read = seq_read, 635 .proc_write = vcpudispatch_stats_freq_write, 636 .proc_lseek = seq_lseek, 637 .proc_release = single_release, 638 }; 639 640 static int __init vcpudispatch_stats_procfs_init(void) 641 { 642 /* 643 * Avoid smp_processor_id while preemptible. All CPUs should have 644 * the same value for lppaca_shared_proc. 645 */ 646 preempt_disable(); 647 if (!lppaca_shared_proc(get_lppaca())) { 648 preempt_enable(); 649 return 0; 650 } 651 preempt_enable(); 652 653 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 654 &vcpudispatch_stats_proc_ops)) 655 pr_err("vcpudispatch_stats: error creating procfs file\n"); 656 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 657 &vcpudispatch_stats_freq_proc_ops)) 658 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 659 660 return 0; 661 } 662 663 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 664 #endif /* CONFIG_PPC_SPLPAR */ 665 666 void vpa_init(int cpu) 667 { 668 int hwcpu = get_hard_smp_processor_id(cpu); 669 unsigned long addr; 670 long ret; 671 672 /* 673 * The spec says it "may be problematic" if CPU x registers the VPA of 674 * CPU y. We should never do that, but wail if we ever do. 675 */ 676 WARN_ON(cpu != smp_processor_id()); 677 678 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 679 lppaca_of(cpu).vmxregs_in_use = 1; 680 681 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 682 lppaca_of(cpu).ebb_regs_in_use = 1; 683 684 addr = __pa(&lppaca_of(cpu)); 685 ret = register_vpa(hwcpu, addr); 686 687 if (ret) { 688 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 689 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 690 return; 691 } 692 693 #ifdef CONFIG_PPC_64S_HASH_MMU 694 /* 695 * PAPR says this feature is SLB-Buffer but firmware never 696 * reports that. All SPLPAR support SLB shadow buffer. 697 */ 698 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 699 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 700 ret = register_slb_shadow(hwcpu, addr); 701 if (ret) 702 pr_err("WARNING: SLB shadow buffer registration for " 703 "cpu %d (hw %d) of area %lx failed with %ld\n", 704 cpu, hwcpu, addr, ret); 705 } 706 #endif /* CONFIG_PPC_64S_HASH_MMU */ 707 708 /* 709 * Register dispatch trace log, if one has been allocated. 710 */ 711 register_dtl_buffer(cpu); 712 } 713 714 #ifdef CONFIG_PPC_BOOK3S_64 715 716 static int __init pseries_lpar_register_process_table(unsigned long base, 717 unsigned long page_size, unsigned long table_size) 718 { 719 long rc; 720 unsigned long flags = 0; 721 722 if (table_size) 723 flags |= PROC_TABLE_NEW; 724 if (radix_enabled()) { 725 flags |= PROC_TABLE_RADIX; 726 if (mmu_has_feature(MMU_FTR_GTSE)) 727 flags |= PROC_TABLE_GTSE; 728 } else 729 flags |= PROC_TABLE_HPT_SLB; 730 for (;;) { 731 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 732 page_size, table_size); 733 if (!H_IS_LONG_BUSY(rc)) 734 break; 735 mdelay(get_longbusy_msecs(rc)); 736 } 737 if (rc != H_SUCCESS) { 738 pr_err("Failed to register process table (rc=%ld)\n", rc); 739 BUG(); 740 } 741 return rc; 742 } 743 744 #ifdef CONFIG_PPC_64S_HASH_MMU 745 746 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 747 unsigned long vpn, unsigned long pa, 748 unsigned long rflags, unsigned long vflags, 749 int psize, int apsize, int ssize) 750 { 751 unsigned long lpar_rc; 752 unsigned long flags; 753 unsigned long slot; 754 unsigned long hpte_v, hpte_r; 755 756 if (!(vflags & HPTE_V_BOLTED)) 757 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 758 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 759 hpte_group, vpn, pa, rflags, vflags, psize); 760 761 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 762 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 763 764 if (!(vflags & HPTE_V_BOLTED)) 765 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 766 767 /* Now fill in the actual HPTE */ 768 /* Set CEC cookie to 0 */ 769 /* Zero page = 0 */ 770 /* I-cache Invalidate = 0 */ 771 /* I-cache synchronize = 0 */ 772 /* Exact = 0 */ 773 flags = 0; 774 775 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 776 flags |= H_COALESCE_CAND; 777 778 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 779 if (unlikely(lpar_rc == H_PTEG_FULL)) { 780 pr_devel("Hash table group is full\n"); 781 return -1; 782 } 783 784 /* 785 * Since we try and ioremap PHBs we don't own, the pte insert 786 * will fail. However we must catch the failure in hash_page 787 * or we will loop forever, so return -2 in this case. 788 */ 789 if (unlikely(lpar_rc != H_SUCCESS)) { 790 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 791 return -2; 792 } 793 if (!(vflags & HPTE_V_BOLTED)) 794 pr_devel(" -> slot: %lu\n", slot & 7); 795 796 /* Because of iSeries, we have to pass down the secondary 797 * bucket bit here as well 798 */ 799 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 800 } 801 802 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 803 804 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 805 { 806 unsigned long slot_offset; 807 unsigned long lpar_rc; 808 int i; 809 unsigned long dummy1, dummy2; 810 811 /* pick a random slot to start at */ 812 slot_offset = mftb() & 0x7; 813 814 for (i = 0; i < HPTES_PER_GROUP; i++) { 815 816 /* don't remove a bolted entry */ 817 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 818 HPTE_V_BOLTED, &dummy1, &dummy2); 819 if (lpar_rc == H_SUCCESS) 820 return i; 821 822 /* 823 * The test for adjunct partition is performed before the 824 * ANDCOND test. H_RESOURCE may be returned, so we need to 825 * check for that as well. 826 */ 827 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 828 829 slot_offset++; 830 slot_offset &= 0x7; 831 } 832 833 return -1; 834 } 835 836 /* Called during kexec sequence with MMU off */ 837 static notrace void manual_hpte_clear_all(void) 838 { 839 unsigned long size_bytes = 1UL << ppc64_pft_size; 840 unsigned long hpte_count = size_bytes >> 4; 841 struct { 842 unsigned long pteh; 843 unsigned long ptel; 844 } ptes[4]; 845 long lpar_rc; 846 unsigned long i, j; 847 848 /* Read in batches of 4, 849 * invalidate only valid entries not in the VRMA 850 * hpte_count will be a multiple of 4 851 */ 852 for (i = 0; i < hpte_count; i += 4) { 853 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 854 if (lpar_rc != H_SUCCESS) { 855 pr_info("Failed to read hash page table at %ld err %ld\n", 856 i, lpar_rc); 857 continue; 858 } 859 for (j = 0; j < 4; j++){ 860 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 861 HPTE_V_VRMA_MASK) 862 continue; 863 if (ptes[j].pteh & HPTE_V_VALID) 864 plpar_pte_remove_raw(0, i + j, 0, 865 &(ptes[j].pteh), &(ptes[j].ptel)); 866 } 867 } 868 } 869 870 /* Called during kexec sequence with MMU off */ 871 static notrace int hcall_hpte_clear_all(void) 872 { 873 int rc; 874 875 do { 876 rc = plpar_hcall_norets(H_CLEAR_HPT); 877 } while (rc == H_CONTINUE); 878 879 return rc; 880 } 881 882 /* Called during kexec sequence with MMU off */ 883 static notrace void pseries_hpte_clear_all(void) 884 { 885 int rc; 886 887 rc = hcall_hpte_clear_all(); 888 if (rc != H_SUCCESS) 889 manual_hpte_clear_all(); 890 891 #ifdef __LITTLE_ENDIAN__ 892 /* 893 * Reset exceptions to big endian. 894 * 895 * FIXME this is a hack for kexec, we need to reset the exception 896 * endian before starting the new kernel and this is a convenient place 897 * to do it. 898 * 899 * This is also called on boot when a fadump happens. In that case we 900 * must not change the exception endian mode. 901 */ 902 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 903 pseries_big_endian_exceptions(); 904 #endif 905 } 906 907 /* 908 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 909 * the low 3 bits of flags happen to line up. So no transform is needed. 910 * We can probably optimize here and assume the high bits of newpp are 911 * already zero. For now I am paranoid. 912 */ 913 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 914 unsigned long newpp, 915 unsigned long vpn, 916 int psize, int apsize, 917 int ssize, unsigned long inv_flags) 918 { 919 unsigned long lpar_rc; 920 unsigned long flags; 921 unsigned long want_v; 922 923 want_v = hpte_encode_avpn(vpn, psize, ssize); 924 925 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 926 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 927 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 928 /* Move pp0 into bit 8 (IBM 55) */ 929 flags |= (newpp & HPTE_R_PP0) >> 55; 930 931 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 932 want_v, slot, flags, psize); 933 934 lpar_rc = plpar_pte_protect(flags, slot, want_v); 935 936 if (lpar_rc == H_NOT_FOUND) { 937 pr_devel("not found !\n"); 938 return -1; 939 } 940 941 pr_devel("ok\n"); 942 943 BUG_ON(lpar_rc != H_SUCCESS); 944 945 return 0; 946 } 947 948 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 949 { 950 long lpar_rc; 951 unsigned long i, j; 952 struct { 953 unsigned long pteh; 954 unsigned long ptel; 955 } ptes[4]; 956 957 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 958 959 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 960 if (lpar_rc != H_SUCCESS) { 961 pr_info("Failed to read hash page table at %ld err %ld\n", 962 hpte_group, lpar_rc); 963 continue; 964 } 965 966 for (j = 0; j < 4; j++) { 967 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 968 (ptes[j].pteh & HPTE_V_VALID)) 969 return i + j; 970 } 971 } 972 973 return -1; 974 } 975 976 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 977 { 978 long slot; 979 unsigned long hash; 980 unsigned long want_v; 981 unsigned long hpte_group; 982 983 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 984 want_v = hpte_encode_avpn(vpn, psize, ssize); 985 986 /* 987 * We try to keep bolted entries always in primary hash 988 * But in some case we can find them in secondary too. 989 */ 990 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 991 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 992 if (slot < 0) { 993 /* Try in secondary */ 994 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 995 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 996 if (slot < 0) 997 return -1; 998 } 999 return hpte_group + slot; 1000 } 1001 1002 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1003 unsigned long ea, 1004 int psize, int ssize) 1005 { 1006 unsigned long vpn; 1007 unsigned long lpar_rc, slot, vsid, flags; 1008 1009 vsid = get_kernel_vsid(ea, ssize); 1010 vpn = hpt_vpn(ea, vsid, ssize); 1011 1012 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1013 BUG_ON(slot == -1); 1014 1015 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1016 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1017 /* Move pp0 into bit 8 (IBM 55) */ 1018 flags |= (newpp & HPTE_R_PP0) >> 55; 1019 1020 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1021 1022 lpar_rc = plpar_pte_protect(flags, slot, 0); 1023 1024 BUG_ON(lpar_rc != H_SUCCESS); 1025 } 1026 1027 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1028 int psize, int apsize, 1029 int ssize, int local) 1030 { 1031 unsigned long want_v; 1032 unsigned long lpar_rc; 1033 unsigned long dummy1, dummy2; 1034 1035 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1036 slot, vpn, psize, local); 1037 1038 want_v = hpte_encode_avpn(vpn, psize, ssize); 1039 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1040 if (lpar_rc == H_NOT_FOUND) 1041 return; 1042 1043 BUG_ON(lpar_rc != H_SUCCESS); 1044 } 1045 1046 1047 /* 1048 * As defined in the PAPR's section 14.5.4.1.8 1049 * The control mask doesn't include the returned reference and change bit from 1050 * the processed PTE. 1051 */ 1052 #define HBLKR_AVPN 0x0100000000000000UL 1053 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1054 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1055 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1056 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1057 1058 /* 1059 * Returned true if we are supporting this block size for the specified segment 1060 * base page size and actual page size. 1061 * 1062 * Currently, we only support 8 size block. 1063 */ 1064 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1065 { 1066 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1067 } 1068 1069 /** 1070 * H_BLOCK_REMOVE caller. 1071 * @idx should point to the latest @param entry set with a PTEX. 1072 * If PTE cannot be processed because another CPUs has already locked that 1073 * group, those entries are put back in @param starting at index 1. 1074 * If entries has to be retried and @retry_busy is set to true, these entries 1075 * are retried until success. If @retry_busy is set to false, the returned 1076 * is the number of entries yet to process. 1077 */ 1078 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1079 bool retry_busy) 1080 { 1081 unsigned long i, rc, new_idx; 1082 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1083 1084 if (idx < 2) { 1085 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1086 return 0; 1087 } 1088 again: 1089 new_idx = 0; 1090 if (idx > PLPAR_HCALL9_BUFSIZE) { 1091 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1092 idx = PLPAR_HCALL9_BUFSIZE; 1093 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1094 param[idx] = HBR_END; 1095 1096 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1097 param[0], /* AVA */ 1098 param[1], param[2], param[3], param[4], /* TS0-7 */ 1099 param[5], param[6], param[7], param[8]); 1100 if (rc == H_SUCCESS) 1101 return 0; 1102 1103 BUG_ON(rc != H_PARTIAL); 1104 1105 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1106 for (i = 0; i < idx-1; i++) { 1107 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1108 1109 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1110 param[++new_idx] = param[i+1]; 1111 continue; 1112 } 1113 1114 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1115 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1116 } 1117 1118 /* 1119 * If there were entries found busy, retry these entries if requested, 1120 * of if all the entries have to be retried. 1121 */ 1122 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1123 idx = new_idx + 1; 1124 goto again; 1125 } 1126 1127 return new_idx; 1128 } 1129 1130 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1131 /* 1132 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1133 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1134 */ 1135 #define PPC64_HUGE_HPTE_BATCH 12 1136 1137 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1138 int count, int psize, int ssize) 1139 { 1140 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1141 unsigned long shift, current_vpgb, vpgb; 1142 int i, pix = 0; 1143 1144 shift = mmu_psize_defs[psize].shift; 1145 1146 for (i = 0; i < count; i++) { 1147 /* 1148 * Shifting 3 bits more on the right to get a 1149 * 8 pages aligned virtual addresse. 1150 */ 1151 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1152 if (!pix || vpgb != current_vpgb) { 1153 /* 1154 * Need to start a new 8 pages block, flush 1155 * the current one if needed. 1156 */ 1157 if (pix) 1158 (void)call_block_remove(pix, param, true); 1159 current_vpgb = vpgb; 1160 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1161 pix = 1; 1162 } 1163 1164 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1165 if (pix == PLPAR_HCALL9_BUFSIZE) { 1166 pix = call_block_remove(pix, param, false); 1167 /* 1168 * pix = 0 means that all the entries were 1169 * removed, we can start a new block. 1170 * Otherwise, this means that there are entries 1171 * to retry, and pix points to latest one, so 1172 * we should increment it and try to continue 1173 * the same block. 1174 */ 1175 if (pix) 1176 pix++; 1177 } 1178 } 1179 if (pix) 1180 (void)call_block_remove(pix, param, true); 1181 } 1182 1183 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1184 int count, int psize, int ssize) 1185 { 1186 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1187 int i = 0, pix = 0, rc; 1188 1189 for (i = 0; i < count; i++) { 1190 1191 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1192 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1193 ssize, 0); 1194 } else { 1195 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1196 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1197 pix += 2; 1198 if (pix == 8) { 1199 rc = plpar_hcall9(H_BULK_REMOVE, param, 1200 param[0], param[1], param[2], 1201 param[3], param[4], param[5], 1202 param[6], param[7]); 1203 BUG_ON(rc != H_SUCCESS); 1204 pix = 0; 1205 } 1206 } 1207 } 1208 if (pix) { 1209 param[pix] = HBR_END; 1210 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1211 param[2], param[3], param[4], param[5], 1212 param[6], param[7]); 1213 BUG_ON(rc != H_SUCCESS); 1214 } 1215 } 1216 1217 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1218 unsigned long *vpn, 1219 int count, int psize, 1220 int ssize) 1221 { 1222 unsigned long flags = 0; 1223 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1224 1225 if (lock_tlbie) 1226 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1227 1228 /* Assuming THP size is 16M */ 1229 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1230 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1231 else 1232 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1233 1234 if (lock_tlbie) 1235 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1236 } 1237 1238 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1239 unsigned long addr, 1240 unsigned char *hpte_slot_array, 1241 int psize, int ssize, int local) 1242 { 1243 int i, index = 0; 1244 unsigned long s_addr = addr; 1245 unsigned int max_hpte_count, valid; 1246 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1247 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1248 unsigned long shift, hidx, vpn = 0, hash, slot; 1249 1250 shift = mmu_psize_defs[psize].shift; 1251 max_hpte_count = 1U << (PMD_SHIFT - shift); 1252 1253 for (i = 0; i < max_hpte_count; i++) { 1254 valid = hpte_valid(hpte_slot_array, i); 1255 if (!valid) 1256 continue; 1257 hidx = hpte_hash_index(hpte_slot_array, i); 1258 1259 /* get the vpn */ 1260 addr = s_addr + (i * (1ul << shift)); 1261 vpn = hpt_vpn(addr, vsid, ssize); 1262 hash = hpt_hash(vpn, shift, ssize); 1263 if (hidx & _PTEIDX_SECONDARY) 1264 hash = ~hash; 1265 1266 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1267 slot += hidx & _PTEIDX_GROUP_IX; 1268 1269 slot_array[index] = slot; 1270 vpn_array[index] = vpn; 1271 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1272 /* 1273 * Now do a bluk invalidate 1274 */ 1275 __pSeries_lpar_hugepage_invalidate(slot_array, 1276 vpn_array, 1277 PPC64_HUGE_HPTE_BATCH, 1278 psize, ssize); 1279 index = 0; 1280 } else 1281 index++; 1282 } 1283 if (index) 1284 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1285 index, psize, ssize); 1286 } 1287 #else 1288 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1289 unsigned long addr, 1290 unsigned char *hpte_slot_array, 1291 int psize, int ssize, int local) 1292 { 1293 WARN(1, "%s called without THP support\n", __func__); 1294 } 1295 #endif 1296 1297 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1298 int psize, int ssize) 1299 { 1300 unsigned long vpn; 1301 unsigned long slot, vsid; 1302 1303 vsid = get_kernel_vsid(ea, ssize); 1304 vpn = hpt_vpn(ea, vsid, ssize); 1305 1306 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1307 if (slot == -1) 1308 return -ENOENT; 1309 1310 /* 1311 * lpar doesn't use the passed actual page size 1312 */ 1313 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1314 return 0; 1315 } 1316 1317 1318 static inline unsigned long compute_slot(real_pte_t pte, 1319 unsigned long vpn, 1320 unsigned long index, 1321 unsigned long shift, 1322 int ssize) 1323 { 1324 unsigned long slot, hash, hidx; 1325 1326 hash = hpt_hash(vpn, shift, ssize); 1327 hidx = __rpte_to_hidx(pte, index); 1328 if (hidx & _PTEIDX_SECONDARY) 1329 hash = ~hash; 1330 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1331 slot += hidx & _PTEIDX_GROUP_IX; 1332 return slot; 1333 } 1334 1335 /** 1336 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1337 * "all within the same naturally aligned 8 page virtual address block". 1338 */ 1339 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1340 unsigned long *param) 1341 { 1342 unsigned long vpn; 1343 unsigned long i, pix = 0; 1344 unsigned long index, shift, slot, current_vpgb, vpgb; 1345 real_pte_t pte; 1346 int psize, ssize; 1347 1348 psize = batch->psize; 1349 ssize = batch->ssize; 1350 1351 for (i = 0; i < number; i++) { 1352 vpn = batch->vpn[i]; 1353 pte = batch->pte[i]; 1354 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1355 /* 1356 * Shifting 3 bits more on the right to get a 1357 * 8 pages aligned virtual addresse. 1358 */ 1359 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1360 if (!pix || vpgb != current_vpgb) { 1361 /* 1362 * Need to start a new 8 pages block, flush 1363 * the current one if needed. 1364 */ 1365 if (pix) 1366 (void)call_block_remove(pix, param, 1367 true); 1368 current_vpgb = vpgb; 1369 param[0] = hpte_encode_avpn(vpn, psize, 1370 ssize); 1371 pix = 1; 1372 } 1373 1374 slot = compute_slot(pte, vpn, index, shift, ssize); 1375 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1376 1377 if (pix == PLPAR_HCALL9_BUFSIZE) { 1378 pix = call_block_remove(pix, param, false); 1379 /* 1380 * pix = 0 means that all the entries were 1381 * removed, we can start a new block. 1382 * Otherwise, this means that there are entries 1383 * to retry, and pix points to latest one, so 1384 * we should increment it and try to continue 1385 * the same block. 1386 */ 1387 if (pix) 1388 pix++; 1389 } 1390 } pte_iterate_hashed_end(); 1391 } 1392 1393 if (pix) 1394 (void)call_block_remove(pix, param, true); 1395 } 1396 1397 /* 1398 * TLB Block Invalidate Characteristics 1399 * 1400 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1401 * is able to process for each couple segment base page size, actual page size. 1402 * 1403 * The ibm,get-system-parameter properties is returning a buffer with the 1404 * following layout: 1405 * 1406 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1407 * ----------------- 1408 * TLB Block Invalidate Specifiers: 1409 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1410 * [ 1 byte Number of page sizes (N) that are supported for the specified 1411 * TLB invalidate block size ] 1412 * [ 1 byte Encoded segment base page size and actual page size 1413 * MSB=0 means 4k segment base page size and actual page size 1414 * MSB=1 the penc value in mmu_psize_def ] 1415 * ... 1416 * ----------------- 1417 * Next TLB Block Invalidate Specifiers... 1418 * ----------------- 1419 * [ 0 ] 1420 */ 1421 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1422 unsigned int block_size) 1423 { 1424 if (block_size > hblkrm_size[bpsize][psize]) 1425 hblkrm_size[bpsize][psize] = block_size; 1426 } 1427 1428 /* 1429 * Decode the Encoded segment base page size and actual page size. 1430 * PAPR specifies: 1431 * - bit 7 is the L bit 1432 * - bits 0-5 are the penc value 1433 * If the L bit is 0, this means 4K segment base page size and actual page size 1434 * otherwise the penc value should be read. 1435 */ 1436 #define HBLKRM_L_MASK 0x80 1437 #define HBLKRM_PENC_MASK 0x3f 1438 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1439 unsigned int block_size) 1440 { 1441 unsigned int bpsize, psize; 1442 1443 /* First, check the L bit, if not set, this means 4K */ 1444 if ((lp & HBLKRM_L_MASK) == 0) { 1445 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1446 return; 1447 } 1448 1449 lp &= HBLKRM_PENC_MASK; 1450 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1451 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1452 1453 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1454 if (def->penc[psize] == lp) { 1455 set_hblkrm_bloc_size(bpsize, psize, block_size); 1456 return; 1457 } 1458 } 1459 } 1460 } 1461 1462 #define SPLPAR_TLB_BIC_TOKEN 50 1463 1464 /* 1465 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1466 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1467 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1468 * (128 bytes) for the buffer to get plenty of space. 1469 */ 1470 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1471 1472 void __init pseries_lpar_read_hblkrm_characteristics(void) 1473 { 1474 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1475 int call_status, len, idx, bpsize; 1476 1477 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1478 return; 1479 1480 spin_lock(&rtas_data_buf_lock); 1481 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1482 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1483 NULL, 1484 SPLPAR_TLB_BIC_TOKEN, 1485 __pa(rtas_data_buf), 1486 RTAS_DATA_BUF_SIZE); 1487 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1488 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1489 spin_unlock(&rtas_data_buf_lock); 1490 1491 if (call_status != 0) { 1492 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1493 __FILE__, __func__, call_status); 1494 return; 1495 } 1496 1497 /* 1498 * The first two (2) bytes of the data in the buffer are the length of 1499 * the returned data, not counting these first two (2) bytes. 1500 */ 1501 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1502 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1503 pr_warn("%s too large returned buffer %d", __func__, len); 1504 return; 1505 } 1506 1507 idx = 2; 1508 while (idx < len) { 1509 u8 block_shift = local_buffer[idx++]; 1510 u32 block_size; 1511 unsigned int npsize; 1512 1513 if (!block_shift) 1514 break; 1515 1516 block_size = 1 << block_shift; 1517 1518 for (npsize = local_buffer[idx++]; 1519 npsize > 0 && idx < len; npsize--) 1520 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1521 block_size); 1522 } 1523 1524 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1525 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1526 if (hblkrm_size[bpsize][idx]) 1527 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1528 bpsize, idx, hblkrm_size[bpsize][idx]); 1529 } 1530 1531 /* 1532 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1533 * lock. 1534 */ 1535 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1536 { 1537 unsigned long vpn; 1538 unsigned long i, pix, rc; 1539 unsigned long flags = 0; 1540 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1541 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1542 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1543 unsigned long index, shift, slot; 1544 real_pte_t pte; 1545 int psize, ssize; 1546 1547 if (lock_tlbie) 1548 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1549 1550 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1551 do_block_remove(number, batch, param); 1552 goto out; 1553 } 1554 1555 psize = batch->psize; 1556 ssize = batch->ssize; 1557 pix = 0; 1558 for (i = 0; i < number; i++) { 1559 vpn = batch->vpn[i]; 1560 pte = batch->pte[i]; 1561 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1562 slot = compute_slot(pte, vpn, index, shift, ssize); 1563 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1564 /* 1565 * lpar doesn't use the passed actual page size 1566 */ 1567 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1568 0, ssize, local); 1569 } else { 1570 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1571 param[pix+1] = hpte_encode_avpn(vpn, psize, 1572 ssize); 1573 pix += 2; 1574 if (pix == 8) { 1575 rc = plpar_hcall9(H_BULK_REMOVE, param, 1576 param[0], param[1], param[2], 1577 param[3], param[4], param[5], 1578 param[6], param[7]); 1579 BUG_ON(rc != H_SUCCESS); 1580 pix = 0; 1581 } 1582 } 1583 } pte_iterate_hashed_end(); 1584 } 1585 if (pix) { 1586 param[pix] = HBR_END; 1587 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1588 param[2], param[3], param[4], param[5], 1589 param[6], param[7]); 1590 BUG_ON(rc != H_SUCCESS); 1591 } 1592 1593 out: 1594 if (lock_tlbie) 1595 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1596 } 1597 1598 static int __init disable_bulk_remove(char *str) 1599 { 1600 if (strcmp(str, "off") == 0 && 1601 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1602 pr_info("Disabling BULK_REMOVE firmware feature"); 1603 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1604 } 1605 return 1; 1606 } 1607 1608 __setup("bulk_remove=", disable_bulk_remove); 1609 1610 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1611 1612 struct hpt_resize_state { 1613 unsigned long shift; 1614 int commit_rc; 1615 }; 1616 1617 static int pseries_lpar_resize_hpt_commit(void *data) 1618 { 1619 struct hpt_resize_state *state = data; 1620 1621 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1622 if (state->commit_rc != H_SUCCESS) 1623 return -EIO; 1624 1625 /* Hypervisor has transitioned the HTAB, update our globals */ 1626 ppc64_pft_size = state->shift; 1627 htab_size_bytes = 1UL << ppc64_pft_size; 1628 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1629 1630 return 0; 1631 } 1632 1633 /* 1634 * Must be called in process context. The caller must hold the 1635 * cpus_lock. 1636 */ 1637 static int pseries_lpar_resize_hpt(unsigned long shift) 1638 { 1639 struct hpt_resize_state state = { 1640 .shift = shift, 1641 .commit_rc = H_FUNCTION, 1642 }; 1643 unsigned int delay, total_delay = 0; 1644 int rc; 1645 ktime_t t0, t1, t2; 1646 1647 might_sleep(); 1648 1649 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1650 return -ENODEV; 1651 1652 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1653 1654 t0 = ktime_get(); 1655 1656 rc = plpar_resize_hpt_prepare(0, shift); 1657 while (H_IS_LONG_BUSY(rc)) { 1658 delay = get_longbusy_msecs(rc); 1659 total_delay += delay; 1660 if (total_delay > HPT_RESIZE_TIMEOUT) { 1661 /* prepare with shift==0 cancels an in-progress resize */ 1662 rc = plpar_resize_hpt_prepare(0, 0); 1663 if (rc != H_SUCCESS) 1664 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1665 rc); 1666 return -ETIMEDOUT; 1667 } 1668 msleep(delay); 1669 rc = plpar_resize_hpt_prepare(0, shift); 1670 } 1671 1672 switch (rc) { 1673 case H_SUCCESS: 1674 /* Continue on */ 1675 break; 1676 1677 case H_PARAMETER: 1678 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1679 return -EINVAL; 1680 case H_RESOURCE: 1681 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1682 return -EPERM; 1683 default: 1684 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1685 return -EIO; 1686 } 1687 1688 t1 = ktime_get(); 1689 1690 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1691 &state, NULL); 1692 1693 t2 = ktime_get(); 1694 1695 if (rc != 0) { 1696 switch (state.commit_rc) { 1697 case H_PTEG_FULL: 1698 return -ENOSPC; 1699 1700 default: 1701 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1702 state.commit_rc); 1703 return -EIO; 1704 }; 1705 } 1706 1707 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1708 shift, (long long) ktime_ms_delta(t1, t0), 1709 (long long) ktime_ms_delta(t2, t1)); 1710 1711 return 0; 1712 } 1713 1714 void __init hpte_init_pseries(void) 1715 { 1716 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1717 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1718 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1719 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1720 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1721 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1722 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1723 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1724 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1725 1726 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1727 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1728 1729 /* 1730 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1731 * to inform the hypervisor that we wish to use the HPT. 1732 */ 1733 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1734 pseries_lpar_register_process_table(0, 0, 0); 1735 } 1736 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1737 1738 #ifdef CONFIG_PPC_RADIX_MMU 1739 void __init radix_init_pseries(void) 1740 { 1741 pr_info("Using radix MMU under hypervisor\n"); 1742 1743 pseries_lpar_register_process_table(__pa(process_tb), 1744 0, PRTB_SIZE_SHIFT - 12); 1745 } 1746 #endif 1747 1748 #ifdef CONFIG_PPC_SMLPAR 1749 #define CMO_FREE_HINT_DEFAULT 1 1750 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1751 1752 static int __init cmo_free_hint(char *str) 1753 { 1754 char *parm; 1755 parm = strstrip(str); 1756 1757 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1758 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1759 cmo_free_hint_flag = 0; 1760 return 1; 1761 } 1762 1763 cmo_free_hint_flag = 1; 1764 pr_info("%s: CMO free page hinting is active.\n", __func__); 1765 1766 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1767 return 1; 1768 1769 return 0; 1770 } 1771 1772 __setup("cmo_free_hint=", cmo_free_hint); 1773 1774 static void pSeries_set_page_state(struct page *page, int order, 1775 unsigned long state) 1776 { 1777 int i, j; 1778 unsigned long cmo_page_sz, addr; 1779 1780 cmo_page_sz = cmo_get_page_size(); 1781 addr = __pa((unsigned long)page_address(page)); 1782 1783 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1784 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1785 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1786 } 1787 } 1788 1789 void arch_free_page(struct page *page, int order) 1790 { 1791 if (radix_enabled()) 1792 return; 1793 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1794 return; 1795 1796 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1797 } 1798 EXPORT_SYMBOL(arch_free_page); 1799 1800 #endif /* CONFIG_PPC_SMLPAR */ 1801 #endif /* CONFIG_PPC_BOOK3S_64 */ 1802 1803 #ifdef CONFIG_TRACEPOINTS 1804 #ifdef CONFIG_JUMP_LABEL 1805 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1806 1807 int hcall_tracepoint_regfunc(void) 1808 { 1809 static_key_slow_inc(&hcall_tracepoint_key); 1810 return 0; 1811 } 1812 1813 void hcall_tracepoint_unregfunc(void) 1814 { 1815 static_key_slow_dec(&hcall_tracepoint_key); 1816 } 1817 #else 1818 /* 1819 * We optimise our hcall path by placing hcall_tracepoint_refcount 1820 * directly in the TOC so we can check if the hcall tracepoints are 1821 * enabled via a single load. 1822 */ 1823 1824 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1825 extern long hcall_tracepoint_refcount; 1826 1827 int hcall_tracepoint_regfunc(void) 1828 { 1829 hcall_tracepoint_refcount++; 1830 return 0; 1831 } 1832 1833 void hcall_tracepoint_unregfunc(void) 1834 { 1835 hcall_tracepoint_refcount--; 1836 } 1837 #endif 1838 1839 /* 1840 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1841 * detected because it may indicate a problem. This will not catch all 1842 * problems with tracing code making hcalls, because the tracing might have 1843 * been invoked from a non-hcall, so the first hcall could recurse into it 1844 * without warning here, but this better than nothing. 1845 * 1846 * Hcalls with specific problems being traced should use the _notrace 1847 * plpar_hcall variants. 1848 */ 1849 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1850 1851 1852 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1853 { 1854 unsigned long flags; 1855 unsigned int *depth; 1856 1857 local_irq_save(flags); 1858 1859 depth = this_cpu_ptr(&hcall_trace_depth); 1860 1861 if (WARN_ON_ONCE(*depth)) 1862 goto out; 1863 1864 (*depth)++; 1865 preempt_disable(); 1866 trace_hcall_entry(opcode, args); 1867 (*depth)--; 1868 1869 out: 1870 local_irq_restore(flags); 1871 } 1872 1873 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1874 { 1875 unsigned long flags; 1876 unsigned int *depth; 1877 1878 local_irq_save(flags); 1879 1880 depth = this_cpu_ptr(&hcall_trace_depth); 1881 1882 if (*depth) /* Don't warn again on the way out */ 1883 goto out; 1884 1885 (*depth)++; 1886 trace_hcall_exit(opcode, retval, retbuf); 1887 preempt_enable(); 1888 (*depth)--; 1889 1890 out: 1891 local_irq_restore(flags); 1892 } 1893 #endif 1894 1895 /** 1896 * h_get_mpp 1897 * H_GET_MPP hcall returns info in 7 parms 1898 */ 1899 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1900 { 1901 int rc; 1902 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1903 1904 rc = plpar_hcall9(H_GET_MPP, retbuf); 1905 1906 mpp_data->entitled_mem = retbuf[0]; 1907 mpp_data->mapped_mem = retbuf[1]; 1908 1909 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1910 mpp_data->pool_num = retbuf[2] & 0xffff; 1911 1912 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1913 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1914 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1915 1916 mpp_data->pool_size = retbuf[4]; 1917 mpp_data->loan_request = retbuf[5]; 1918 mpp_data->backing_mem = retbuf[6]; 1919 1920 return rc; 1921 } 1922 EXPORT_SYMBOL(h_get_mpp); 1923 1924 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1925 { 1926 int rc; 1927 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1928 1929 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1930 1931 mpp_x_data->coalesced_bytes = retbuf[0]; 1932 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1933 mpp_x_data->pool_purr_cycles = retbuf[2]; 1934 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1935 1936 return rc; 1937 } 1938 1939 #ifdef CONFIG_PPC_64S_HASH_MMU 1940 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1941 { 1942 unsigned long protovsid; 1943 unsigned long va_bits = VA_BITS; 1944 unsigned long modinv, vsid_modulus; 1945 unsigned long max_mod_inv, tmp_modinv; 1946 1947 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1948 va_bits = 65; 1949 1950 if (ssize == MMU_SEGSIZE_256M) { 1951 modinv = VSID_MULINV_256M; 1952 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1953 } else { 1954 modinv = VSID_MULINV_1T; 1955 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1956 } 1957 1958 /* 1959 * vsid outside our range. 1960 */ 1961 if (vsid >= vsid_modulus) 1962 return 0; 1963 1964 /* 1965 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1966 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1967 * protovsid = (vsid * modinv) % vsid_modulus 1968 */ 1969 1970 /* Check if (vsid * modinv) overflow (63 bits) */ 1971 max_mod_inv = 0x7fffffffffffffffull / vsid; 1972 if (modinv < max_mod_inv) 1973 return (vsid * modinv) % vsid_modulus; 1974 1975 tmp_modinv = modinv/max_mod_inv; 1976 modinv %= max_mod_inv; 1977 1978 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1979 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1980 1981 return protovsid; 1982 } 1983 1984 static int __init reserve_vrma_context_id(void) 1985 { 1986 unsigned long protovsid; 1987 1988 /* 1989 * Reserve context ids which map to reserved virtual addresses. For now 1990 * we only reserve the context id which maps to the VRMA VSID. We ignore 1991 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1992 * enable adjunct support via the "ibm,client-architecture-support" 1993 * interface. 1994 */ 1995 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1996 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1997 return 0; 1998 } 1999 machine_device_initcall(pseries, reserve_vrma_context_id); 2000 #endif 2001 2002 #ifdef CONFIG_DEBUG_FS 2003 /* debugfs file interface for vpa data */ 2004 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 2005 loff_t *pos) 2006 { 2007 int cpu = (long)filp->private_data; 2008 struct lppaca *lppaca = &lppaca_of(cpu); 2009 2010 return simple_read_from_buffer(buf, len, pos, lppaca, 2011 sizeof(struct lppaca)); 2012 } 2013 2014 static const struct file_operations vpa_fops = { 2015 .open = simple_open, 2016 .read = vpa_file_read, 2017 .llseek = default_llseek, 2018 }; 2019 2020 static int __init vpa_debugfs_init(void) 2021 { 2022 char name[16]; 2023 long i; 2024 struct dentry *vpa_dir; 2025 2026 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2027 return 0; 2028 2029 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2030 2031 /* set up the per-cpu vpa file*/ 2032 for_each_possible_cpu(i) { 2033 sprintf(name, "cpu-%ld", i); 2034 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2035 } 2036 2037 return 0; 2038 } 2039 machine_arch_initcall(pseries, vpa_debugfs_init); 2040 #endif /* CONFIG_DEBUG_FS */ 2041