1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <asm/processor.h> 25 #include <asm/mmu.h> 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/machdep.h> 29 #include <asm/mmu_context.h> 30 #include <asm/iommu.h> 31 #include <asm/tlb.h> 32 #include <asm/prom.h> 33 #include <asm/cputable.h> 34 #include <asm/udbg.h> 35 #include <asm/smp.h> 36 #include <asm/trace.h> 37 #include <asm/firmware.h> 38 #include <asm/plpar_wrappers.h> 39 #include <asm/kexec.h> 40 #include <asm/fadump.h> 41 #include <asm/asm-prototypes.h> 42 #include <asm/debugfs.h> 43 44 #include "pseries.h" 45 46 /* Flag bits for H_BULK_REMOVE */ 47 #define HBR_REQUEST 0x4000000000000000UL 48 #define HBR_RESPONSE 0x8000000000000000UL 49 #define HBR_END 0xc000000000000000UL 50 #define HBR_AVPN 0x0200000000000000UL 51 #define HBR_ANDCOND 0x0100000000000000UL 52 53 54 /* in hvCall.S */ 55 EXPORT_SYMBOL(plpar_hcall); 56 EXPORT_SYMBOL(plpar_hcall9); 57 EXPORT_SYMBOL(plpar_hcall_norets); 58 59 /* 60 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 61 * page size is that page size. 62 * 63 * The first index is the segment base page size, the second one is the actual 64 * page size. 65 */ 66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 67 68 /* 69 * Due to the involved complexity, and that the current hypervisor is only 70 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 71 * buffer size to 8 size block. 72 */ 73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 74 75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 76 static u8 dtl_mask = DTL_LOG_PREEMPT; 77 #else 78 static u8 dtl_mask; 79 #endif 80 81 void alloc_dtl_buffers(unsigned long *time_limit) 82 { 83 int cpu; 84 struct paca_struct *pp; 85 struct dtl_entry *dtl; 86 87 for_each_possible_cpu(cpu) { 88 pp = paca_ptrs[cpu]; 89 if (pp->dispatch_log) 90 continue; 91 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 92 if (!dtl) { 93 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 94 cpu); 95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 96 pr_warn("Stolen time statistics will be unreliable\n"); 97 #endif 98 break; 99 } 100 101 pp->dtl_ridx = 0; 102 pp->dispatch_log = dtl; 103 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 104 pp->dtl_curr = dtl; 105 106 if (time_limit && time_after(jiffies, *time_limit)) { 107 cond_resched(); 108 *time_limit = jiffies + HZ; 109 } 110 } 111 } 112 113 void register_dtl_buffer(int cpu) 114 { 115 long ret; 116 struct paca_struct *pp; 117 struct dtl_entry *dtl; 118 int hwcpu = get_hard_smp_processor_id(cpu); 119 120 pp = paca_ptrs[cpu]; 121 dtl = pp->dispatch_log; 122 if (dtl && dtl_mask) { 123 pp->dtl_ridx = 0; 124 pp->dtl_curr = dtl; 125 lppaca_of(cpu).dtl_idx = 0; 126 127 /* hypervisor reads buffer length from this field */ 128 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 129 ret = register_dtl(hwcpu, __pa(dtl)); 130 if (ret) 131 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 132 cpu, hwcpu, ret); 133 134 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 135 } 136 } 137 138 #ifdef CONFIG_PPC_SPLPAR 139 struct dtl_worker { 140 struct delayed_work work; 141 int cpu; 142 }; 143 144 struct vcpu_dispatch_data { 145 int last_disp_cpu; 146 147 int total_disp; 148 149 int same_cpu_disp; 150 int same_chip_disp; 151 int diff_chip_disp; 152 int far_chip_disp; 153 154 int numa_home_disp; 155 int numa_remote_disp; 156 int numa_far_disp; 157 }; 158 159 /* 160 * This represents the number of cpus in the hypervisor. Since there is no 161 * architected way to discover the number of processors in the host, we 162 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 163 * is sufficient for our purposes. This will need to be tweaked if 164 * CONFIG_NR_CPUS is changed. 165 */ 166 #define NR_CPUS_H NR_CPUS 167 168 DEFINE_RWLOCK(dtl_access_lock); 169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 170 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 172 static enum cpuhp_state dtl_worker_state; 173 static DEFINE_MUTEX(dtl_enable_mutex); 174 static int vcpudispatch_stats_on __read_mostly; 175 static int vcpudispatch_stats_freq = 50; 176 static __be32 *vcpu_associativity, *pcpu_associativity; 177 178 179 static void free_dtl_buffers(unsigned long *time_limit) 180 { 181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 182 int cpu; 183 struct paca_struct *pp; 184 185 for_each_possible_cpu(cpu) { 186 pp = paca_ptrs[cpu]; 187 if (!pp->dispatch_log) 188 continue; 189 kmem_cache_free(dtl_cache, pp->dispatch_log); 190 pp->dtl_ridx = 0; 191 pp->dispatch_log = 0; 192 pp->dispatch_log_end = 0; 193 pp->dtl_curr = 0; 194 195 if (time_limit && time_after(jiffies, *time_limit)) { 196 cond_resched(); 197 *time_limit = jiffies + HZ; 198 } 199 } 200 #endif 201 } 202 203 static int init_cpu_associativity(void) 204 { 205 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 206 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 207 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 209 210 if (!vcpu_associativity || !pcpu_associativity) { 211 pr_err("error allocating memory for associativity information\n"); 212 return -ENOMEM; 213 } 214 215 return 0; 216 } 217 218 static void destroy_cpu_associativity(void) 219 { 220 kfree(vcpu_associativity); 221 kfree(pcpu_associativity); 222 vcpu_associativity = pcpu_associativity = 0; 223 } 224 225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 226 { 227 __be32 *assoc; 228 int rc = 0; 229 230 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 231 if (!assoc[0]) { 232 rc = hcall_vphn(cpu, flag, &assoc[0]); 233 if (rc) 234 return NULL; 235 } 236 237 return assoc; 238 } 239 240 static __be32 *get_pcpu_associativity(int cpu) 241 { 242 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 243 } 244 245 static __be32 *get_vcpu_associativity(int cpu) 246 { 247 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 248 } 249 250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 251 { 252 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 253 254 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 255 return -EINVAL; 256 257 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 258 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 259 260 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 261 return -EIO; 262 263 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 264 } 265 266 static int cpu_home_node_dispatch_distance(int disp_cpu) 267 { 268 __be32 *disp_cpu_assoc, *vcpu_assoc; 269 int vcpu_id = smp_processor_id(); 270 271 if (disp_cpu >= NR_CPUS_H) { 272 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 273 disp_cpu, NR_CPUS_H); 274 return -EINVAL; 275 } 276 277 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 278 vcpu_assoc = get_vcpu_associativity(vcpu_id); 279 280 if (!disp_cpu_assoc || !vcpu_assoc) 281 return -EIO; 282 283 return cpu_distance(disp_cpu_assoc, vcpu_assoc); 284 } 285 286 static void update_vcpu_disp_stat(int disp_cpu) 287 { 288 struct vcpu_dispatch_data *disp; 289 int distance; 290 291 disp = this_cpu_ptr(&vcpu_disp_data); 292 if (disp->last_disp_cpu == -1) { 293 disp->last_disp_cpu = disp_cpu; 294 return; 295 } 296 297 disp->total_disp++; 298 299 if (disp->last_disp_cpu == disp_cpu || 300 (cpu_first_thread_sibling(disp->last_disp_cpu) == 301 cpu_first_thread_sibling(disp_cpu))) 302 disp->same_cpu_disp++; 303 else { 304 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 305 disp_cpu); 306 if (distance < 0) 307 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 308 smp_processor_id()); 309 else { 310 switch (distance) { 311 case 0: 312 disp->same_chip_disp++; 313 break; 314 case 1: 315 disp->diff_chip_disp++; 316 break; 317 case 2: 318 disp->far_chip_disp++; 319 break; 320 default: 321 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 322 smp_processor_id(), 323 disp->last_disp_cpu, 324 disp_cpu, 325 distance); 326 } 327 } 328 } 329 330 distance = cpu_home_node_dispatch_distance(disp_cpu); 331 if (distance < 0) 332 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 333 smp_processor_id()); 334 else { 335 switch (distance) { 336 case 0: 337 disp->numa_home_disp++; 338 break; 339 case 1: 340 disp->numa_remote_disp++; 341 break; 342 case 2: 343 disp->numa_far_disp++; 344 break; 345 default: 346 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 347 smp_processor_id(), 348 disp_cpu, 349 distance); 350 } 351 } 352 353 disp->last_disp_cpu = disp_cpu; 354 } 355 356 static void process_dtl_buffer(struct work_struct *work) 357 { 358 struct dtl_entry dtle; 359 u64 i = __this_cpu_read(dtl_entry_ridx); 360 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 361 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 362 struct lppaca *vpa = local_paca->lppaca_ptr; 363 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 364 365 if (!local_paca->dispatch_log) 366 return; 367 368 /* if we have been migrated away, we cancel ourself */ 369 if (d->cpu != smp_processor_id()) { 370 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 371 smp_processor_id()); 372 return; 373 } 374 375 if (i == be64_to_cpu(vpa->dtl_idx)) 376 goto out; 377 378 while (i < be64_to_cpu(vpa->dtl_idx)) { 379 dtle = *dtl; 380 barrier(); 381 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 382 /* buffer has overflowed */ 383 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 384 d->cpu, 385 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 386 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 387 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 388 continue; 389 } 390 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 391 ++i; 392 ++dtl; 393 if (dtl == dtl_end) 394 dtl = local_paca->dispatch_log; 395 } 396 397 __this_cpu_write(dtl_entry_ridx, i); 398 399 out: 400 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 401 HZ / vcpudispatch_stats_freq); 402 } 403 404 static int dtl_worker_online(unsigned int cpu) 405 { 406 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 407 408 memset(d, 0, sizeof(*d)); 409 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 410 d->cpu = cpu; 411 412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 413 per_cpu(dtl_entry_ridx, cpu) = 0; 414 register_dtl_buffer(cpu); 415 #else 416 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 417 #endif 418 419 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 420 return 0; 421 } 422 423 static int dtl_worker_offline(unsigned int cpu) 424 { 425 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 426 427 cancel_delayed_work_sync(&d->work); 428 429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 430 unregister_dtl(get_hard_smp_processor_id(cpu)); 431 #endif 432 433 return 0; 434 } 435 436 static void set_global_dtl_mask(u8 mask) 437 { 438 int cpu; 439 440 dtl_mask = mask; 441 for_each_present_cpu(cpu) 442 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 443 } 444 445 static void reset_global_dtl_mask(void) 446 { 447 int cpu; 448 449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 450 dtl_mask = DTL_LOG_PREEMPT; 451 #else 452 dtl_mask = 0; 453 #endif 454 for_each_present_cpu(cpu) 455 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 456 } 457 458 static int dtl_worker_enable(unsigned long *time_limit) 459 { 460 int rc = 0, state; 461 462 if (!write_trylock(&dtl_access_lock)) { 463 rc = -EBUSY; 464 goto out; 465 } 466 467 set_global_dtl_mask(DTL_LOG_ALL); 468 469 /* Setup dtl buffers and register those */ 470 alloc_dtl_buffers(time_limit); 471 472 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 473 dtl_worker_online, dtl_worker_offline); 474 if (state < 0) { 475 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 476 free_dtl_buffers(time_limit); 477 reset_global_dtl_mask(); 478 write_unlock(&dtl_access_lock); 479 rc = -EINVAL; 480 goto out; 481 } 482 dtl_worker_state = state; 483 484 out: 485 return rc; 486 } 487 488 static void dtl_worker_disable(unsigned long *time_limit) 489 { 490 cpuhp_remove_state(dtl_worker_state); 491 free_dtl_buffers(time_limit); 492 reset_global_dtl_mask(); 493 write_unlock(&dtl_access_lock); 494 } 495 496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 497 size_t count, loff_t *ppos) 498 { 499 unsigned long time_limit = jiffies + HZ; 500 struct vcpu_dispatch_data *disp; 501 int rc, cmd, cpu; 502 char buf[16]; 503 504 if (count > 15) 505 return -EINVAL; 506 507 if (copy_from_user(buf, p, count)) 508 return -EFAULT; 509 510 buf[count] = 0; 511 rc = kstrtoint(buf, 0, &cmd); 512 if (rc || cmd < 0 || cmd > 1) { 513 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 514 return rc ? rc : -EINVAL; 515 } 516 517 mutex_lock(&dtl_enable_mutex); 518 519 if ((cmd == 0 && !vcpudispatch_stats_on) || 520 (cmd == 1 && vcpudispatch_stats_on)) 521 goto out; 522 523 if (cmd) { 524 rc = init_cpu_associativity(); 525 if (rc) 526 goto out; 527 528 for_each_possible_cpu(cpu) { 529 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 530 memset(disp, 0, sizeof(*disp)); 531 disp->last_disp_cpu = -1; 532 } 533 534 rc = dtl_worker_enable(&time_limit); 535 if (rc) { 536 destroy_cpu_associativity(); 537 goto out; 538 } 539 } else { 540 dtl_worker_disable(&time_limit); 541 destroy_cpu_associativity(); 542 } 543 544 vcpudispatch_stats_on = cmd; 545 546 out: 547 mutex_unlock(&dtl_enable_mutex); 548 if (rc) 549 return rc; 550 return count; 551 } 552 553 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 554 { 555 int cpu; 556 struct vcpu_dispatch_data *disp; 557 558 if (!vcpudispatch_stats_on) { 559 seq_puts(p, "off\n"); 560 return 0; 561 } 562 563 for_each_online_cpu(cpu) { 564 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 565 seq_printf(p, "cpu%d", cpu); 566 seq_put_decimal_ull(p, " ", disp->total_disp); 567 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 568 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 569 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 570 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 571 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 572 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 573 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 574 seq_puts(p, "\n"); 575 } 576 577 return 0; 578 } 579 580 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 581 { 582 return single_open(file, vcpudispatch_stats_display, NULL); 583 } 584 585 static const struct file_operations vcpudispatch_stats_proc_ops = { 586 .open = vcpudispatch_stats_open, 587 .read = seq_read, 588 .write = vcpudispatch_stats_write, 589 .llseek = seq_lseek, 590 .release = single_release, 591 }; 592 593 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 594 const char __user *p, size_t count, loff_t *ppos) 595 { 596 int rc, freq; 597 char buf[16]; 598 599 if (count > 15) 600 return -EINVAL; 601 602 if (copy_from_user(buf, p, count)) 603 return -EFAULT; 604 605 buf[count] = 0; 606 rc = kstrtoint(buf, 0, &freq); 607 if (rc || freq < 1 || freq > HZ) { 608 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 609 HZ); 610 return rc ? rc : -EINVAL; 611 } 612 613 vcpudispatch_stats_freq = freq; 614 615 return count; 616 } 617 618 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 619 { 620 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 621 return 0; 622 } 623 624 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 625 { 626 return single_open(file, vcpudispatch_stats_freq_display, NULL); 627 } 628 629 static const struct file_operations vcpudispatch_stats_freq_proc_ops = { 630 .open = vcpudispatch_stats_freq_open, 631 .read = seq_read, 632 .write = vcpudispatch_stats_freq_write, 633 .llseek = seq_lseek, 634 .release = single_release, 635 }; 636 637 static int __init vcpudispatch_stats_procfs_init(void) 638 { 639 if (!lppaca_shared_proc(get_lppaca())) 640 return 0; 641 642 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 643 &vcpudispatch_stats_proc_ops)) 644 pr_err("vcpudispatch_stats: error creating procfs file\n"); 645 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 646 &vcpudispatch_stats_freq_proc_ops)) 647 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 648 649 return 0; 650 } 651 652 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 653 #endif /* CONFIG_PPC_SPLPAR */ 654 655 void vpa_init(int cpu) 656 { 657 int hwcpu = get_hard_smp_processor_id(cpu); 658 unsigned long addr; 659 long ret; 660 661 /* 662 * The spec says it "may be problematic" if CPU x registers the VPA of 663 * CPU y. We should never do that, but wail if we ever do. 664 */ 665 WARN_ON(cpu != smp_processor_id()); 666 667 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 668 lppaca_of(cpu).vmxregs_in_use = 1; 669 670 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 671 lppaca_of(cpu).ebb_regs_in_use = 1; 672 673 addr = __pa(&lppaca_of(cpu)); 674 ret = register_vpa(hwcpu, addr); 675 676 if (ret) { 677 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 678 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 679 return; 680 } 681 682 #ifdef CONFIG_PPC_BOOK3S_64 683 /* 684 * PAPR says this feature is SLB-Buffer but firmware never 685 * reports that. All SPLPAR support SLB shadow buffer. 686 */ 687 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 688 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 689 ret = register_slb_shadow(hwcpu, addr); 690 if (ret) 691 pr_err("WARNING: SLB shadow buffer registration for " 692 "cpu %d (hw %d) of area %lx failed with %ld\n", 693 cpu, hwcpu, addr, ret); 694 } 695 #endif /* CONFIG_PPC_BOOK3S_64 */ 696 697 /* 698 * Register dispatch trace log, if one has been allocated. 699 */ 700 register_dtl_buffer(cpu); 701 } 702 703 #ifdef CONFIG_PPC_BOOK3S_64 704 705 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 706 unsigned long vpn, unsigned long pa, 707 unsigned long rflags, unsigned long vflags, 708 int psize, int apsize, int ssize) 709 { 710 unsigned long lpar_rc; 711 unsigned long flags; 712 unsigned long slot; 713 unsigned long hpte_v, hpte_r; 714 715 if (!(vflags & HPTE_V_BOLTED)) 716 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 717 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 718 hpte_group, vpn, pa, rflags, vflags, psize); 719 720 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 721 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 722 723 if (!(vflags & HPTE_V_BOLTED)) 724 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 725 726 /* Now fill in the actual HPTE */ 727 /* Set CEC cookie to 0 */ 728 /* Zero page = 0 */ 729 /* I-cache Invalidate = 0 */ 730 /* I-cache synchronize = 0 */ 731 /* Exact = 0 */ 732 flags = 0; 733 734 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 735 flags |= H_COALESCE_CAND; 736 737 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 738 if (unlikely(lpar_rc == H_PTEG_FULL)) { 739 pr_devel("Hash table group is full\n"); 740 return -1; 741 } 742 743 /* 744 * Since we try and ioremap PHBs we don't own, the pte insert 745 * will fail. However we must catch the failure in hash_page 746 * or we will loop forever, so return -2 in this case. 747 */ 748 if (unlikely(lpar_rc != H_SUCCESS)) { 749 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 750 return -2; 751 } 752 if (!(vflags & HPTE_V_BOLTED)) 753 pr_devel(" -> slot: %lu\n", slot & 7); 754 755 /* Because of iSeries, we have to pass down the secondary 756 * bucket bit here as well 757 */ 758 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 759 } 760 761 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 762 763 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 764 { 765 unsigned long slot_offset; 766 unsigned long lpar_rc; 767 int i; 768 unsigned long dummy1, dummy2; 769 770 /* pick a random slot to start at */ 771 slot_offset = mftb() & 0x7; 772 773 for (i = 0; i < HPTES_PER_GROUP; i++) { 774 775 /* don't remove a bolted entry */ 776 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 777 HPTE_V_BOLTED, &dummy1, &dummy2); 778 if (lpar_rc == H_SUCCESS) 779 return i; 780 781 /* 782 * The test for adjunct partition is performed before the 783 * ANDCOND test. H_RESOURCE may be returned, so we need to 784 * check for that as well. 785 */ 786 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 787 788 slot_offset++; 789 slot_offset &= 0x7; 790 } 791 792 return -1; 793 } 794 795 static void manual_hpte_clear_all(void) 796 { 797 unsigned long size_bytes = 1UL << ppc64_pft_size; 798 unsigned long hpte_count = size_bytes >> 4; 799 struct { 800 unsigned long pteh; 801 unsigned long ptel; 802 } ptes[4]; 803 long lpar_rc; 804 unsigned long i, j; 805 806 /* Read in batches of 4, 807 * invalidate only valid entries not in the VRMA 808 * hpte_count will be a multiple of 4 809 */ 810 for (i = 0; i < hpte_count; i += 4) { 811 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 812 if (lpar_rc != H_SUCCESS) { 813 pr_info("Failed to read hash page table at %ld err %ld\n", 814 i, lpar_rc); 815 continue; 816 } 817 for (j = 0; j < 4; j++){ 818 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 819 HPTE_V_VRMA_MASK) 820 continue; 821 if (ptes[j].pteh & HPTE_V_VALID) 822 plpar_pte_remove_raw(0, i + j, 0, 823 &(ptes[j].pteh), &(ptes[j].ptel)); 824 } 825 } 826 } 827 828 static int hcall_hpte_clear_all(void) 829 { 830 int rc; 831 832 do { 833 rc = plpar_hcall_norets(H_CLEAR_HPT); 834 } while (rc == H_CONTINUE); 835 836 return rc; 837 } 838 839 static void pseries_hpte_clear_all(void) 840 { 841 int rc; 842 843 rc = hcall_hpte_clear_all(); 844 if (rc != H_SUCCESS) 845 manual_hpte_clear_all(); 846 847 #ifdef __LITTLE_ENDIAN__ 848 /* 849 * Reset exceptions to big endian. 850 * 851 * FIXME this is a hack for kexec, we need to reset the exception 852 * endian before starting the new kernel and this is a convenient place 853 * to do it. 854 * 855 * This is also called on boot when a fadump happens. In that case we 856 * must not change the exception endian mode. 857 */ 858 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 859 pseries_big_endian_exceptions(); 860 #endif 861 } 862 863 /* 864 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 865 * the low 3 bits of flags happen to line up. So no transform is needed. 866 * We can probably optimize here and assume the high bits of newpp are 867 * already zero. For now I am paranoid. 868 */ 869 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 870 unsigned long newpp, 871 unsigned long vpn, 872 int psize, int apsize, 873 int ssize, unsigned long inv_flags) 874 { 875 unsigned long lpar_rc; 876 unsigned long flags; 877 unsigned long want_v; 878 879 want_v = hpte_encode_avpn(vpn, psize, ssize); 880 881 flags = (newpp & 7) | H_AVPN; 882 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 883 /* Move pp0 into bit 8 (IBM 55) */ 884 flags |= (newpp & HPTE_R_PP0) >> 55; 885 886 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 887 want_v, slot, flags, psize); 888 889 lpar_rc = plpar_pte_protect(flags, slot, want_v); 890 891 if (lpar_rc == H_NOT_FOUND) { 892 pr_devel("not found !\n"); 893 return -1; 894 } 895 896 pr_devel("ok\n"); 897 898 BUG_ON(lpar_rc != H_SUCCESS); 899 900 return 0; 901 } 902 903 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 904 { 905 long lpar_rc; 906 unsigned long i, j; 907 struct { 908 unsigned long pteh; 909 unsigned long ptel; 910 } ptes[4]; 911 912 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 913 914 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 915 if (lpar_rc != H_SUCCESS) { 916 pr_info("Failed to read hash page table at %ld err %ld\n", 917 hpte_group, lpar_rc); 918 continue; 919 } 920 921 for (j = 0; j < 4; j++) { 922 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 923 (ptes[j].pteh & HPTE_V_VALID)) 924 return i + j; 925 } 926 } 927 928 return -1; 929 } 930 931 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 932 { 933 long slot; 934 unsigned long hash; 935 unsigned long want_v; 936 unsigned long hpte_group; 937 938 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 939 want_v = hpte_encode_avpn(vpn, psize, ssize); 940 941 /* 942 * We try to keep bolted entries always in primary hash 943 * But in some case we can find them in secondary too. 944 */ 945 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 946 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 947 if (slot < 0) { 948 /* Try in secondary */ 949 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 950 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 951 if (slot < 0) 952 return -1; 953 } 954 return hpte_group + slot; 955 } 956 957 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 958 unsigned long ea, 959 int psize, int ssize) 960 { 961 unsigned long vpn; 962 unsigned long lpar_rc, slot, vsid, flags; 963 964 vsid = get_kernel_vsid(ea, ssize); 965 vpn = hpt_vpn(ea, vsid, ssize); 966 967 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 968 BUG_ON(slot == -1); 969 970 flags = newpp & 7; 971 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 972 /* Move pp0 into bit 8 (IBM 55) */ 973 flags |= (newpp & HPTE_R_PP0) >> 55; 974 975 lpar_rc = plpar_pte_protect(flags, slot, 0); 976 977 BUG_ON(lpar_rc != H_SUCCESS); 978 } 979 980 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 981 int psize, int apsize, 982 int ssize, int local) 983 { 984 unsigned long want_v; 985 unsigned long lpar_rc; 986 unsigned long dummy1, dummy2; 987 988 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 989 slot, vpn, psize, local); 990 991 want_v = hpte_encode_avpn(vpn, psize, ssize); 992 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 993 if (lpar_rc == H_NOT_FOUND) 994 return; 995 996 BUG_ON(lpar_rc != H_SUCCESS); 997 } 998 999 1000 /* 1001 * As defined in the PAPR's section 14.5.4.1.8 1002 * The control mask doesn't include the returned reference and change bit from 1003 * the processed PTE. 1004 */ 1005 #define HBLKR_AVPN 0x0100000000000000UL 1006 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1007 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1008 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1009 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1010 1011 /* 1012 * Returned true if we are supporting this block size for the specified segment 1013 * base page size and actual page size. 1014 * 1015 * Currently, we only support 8 size block. 1016 */ 1017 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1018 { 1019 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1020 } 1021 1022 /** 1023 * H_BLOCK_REMOVE caller. 1024 * @idx should point to the latest @param entry set with a PTEX. 1025 * If PTE cannot be processed because another CPUs has already locked that 1026 * group, those entries are put back in @param starting at index 1. 1027 * If entries has to be retried and @retry_busy is set to true, these entries 1028 * are retried until success. If @retry_busy is set to false, the returned 1029 * is the number of entries yet to process. 1030 */ 1031 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1032 bool retry_busy) 1033 { 1034 unsigned long i, rc, new_idx; 1035 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1036 1037 if (idx < 2) { 1038 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1039 return 0; 1040 } 1041 again: 1042 new_idx = 0; 1043 if (idx > PLPAR_HCALL9_BUFSIZE) { 1044 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1045 idx = PLPAR_HCALL9_BUFSIZE; 1046 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1047 param[idx] = HBR_END; 1048 1049 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1050 param[0], /* AVA */ 1051 param[1], param[2], param[3], param[4], /* TS0-7 */ 1052 param[5], param[6], param[7], param[8]); 1053 if (rc == H_SUCCESS) 1054 return 0; 1055 1056 BUG_ON(rc != H_PARTIAL); 1057 1058 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1059 for (i = 0; i < idx-1; i++) { 1060 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1061 1062 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1063 param[++new_idx] = param[i+1]; 1064 continue; 1065 } 1066 1067 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1068 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1069 } 1070 1071 /* 1072 * If there were entries found busy, retry these entries if requested, 1073 * of if all the entries have to be retried. 1074 */ 1075 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1076 idx = new_idx + 1; 1077 goto again; 1078 } 1079 1080 return new_idx; 1081 } 1082 1083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1084 /* 1085 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1086 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1087 */ 1088 #define PPC64_HUGE_HPTE_BATCH 12 1089 1090 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1091 int count, int psize, int ssize) 1092 { 1093 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1094 unsigned long shift, current_vpgb, vpgb; 1095 int i, pix = 0; 1096 1097 shift = mmu_psize_defs[psize].shift; 1098 1099 for (i = 0; i < count; i++) { 1100 /* 1101 * Shifting 3 bits more on the right to get a 1102 * 8 pages aligned virtual addresse. 1103 */ 1104 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1105 if (!pix || vpgb != current_vpgb) { 1106 /* 1107 * Need to start a new 8 pages block, flush 1108 * the current one if needed. 1109 */ 1110 if (pix) 1111 (void)call_block_remove(pix, param, true); 1112 current_vpgb = vpgb; 1113 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1114 pix = 1; 1115 } 1116 1117 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1118 if (pix == PLPAR_HCALL9_BUFSIZE) { 1119 pix = call_block_remove(pix, param, false); 1120 /* 1121 * pix = 0 means that all the entries were 1122 * removed, we can start a new block. 1123 * Otherwise, this means that there are entries 1124 * to retry, and pix points to latest one, so 1125 * we should increment it and try to continue 1126 * the same block. 1127 */ 1128 if (pix) 1129 pix++; 1130 } 1131 } 1132 if (pix) 1133 (void)call_block_remove(pix, param, true); 1134 } 1135 1136 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1137 int count, int psize, int ssize) 1138 { 1139 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1140 int i = 0, pix = 0, rc; 1141 1142 for (i = 0; i < count; i++) { 1143 1144 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1145 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1146 ssize, 0); 1147 } else { 1148 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1149 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1150 pix += 2; 1151 if (pix == 8) { 1152 rc = plpar_hcall9(H_BULK_REMOVE, param, 1153 param[0], param[1], param[2], 1154 param[3], param[4], param[5], 1155 param[6], param[7]); 1156 BUG_ON(rc != H_SUCCESS); 1157 pix = 0; 1158 } 1159 } 1160 } 1161 if (pix) { 1162 param[pix] = HBR_END; 1163 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1164 param[2], param[3], param[4], param[5], 1165 param[6], param[7]); 1166 BUG_ON(rc != H_SUCCESS); 1167 } 1168 } 1169 1170 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1171 unsigned long *vpn, 1172 int count, int psize, 1173 int ssize) 1174 { 1175 unsigned long flags = 0; 1176 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1177 1178 if (lock_tlbie) 1179 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1180 1181 /* Assuming THP size is 16M */ 1182 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1183 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1184 else 1185 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1186 1187 if (lock_tlbie) 1188 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1189 } 1190 1191 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1192 unsigned long addr, 1193 unsigned char *hpte_slot_array, 1194 int psize, int ssize, int local) 1195 { 1196 int i, index = 0; 1197 unsigned long s_addr = addr; 1198 unsigned int max_hpte_count, valid; 1199 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1200 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1201 unsigned long shift, hidx, vpn = 0, hash, slot; 1202 1203 shift = mmu_psize_defs[psize].shift; 1204 max_hpte_count = 1U << (PMD_SHIFT - shift); 1205 1206 for (i = 0; i < max_hpte_count; i++) { 1207 valid = hpte_valid(hpte_slot_array, i); 1208 if (!valid) 1209 continue; 1210 hidx = hpte_hash_index(hpte_slot_array, i); 1211 1212 /* get the vpn */ 1213 addr = s_addr + (i * (1ul << shift)); 1214 vpn = hpt_vpn(addr, vsid, ssize); 1215 hash = hpt_hash(vpn, shift, ssize); 1216 if (hidx & _PTEIDX_SECONDARY) 1217 hash = ~hash; 1218 1219 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1220 slot += hidx & _PTEIDX_GROUP_IX; 1221 1222 slot_array[index] = slot; 1223 vpn_array[index] = vpn; 1224 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1225 /* 1226 * Now do a bluk invalidate 1227 */ 1228 __pSeries_lpar_hugepage_invalidate(slot_array, 1229 vpn_array, 1230 PPC64_HUGE_HPTE_BATCH, 1231 psize, ssize); 1232 index = 0; 1233 } else 1234 index++; 1235 } 1236 if (index) 1237 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1238 index, psize, ssize); 1239 } 1240 #else 1241 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1242 unsigned long addr, 1243 unsigned char *hpte_slot_array, 1244 int psize, int ssize, int local) 1245 { 1246 WARN(1, "%s called without THP support\n", __func__); 1247 } 1248 #endif 1249 1250 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1251 int psize, int ssize) 1252 { 1253 unsigned long vpn; 1254 unsigned long slot, vsid; 1255 1256 vsid = get_kernel_vsid(ea, ssize); 1257 vpn = hpt_vpn(ea, vsid, ssize); 1258 1259 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1260 if (slot == -1) 1261 return -ENOENT; 1262 1263 /* 1264 * lpar doesn't use the passed actual page size 1265 */ 1266 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1267 return 0; 1268 } 1269 1270 1271 static inline unsigned long compute_slot(real_pte_t pte, 1272 unsigned long vpn, 1273 unsigned long index, 1274 unsigned long shift, 1275 int ssize) 1276 { 1277 unsigned long slot, hash, hidx; 1278 1279 hash = hpt_hash(vpn, shift, ssize); 1280 hidx = __rpte_to_hidx(pte, index); 1281 if (hidx & _PTEIDX_SECONDARY) 1282 hash = ~hash; 1283 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1284 slot += hidx & _PTEIDX_GROUP_IX; 1285 return slot; 1286 } 1287 1288 /** 1289 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1290 * "all within the same naturally aligned 8 page virtual address block". 1291 */ 1292 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1293 unsigned long *param) 1294 { 1295 unsigned long vpn; 1296 unsigned long i, pix = 0; 1297 unsigned long index, shift, slot, current_vpgb, vpgb; 1298 real_pte_t pte; 1299 int psize, ssize; 1300 1301 psize = batch->psize; 1302 ssize = batch->ssize; 1303 1304 for (i = 0; i < number; i++) { 1305 vpn = batch->vpn[i]; 1306 pte = batch->pte[i]; 1307 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1308 /* 1309 * Shifting 3 bits more on the right to get a 1310 * 8 pages aligned virtual addresse. 1311 */ 1312 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1313 if (!pix || vpgb != current_vpgb) { 1314 /* 1315 * Need to start a new 8 pages block, flush 1316 * the current one if needed. 1317 */ 1318 if (pix) 1319 (void)call_block_remove(pix, param, 1320 true); 1321 current_vpgb = vpgb; 1322 param[0] = hpte_encode_avpn(vpn, psize, 1323 ssize); 1324 pix = 1; 1325 } 1326 1327 slot = compute_slot(pte, vpn, index, shift, ssize); 1328 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1329 1330 if (pix == PLPAR_HCALL9_BUFSIZE) { 1331 pix = call_block_remove(pix, param, false); 1332 /* 1333 * pix = 0 means that all the entries were 1334 * removed, we can start a new block. 1335 * Otherwise, this means that there are entries 1336 * to retry, and pix points to latest one, so 1337 * we should increment it and try to continue 1338 * the same block. 1339 */ 1340 if (pix) 1341 pix++; 1342 } 1343 } pte_iterate_hashed_end(); 1344 } 1345 1346 if (pix) 1347 (void)call_block_remove(pix, param, true); 1348 } 1349 1350 /* 1351 * TLB Block Invalidate Characteristics 1352 * 1353 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1354 * is able to process for each couple segment base page size, actual page size. 1355 * 1356 * The ibm,get-system-parameter properties is returning a buffer with the 1357 * following layout: 1358 * 1359 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1360 * ----------------- 1361 * TLB Block Invalidate Specifiers: 1362 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1363 * [ 1 byte Number of page sizes (N) that are supported for the specified 1364 * TLB invalidate block size ] 1365 * [ 1 byte Encoded segment base page size and actual page size 1366 * MSB=0 means 4k segment base page size and actual page size 1367 * MSB=1 the penc value in mmu_psize_def ] 1368 * ... 1369 * ----------------- 1370 * Next TLB Block Invalidate Specifiers... 1371 * ----------------- 1372 * [ 0 ] 1373 */ 1374 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1375 unsigned int block_size) 1376 { 1377 if (block_size > hblkrm_size[bpsize][psize]) 1378 hblkrm_size[bpsize][psize] = block_size; 1379 } 1380 1381 /* 1382 * Decode the Encoded segment base page size and actual page size. 1383 * PAPR specifies: 1384 * - bit 7 is the L bit 1385 * - bits 0-5 are the penc value 1386 * If the L bit is 0, this means 4K segment base page size and actual page size 1387 * otherwise the penc value should be read. 1388 */ 1389 #define HBLKRM_L_MASK 0x80 1390 #define HBLKRM_PENC_MASK 0x3f 1391 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1392 unsigned int block_size) 1393 { 1394 unsigned int bpsize, psize; 1395 1396 /* First, check the L bit, if not set, this means 4K */ 1397 if ((lp & HBLKRM_L_MASK) == 0) { 1398 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1399 return; 1400 } 1401 1402 lp &= HBLKRM_PENC_MASK; 1403 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1404 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1405 1406 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1407 if (def->penc[psize] == lp) { 1408 set_hblkrm_bloc_size(bpsize, psize, block_size); 1409 return; 1410 } 1411 } 1412 } 1413 } 1414 1415 #define SPLPAR_TLB_BIC_TOKEN 50 1416 1417 /* 1418 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1419 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1420 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1421 * (128 bytes) for the buffer to get plenty of space. 1422 */ 1423 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1424 1425 void __init pseries_lpar_read_hblkrm_characteristics(void) 1426 { 1427 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1428 int call_status, len, idx, bpsize; 1429 1430 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1431 return; 1432 1433 spin_lock(&rtas_data_buf_lock); 1434 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1435 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1436 NULL, 1437 SPLPAR_TLB_BIC_TOKEN, 1438 __pa(rtas_data_buf), 1439 RTAS_DATA_BUF_SIZE); 1440 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1441 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1442 spin_unlock(&rtas_data_buf_lock); 1443 1444 if (call_status != 0) { 1445 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1446 __FILE__, __func__, call_status); 1447 return; 1448 } 1449 1450 /* 1451 * The first two (2) bytes of the data in the buffer are the length of 1452 * the returned data, not counting these first two (2) bytes. 1453 */ 1454 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1455 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1456 pr_warn("%s too large returned buffer %d", __func__, len); 1457 return; 1458 } 1459 1460 idx = 2; 1461 while (idx < len) { 1462 u8 block_shift = local_buffer[idx++]; 1463 u32 block_size; 1464 unsigned int npsize; 1465 1466 if (!block_shift) 1467 break; 1468 1469 block_size = 1 << block_shift; 1470 1471 for (npsize = local_buffer[idx++]; 1472 npsize > 0 && idx < len; npsize--) 1473 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1474 block_size); 1475 } 1476 1477 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1478 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1479 if (hblkrm_size[bpsize][idx]) 1480 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1481 bpsize, idx, hblkrm_size[bpsize][idx]); 1482 } 1483 1484 /* 1485 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1486 * lock. 1487 */ 1488 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1489 { 1490 unsigned long vpn; 1491 unsigned long i, pix, rc; 1492 unsigned long flags = 0; 1493 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1494 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1495 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1496 unsigned long index, shift, slot; 1497 real_pte_t pte; 1498 int psize, ssize; 1499 1500 if (lock_tlbie) 1501 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1502 1503 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1504 do_block_remove(number, batch, param); 1505 goto out; 1506 } 1507 1508 psize = batch->psize; 1509 ssize = batch->ssize; 1510 pix = 0; 1511 for (i = 0; i < number; i++) { 1512 vpn = batch->vpn[i]; 1513 pte = batch->pte[i]; 1514 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1515 slot = compute_slot(pte, vpn, index, shift, ssize); 1516 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1517 /* 1518 * lpar doesn't use the passed actual page size 1519 */ 1520 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1521 0, ssize, local); 1522 } else { 1523 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1524 param[pix+1] = hpte_encode_avpn(vpn, psize, 1525 ssize); 1526 pix += 2; 1527 if (pix == 8) { 1528 rc = plpar_hcall9(H_BULK_REMOVE, param, 1529 param[0], param[1], param[2], 1530 param[3], param[4], param[5], 1531 param[6], param[7]); 1532 BUG_ON(rc != H_SUCCESS); 1533 pix = 0; 1534 } 1535 } 1536 } pte_iterate_hashed_end(); 1537 } 1538 if (pix) { 1539 param[pix] = HBR_END; 1540 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1541 param[2], param[3], param[4], param[5], 1542 param[6], param[7]); 1543 BUG_ON(rc != H_SUCCESS); 1544 } 1545 1546 out: 1547 if (lock_tlbie) 1548 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1549 } 1550 1551 static int __init disable_bulk_remove(char *str) 1552 { 1553 if (strcmp(str, "off") == 0 && 1554 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1555 pr_info("Disabling BULK_REMOVE firmware feature"); 1556 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1557 } 1558 return 1; 1559 } 1560 1561 __setup("bulk_remove=", disable_bulk_remove); 1562 1563 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1564 1565 struct hpt_resize_state { 1566 unsigned long shift; 1567 int commit_rc; 1568 }; 1569 1570 static int pseries_lpar_resize_hpt_commit(void *data) 1571 { 1572 struct hpt_resize_state *state = data; 1573 1574 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1575 if (state->commit_rc != H_SUCCESS) 1576 return -EIO; 1577 1578 /* Hypervisor has transitioned the HTAB, update our globals */ 1579 ppc64_pft_size = state->shift; 1580 htab_size_bytes = 1UL << ppc64_pft_size; 1581 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1582 1583 return 0; 1584 } 1585 1586 /* 1587 * Must be called in process context. The caller must hold the 1588 * cpus_lock. 1589 */ 1590 static int pseries_lpar_resize_hpt(unsigned long shift) 1591 { 1592 struct hpt_resize_state state = { 1593 .shift = shift, 1594 .commit_rc = H_FUNCTION, 1595 }; 1596 unsigned int delay, total_delay = 0; 1597 int rc; 1598 ktime_t t0, t1, t2; 1599 1600 might_sleep(); 1601 1602 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1603 return -ENODEV; 1604 1605 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1606 1607 t0 = ktime_get(); 1608 1609 rc = plpar_resize_hpt_prepare(0, shift); 1610 while (H_IS_LONG_BUSY(rc)) { 1611 delay = get_longbusy_msecs(rc); 1612 total_delay += delay; 1613 if (total_delay > HPT_RESIZE_TIMEOUT) { 1614 /* prepare with shift==0 cancels an in-progress resize */ 1615 rc = plpar_resize_hpt_prepare(0, 0); 1616 if (rc != H_SUCCESS) 1617 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1618 rc); 1619 return -ETIMEDOUT; 1620 } 1621 msleep(delay); 1622 rc = plpar_resize_hpt_prepare(0, shift); 1623 }; 1624 1625 switch (rc) { 1626 case H_SUCCESS: 1627 /* Continue on */ 1628 break; 1629 1630 case H_PARAMETER: 1631 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1632 return -EINVAL; 1633 case H_RESOURCE: 1634 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1635 return -EPERM; 1636 default: 1637 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1638 return -EIO; 1639 } 1640 1641 t1 = ktime_get(); 1642 1643 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1644 &state, NULL); 1645 1646 t2 = ktime_get(); 1647 1648 if (rc != 0) { 1649 switch (state.commit_rc) { 1650 case H_PTEG_FULL: 1651 return -ENOSPC; 1652 1653 default: 1654 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1655 state.commit_rc); 1656 return -EIO; 1657 }; 1658 } 1659 1660 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1661 shift, (long long) ktime_ms_delta(t1, t0), 1662 (long long) ktime_ms_delta(t2, t1)); 1663 1664 return 0; 1665 } 1666 1667 static int pseries_lpar_register_process_table(unsigned long base, 1668 unsigned long page_size, unsigned long table_size) 1669 { 1670 long rc; 1671 unsigned long flags = 0; 1672 1673 if (table_size) 1674 flags |= PROC_TABLE_NEW; 1675 if (radix_enabled()) 1676 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE; 1677 else 1678 flags |= PROC_TABLE_HPT_SLB; 1679 for (;;) { 1680 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 1681 page_size, table_size); 1682 if (!H_IS_LONG_BUSY(rc)) 1683 break; 1684 mdelay(get_longbusy_msecs(rc)); 1685 } 1686 if (rc != H_SUCCESS) { 1687 pr_err("Failed to register process table (rc=%ld)\n", rc); 1688 BUG(); 1689 } 1690 return rc; 1691 } 1692 1693 void __init hpte_init_pseries(void) 1694 { 1695 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1696 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1697 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1698 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1699 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1700 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1701 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1702 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1703 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1704 1705 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1706 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1707 1708 /* 1709 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1710 * to inform the hypervisor that we wish to use the HPT. 1711 */ 1712 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1713 pseries_lpar_register_process_table(0, 0, 0); 1714 } 1715 1716 void radix_init_pseries(void) 1717 { 1718 pr_info("Using radix MMU under hypervisor\n"); 1719 1720 pseries_lpar_register_process_table(__pa(process_tb), 1721 0, PRTB_SIZE_SHIFT - 12); 1722 } 1723 1724 #ifdef CONFIG_PPC_SMLPAR 1725 #define CMO_FREE_HINT_DEFAULT 1 1726 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1727 1728 static int __init cmo_free_hint(char *str) 1729 { 1730 char *parm; 1731 parm = strstrip(str); 1732 1733 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1734 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1735 cmo_free_hint_flag = 0; 1736 return 1; 1737 } 1738 1739 cmo_free_hint_flag = 1; 1740 pr_info("%s: CMO free page hinting is active.\n", __func__); 1741 1742 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1743 return 1; 1744 1745 return 0; 1746 } 1747 1748 __setup("cmo_free_hint=", cmo_free_hint); 1749 1750 static void pSeries_set_page_state(struct page *page, int order, 1751 unsigned long state) 1752 { 1753 int i, j; 1754 unsigned long cmo_page_sz, addr; 1755 1756 cmo_page_sz = cmo_get_page_size(); 1757 addr = __pa((unsigned long)page_address(page)); 1758 1759 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1760 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1761 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1762 } 1763 } 1764 1765 void arch_free_page(struct page *page, int order) 1766 { 1767 if (radix_enabled()) 1768 return; 1769 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1770 return; 1771 1772 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1773 } 1774 EXPORT_SYMBOL(arch_free_page); 1775 1776 #endif /* CONFIG_PPC_SMLPAR */ 1777 #endif /* CONFIG_PPC_BOOK3S_64 */ 1778 1779 #ifdef CONFIG_TRACEPOINTS 1780 #ifdef CONFIG_JUMP_LABEL 1781 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1782 1783 int hcall_tracepoint_regfunc(void) 1784 { 1785 static_key_slow_inc(&hcall_tracepoint_key); 1786 return 0; 1787 } 1788 1789 void hcall_tracepoint_unregfunc(void) 1790 { 1791 static_key_slow_dec(&hcall_tracepoint_key); 1792 } 1793 #else 1794 /* 1795 * We optimise our hcall path by placing hcall_tracepoint_refcount 1796 * directly in the TOC so we can check if the hcall tracepoints are 1797 * enabled via a single load. 1798 */ 1799 1800 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1801 extern long hcall_tracepoint_refcount; 1802 1803 int hcall_tracepoint_regfunc(void) 1804 { 1805 hcall_tracepoint_refcount++; 1806 return 0; 1807 } 1808 1809 void hcall_tracepoint_unregfunc(void) 1810 { 1811 hcall_tracepoint_refcount--; 1812 } 1813 #endif 1814 1815 /* 1816 * Since the tracing code might execute hcalls we need to guard against 1817 * recursion. One example of this are spinlocks calling H_YIELD on 1818 * shared processor partitions. 1819 */ 1820 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1821 1822 1823 void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1824 { 1825 unsigned long flags; 1826 unsigned int *depth; 1827 1828 /* 1829 * We cannot call tracepoints inside RCU idle regions which 1830 * means we must not trace H_CEDE. 1831 */ 1832 if (opcode == H_CEDE) 1833 return; 1834 1835 local_irq_save(flags); 1836 1837 depth = this_cpu_ptr(&hcall_trace_depth); 1838 1839 if (*depth) 1840 goto out; 1841 1842 (*depth)++; 1843 preempt_disable(); 1844 trace_hcall_entry(opcode, args); 1845 (*depth)--; 1846 1847 out: 1848 local_irq_restore(flags); 1849 } 1850 1851 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1852 { 1853 unsigned long flags; 1854 unsigned int *depth; 1855 1856 if (opcode == H_CEDE) 1857 return; 1858 1859 local_irq_save(flags); 1860 1861 depth = this_cpu_ptr(&hcall_trace_depth); 1862 1863 if (*depth) 1864 goto out; 1865 1866 (*depth)++; 1867 trace_hcall_exit(opcode, retval, retbuf); 1868 preempt_enable(); 1869 (*depth)--; 1870 1871 out: 1872 local_irq_restore(flags); 1873 } 1874 #endif 1875 1876 /** 1877 * h_get_mpp 1878 * H_GET_MPP hcall returns info in 7 parms 1879 */ 1880 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1881 { 1882 int rc; 1883 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1884 1885 rc = plpar_hcall9(H_GET_MPP, retbuf); 1886 1887 mpp_data->entitled_mem = retbuf[0]; 1888 mpp_data->mapped_mem = retbuf[1]; 1889 1890 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1891 mpp_data->pool_num = retbuf[2] & 0xffff; 1892 1893 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1894 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1895 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1896 1897 mpp_data->pool_size = retbuf[4]; 1898 mpp_data->loan_request = retbuf[5]; 1899 mpp_data->backing_mem = retbuf[6]; 1900 1901 return rc; 1902 } 1903 EXPORT_SYMBOL(h_get_mpp); 1904 1905 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1906 { 1907 int rc; 1908 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1909 1910 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1911 1912 mpp_x_data->coalesced_bytes = retbuf[0]; 1913 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1914 mpp_x_data->pool_purr_cycles = retbuf[2]; 1915 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1916 1917 return rc; 1918 } 1919 1920 static unsigned long vsid_unscramble(unsigned long vsid, int ssize) 1921 { 1922 unsigned long protovsid; 1923 unsigned long va_bits = VA_BITS; 1924 unsigned long modinv, vsid_modulus; 1925 unsigned long max_mod_inv, tmp_modinv; 1926 1927 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1928 va_bits = 65; 1929 1930 if (ssize == MMU_SEGSIZE_256M) { 1931 modinv = VSID_MULINV_256M; 1932 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1933 } else { 1934 modinv = VSID_MULINV_1T; 1935 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1936 } 1937 1938 /* 1939 * vsid outside our range. 1940 */ 1941 if (vsid >= vsid_modulus) 1942 return 0; 1943 1944 /* 1945 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1946 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1947 * protovsid = (vsid * modinv) % vsid_modulus 1948 */ 1949 1950 /* Check if (vsid * modinv) overflow (63 bits) */ 1951 max_mod_inv = 0x7fffffffffffffffull / vsid; 1952 if (modinv < max_mod_inv) 1953 return (vsid * modinv) % vsid_modulus; 1954 1955 tmp_modinv = modinv/max_mod_inv; 1956 modinv %= max_mod_inv; 1957 1958 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1959 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1960 1961 return protovsid; 1962 } 1963 1964 static int __init reserve_vrma_context_id(void) 1965 { 1966 unsigned long protovsid; 1967 1968 /* 1969 * Reserve context ids which map to reserved virtual addresses. For now 1970 * we only reserve the context id which maps to the VRMA VSID. We ignore 1971 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1972 * enable adjunct support via the "ibm,client-architecture-support" 1973 * interface. 1974 */ 1975 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1976 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1977 return 0; 1978 } 1979 machine_device_initcall(pseries, reserve_vrma_context_id); 1980 1981 #ifdef CONFIG_DEBUG_FS 1982 /* debugfs file interface for vpa data */ 1983 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1984 loff_t *pos) 1985 { 1986 int cpu = (long)filp->private_data; 1987 struct lppaca *lppaca = &lppaca_of(cpu); 1988 1989 return simple_read_from_buffer(buf, len, pos, lppaca, 1990 sizeof(struct lppaca)); 1991 } 1992 1993 static const struct file_operations vpa_fops = { 1994 .open = simple_open, 1995 .read = vpa_file_read, 1996 .llseek = default_llseek, 1997 }; 1998 1999 static int __init vpa_debugfs_init(void) 2000 { 2001 char name[16]; 2002 long i; 2003 struct dentry *vpa_dir; 2004 2005 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2006 return 0; 2007 2008 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root); 2009 if (!vpa_dir) { 2010 pr_warn("%s: can't create vpa root dir\n", __func__); 2011 return -ENOMEM; 2012 } 2013 2014 /* set up the per-cpu vpa file*/ 2015 for_each_possible_cpu(i) { 2016 struct dentry *d; 2017 2018 sprintf(name, "cpu-%ld", i); 2019 2020 d = debugfs_create_file(name, 0400, vpa_dir, (void *)i, 2021 &vpa_fops); 2022 if (!d) { 2023 pr_warn("%s: can't create per-cpu vpa file\n", 2024 __func__); 2025 return -ENOMEM; 2026 } 2027 } 2028 2029 return 0; 2030 } 2031 machine_arch_initcall(pseries, vpa_debugfs_init); 2032 #endif /* CONFIG_DEBUG_FS */ 2033