1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/machdep.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/prom.h> 35 #include <asm/cputable.h> 36 #include <asm/udbg.h> 37 #include <asm/smp.h> 38 #include <asm/trace.h> 39 #include <asm/firmware.h> 40 #include <asm/plpar_wrappers.h> 41 #include <asm/kexec.h> 42 #include <asm/fadump.h> 43 #include <asm/asm-prototypes.h> 44 #include <asm/dtl.h> 45 46 #include "pseries.h" 47 48 /* Flag bits for H_BULK_REMOVE */ 49 #define HBR_REQUEST 0x4000000000000000UL 50 #define HBR_RESPONSE 0x8000000000000000UL 51 #define HBR_END 0xc000000000000000UL 52 #define HBR_AVPN 0x0200000000000000UL 53 #define HBR_ANDCOND 0x0100000000000000UL 54 55 56 /* in hvCall.S */ 57 EXPORT_SYMBOL(plpar_hcall); 58 EXPORT_SYMBOL(plpar_hcall9); 59 EXPORT_SYMBOL(plpar_hcall_norets); 60 61 /* 62 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 63 * page size is that page size. 64 * 65 * The first index is the segment base page size, the second one is the actual 66 * page size. 67 */ 68 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 69 70 /* 71 * Due to the involved complexity, and that the current hypervisor is only 72 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 73 * buffer size to 8 size block. 74 */ 75 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 76 77 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 78 static u8 dtl_mask = DTL_LOG_PREEMPT; 79 #else 80 static u8 dtl_mask; 81 #endif 82 83 void alloc_dtl_buffers(unsigned long *time_limit) 84 { 85 int cpu; 86 struct paca_struct *pp; 87 struct dtl_entry *dtl; 88 89 for_each_possible_cpu(cpu) { 90 pp = paca_ptrs[cpu]; 91 if (pp->dispatch_log) 92 continue; 93 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 94 if (!dtl) { 95 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 96 cpu); 97 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 98 pr_warn("Stolen time statistics will be unreliable\n"); 99 #endif 100 break; 101 } 102 103 pp->dtl_ridx = 0; 104 pp->dispatch_log = dtl; 105 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 106 pp->dtl_curr = dtl; 107 108 if (time_limit && time_after(jiffies, *time_limit)) { 109 cond_resched(); 110 *time_limit = jiffies + HZ; 111 } 112 } 113 } 114 115 void register_dtl_buffer(int cpu) 116 { 117 long ret; 118 struct paca_struct *pp; 119 struct dtl_entry *dtl; 120 int hwcpu = get_hard_smp_processor_id(cpu); 121 122 pp = paca_ptrs[cpu]; 123 dtl = pp->dispatch_log; 124 if (dtl && dtl_mask) { 125 pp->dtl_ridx = 0; 126 pp->dtl_curr = dtl; 127 lppaca_of(cpu).dtl_idx = 0; 128 129 /* hypervisor reads buffer length from this field */ 130 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 131 ret = register_dtl(hwcpu, __pa(dtl)); 132 if (ret) 133 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 134 cpu, hwcpu, ret); 135 136 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 137 } 138 } 139 140 #ifdef CONFIG_PPC_SPLPAR 141 struct dtl_worker { 142 struct delayed_work work; 143 int cpu; 144 }; 145 146 struct vcpu_dispatch_data { 147 int last_disp_cpu; 148 149 int total_disp; 150 151 int same_cpu_disp; 152 int same_chip_disp; 153 int diff_chip_disp; 154 int far_chip_disp; 155 156 int numa_home_disp; 157 int numa_remote_disp; 158 int numa_far_disp; 159 }; 160 161 /* 162 * This represents the number of cpus in the hypervisor. Since there is no 163 * architected way to discover the number of processors in the host, we 164 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 165 * is sufficient for our purposes. This will need to be tweaked if 166 * CONFIG_NR_CPUS is changed. 167 */ 168 #define NR_CPUS_H NR_CPUS 169 170 DEFINE_RWLOCK(dtl_access_lock); 171 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 172 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 173 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 174 static enum cpuhp_state dtl_worker_state; 175 static DEFINE_MUTEX(dtl_enable_mutex); 176 static int vcpudispatch_stats_on __read_mostly; 177 static int vcpudispatch_stats_freq = 50; 178 static __be32 *vcpu_associativity, *pcpu_associativity; 179 180 181 static void free_dtl_buffers(unsigned long *time_limit) 182 { 183 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 184 int cpu; 185 struct paca_struct *pp; 186 187 for_each_possible_cpu(cpu) { 188 pp = paca_ptrs[cpu]; 189 if (!pp->dispatch_log) 190 continue; 191 kmem_cache_free(dtl_cache, pp->dispatch_log); 192 pp->dtl_ridx = 0; 193 pp->dispatch_log = 0; 194 pp->dispatch_log_end = 0; 195 pp->dtl_curr = 0; 196 197 if (time_limit && time_after(jiffies, *time_limit)) { 198 cond_resched(); 199 *time_limit = jiffies + HZ; 200 } 201 } 202 #endif 203 } 204 205 static int init_cpu_associativity(void) 206 { 207 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 209 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 211 212 if (!vcpu_associativity || !pcpu_associativity) { 213 pr_err("error allocating memory for associativity information\n"); 214 return -ENOMEM; 215 } 216 217 return 0; 218 } 219 220 static void destroy_cpu_associativity(void) 221 { 222 kfree(vcpu_associativity); 223 kfree(pcpu_associativity); 224 vcpu_associativity = pcpu_associativity = 0; 225 } 226 227 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 228 { 229 __be32 *assoc; 230 int rc = 0; 231 232 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 233 if (!assoc[0]) { 234 rc = hcall_vphn(cpu, flag, &assoc[0]); 235 if (rc) 236 return NULL; 237 } 238 239 return assoc; 240 } 241 242 static __be32 *get_pcpu_associativity(int cpu) 243 { 244 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 245 } 246 247 static __be32 *get_vcpu_associativity(int cpu) 248 { 249 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 250 } 251 252 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 253 { 254 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 255 256 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 257 return -EINVAL; 258 259 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 260 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 261 262 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 263 return -EIO; 264 265 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 266 } 267 268 static int cpu_home_node_dispatch_distance(int disp_cpu) 269 { 270 __be32 *disp_cpu_assoc, *vcpu_assoc; 271 int vcpu_id = smp_processor_id(); 272 273 if (disp_cpu >= NR_CPUS_H) { 274 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 275 disp_cpu, NR_CPUS_H); 276 return -EINVAL; 277 } 278 279 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 280 vcpu_assoc = get_vcpu_associativity(vcpu_id); 281 282 if (!disp_cpu_assoc || !vcpu_assoc) 283 return -EIO; 284 285 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 286 } 287 288 static void update_vcpu_disp_stat(int disp_cpu) 289 { 290 struct vcpu_dispatch_data *disp; 291 int distance; 292 293 disp = this_cpu_ptr(&vcpu_disp_data); 294 if (disp->last_disp_cpu == -1) { 295 disp->last_disp_cpu = disp_cpu; 296 return; 297 } 298 299 disp->total_disp++; 300 301 if (disp->last_disp_cpu == disp_cpu || 302 (cpu_first_thread_sibling(disp->last_disp_cpu) == 303 cpu_first_thread_sibling(disp_cpu))) 304 disp->same_cpu_disp++; 305 else { 306 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 307 disp_cpu); 308 if (distance < 0) 309 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 310 smp_processor_id()); 311 else { 312 switch (distance) { 313 case 0: 314 disp->same_chip_disp++; 315 break; 316 case 1: 317 disp->diff_chip_disp++; 318 break; 319 case 2: 320 disp->far_chip_disp++; 321 break; 322 default: 323 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 324 smp_processor_id(), 325 disp->last_disp_cpu, 326 disp_cpu, 327 distance); 328 } 329 } 330 } 331 332 distance = cpu_home_node_dispatch_distance(disp_cpu); 333 if (distance < 0) 334 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 335 smp_processor_id()); 336 else { 337 switch (distance) { 338 case 0: 339 disp->numa_home_disp++; 340 break; 341 case 1: 342 disp->numa_remote_disp++; 343 break; 344 case 2: 345 disp->numa_far_disp++; 346 break; 347 default: 348 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 349 smp_processor_id(), 350 disp_cpu, 351 distance); 352 } 353 } 354 355 disp->last_disp_cpu = disp_cpu; 356 } 357 358 static void process_dtl_buffer(struct work_struct *work) 359 { 360 struct dtl_entry dtle; 361 u64 i = __this_cpu_read(dtl_entry_ridx); 362 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 363 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 364 struct lppaca *vpa = local_paca->lppaca_ptr; 365 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 366 367 if (!local_paca->dispatch_log) 368 return; 369 370 /* if we have been migrated away, we cancel ourself */ 371 if (d->cpu != smp_processor_id()) { 372 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 373 smp_processor_id()); 374 return; 375 } 376 377 if (i == be64_to_cpu(vpa->dtl_idx)) 378 goto out; 379 380 while (i < be64_to_cpu(vpa->dtl_idx)) { 381 dtle = *dtl; 382 barrier(); 383 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 384 /* buffer has overflowed */ 385 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 386 d->cpu, 387 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 388 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 389 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 390 continue; 391 } 392 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 393 ++i; 394 ++dtl; 395 if (dtl == dtl_end) 396 dtl = local_paca->dispatch_log; 397 } 398 399 __this_cpu_write(dtl_entry_ridx, i); 400 401 out: 402 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 403 HZ / vcpudispatch_stats_freq); 404 } 405 406 static int dtl_worker_online(unsigned int cpu) 407 { 408 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 409 410 memset(d, 0, sizeof(*d)); 411 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 412 d->cpu = cpu; 413 414 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 415 per_cpu(dtl_entry_ridx, cpu) = 0; 416 register_dtl_buffer(cpu); 417 #else 418 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 419 #endif 420 421 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 422 return 0; 423 } 424 425 static int dtl_worker_offline(unsigned int cpu) 426 { 427 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 428 429 cancel_delayed_work_sync(&d->work); 430 431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 432 unregister_dtl(get_hard_smp_processor_id(cpu)); 433 #endif 434 435 return 0; 436 } 437 438 static void set_global_dtl_mask(u8 mask) 439 { 440 int cpu; 441 442 dtl_mask = mask; 443 for_each_present_cpu(cpu) 444 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 445 } 446 447 static void reset_global_dtl_mask(void) 448 { 449 int cpu; 450 451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 452 dtl_mask = DTL_LOG_PREEMPT; 453 #else 454 dtl_mask = 0; 455 #endif 456 for_each_present_cpu(cpu) 457 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 458 } 459 460 static int dtl_worker_enable(unsigned long *time_limit) 461 { 462 int rc = 0, state; 463 464 if (!write_trylock(&dtl_access_lock)) { 465 rc = -EBUSY; 466 goto out; 467 } 468 469 set_global_dtl_mask(DTL_LOG_ALL); 470 471 /* Setup dtl buffers and register those */ 472 alloc_dtl_buffers(time_limit); 473 474 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 475 dtl_worker_online, dtl_worker_offline); 476 if (state < 0) { 477 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 478 free_dtl_buffers(time_limit); 479 reset_global_dtl_mask(); 480 write_unlock(&dtl_access_lock); 481 rc = -EINVAL; 482 goto out; 483 } 484 dtl_worker_state = state; 485 486 out: 487 return rc; 488 } 489 490 static void dtl_worker_disable(unsigned long *time_limit) 491 { 492 cpuhp_remove_state(dtl_worker_state); 493 free_dtl_buffers(time_limit); 494 reset_global_dtl_mask(); 495 write_unlock(&dtl_access_lock); 496 } 497 498 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 499 size_t count, loff_t *ppos) 500 { 501 unsigned long time_limit = jiffies + HZ; 502 struct vcpu_dispatch_data *disp; 503 int rc, cmd, cpu; 504 char buf[16]; 505 506 if (count > 15) 507 return -EINVAL; 508 509 if (copy_from_user(buf, p, count)) 510 return -EFAULT; 511 512 buf[count] = 0; 513 rc = kstrtoint(buf, 0, &cmd); 514 if (rc || cmd < 0 || cmd > 1) { 515 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 516 return rc ? rc : -EINVAL; 517 } 518 519 mutex_lock(&dtl_enable_mutex); 520 521 if ((cmd == 0 && !vcpudispatch_stats_on) || 522 (cmd == 1 && vcpudispatch_stats_on)) 523 goto out; 524 525 if (cmd) { 526 rc = init_cpu_associativity(); 527 if (rc) 528 goto out; 529 530 for_each_possible_cpu(cpu) { 531 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 532 memset(disp, 0, sizeof(*disp)); 533 disp->last_disp_cpu = -1; 534 } 535 536 rc = dtl_worker_enable(&time_limit); 537 if (rc) { 538 destroy_cpu_associativity(); 539 goto out; 540 } 541 } else { 542 dtl_worker_disable(&time_limit); 543 destroy_cpu_associativity(); 544 } 545 546 vcpudispatch_stats_on = cmd; 547 548 out: 549 mutex_unlock(&dtl_enable_mutex); 550 if (rc) 551 return rc; 552 return count; 553 } 554 555 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 556 { 557 int cpu; 558 struct vcpu_dispatch_data *disp; 559 560 if (!vcpudispatch_stats_on) { 561 seq_puts(p, "off\n"); 562 return 0; 563 } 564 565 for_each_online_cpu(cpu) { 566 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 567 seq_printf(p, "cpu%d", cpu); 568 seq_put_decimal_ull(p, " ", disp->total_disp); 569 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 570 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 571 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 572 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 573 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 574 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 575 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 576 seq_puts(p, "\n"); 577 } 578 579 return 0; 580 } 581 582 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 583 { 584 return single_open(file, vcpudispatch_stats_display, NULL); 585 } 586 587 static const struct proc_ops vcpudispatch_stats_proc_ops = { 588 .proc_open = vcpudispatch_stats_open, 589 .proc_read = seq_read, 590 .proc_write = vcpudispatch_stats_write, 591 .proc_lseek = seq_lseek, 592 .proc_release = single_release, 593 }; 594 595 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 596 const char __user *p, size_t count, loff_t *ppos) 597 { 598 int rc, freq; 599 char buf[16]; 600 601 if (count > 15) 602 return -EINVAL; 603 604 if (copy_from_user(buf, p, count)) 605 return -EFAULT; 606 607 buf[count] = 0; 608 rc = kstrtoint(buf, 0, &freq); 609 if (rc || freq < 1 || freq > HZ) { 610 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 611 HZ); 612 return rc ? rc : -EINVAL; 613 } 614 615 vcpudispatch_stats_freq = freq; 616 617 return count; 618 } 619 620 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 621 { 622 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 623 return 0; 624 } 625 626 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 627 { 628 return single_open(file, vcpudispatch_stats_freq_display, NULL); 629 } 630 631 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 632 .proc_open = vcpudispatch_stats_freq_open, 633 .proc_read = seq_read, 634 .proc_write = vcpudispatch_stats_freq_write, 635 .proc_lseek = seq_lseek, 636 .proc_release = single_release, 637 }; 638 639 static int __init vcpudispatch_stats_procfs_init(void) 640 { 641 /* 642 * Avoid smp_processor_id while preemptible. All CPUs should have 643 * the same value for lppaca_shared_proc. 644 */ 645 preempt_disable(); 646 if (!lppaca_shared_proc(get_lppaca())) { 647 preempt_enable(); 648 return 0; 649 } 650 preempt_enable(); 651 652 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 653 &vcpudispatch_stats_proc_ops)) 654 pr_err("vcpudispatch_stats: error creating procfs file\n"); 655 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 656 &vcpudispatch_stats_freq_proc_ops)) 657 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 658 659 return 0; 660 } 661 662 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 663 #endif /* CONFIG_PPC_SPLPAR */ 664 665 void vpa_init(int cpu) 666 { 667 int hwcpu = get_hard_smp_processor_id(cpu); 668 unsigned long addr; 669 long ret; 670 671 /* 672 * The spec says it "may be problematic" if CPU x registers the VPA of 673 * CPU y. We should never do that, but wail if we ever do. 674 */ 675 WARN_ON(cpu != smp_processor_id()); 676 677 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 678 lppaca_of(cpu).vmxregs_in_use = 1; 679 680 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 681 lppaca_of(cpu).ebb_regs_in_use = 1; 682 683 addr = __pa(&lppaca_of(cpu)); 684 ret = register_vpa(hwcpu, addr); 685 686 if (ret) { 687 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 688 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 689 return; 690 } 691 692 #ifdef CONFIG_PPC_BOOK3S_64 693 /* 694 * PAPR says this feature is SLB-Buffer but firmware never 695 * reports that. All SPLPAR support SLB shadow buffer. 696 */ 697 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 698 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 699 ret = register_slb_shadow(hwcpu, addr); 700 if (ret) 701 pr_err("WARNING: SLB shadow buffer registration for " 702 "cpu %d (hw %d) of area %lx failed with %ld\n", 703 cpu, hwcpu, addr, ret); 704 } 705 #endif /* CONFIG_PPC_BOOK3S_64 */ 706 707 /* 708 * Register dispatch trace log, if one has been allocated. 709 */ 710 register_dtl_buffer(cpu); 711 } 712 713 #ifdef CONFIG_PPC_BOOK3S_64 714 715 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 716 unsigned long vpn, unsigned long pa, 717 unsigned long rflags, unsigned long vflags, 718 int psize, int apsize, int ssize) 719 { 720 unsigned long lpar_rc; 721 unsigned long flags; 722 unsigned long slot; 723 unsigned long hpte_v, hpte_r; 724 725 if (!(vflags & HPTE_V_BOLTED)) 726 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 727 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 728 hpte_group, vpn, pa, rflags, vflags, psize); 729 730 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 731 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 732 733 if (!(vflags & HPTE_V_BOLTED)) 734 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 735 736 /* Now fill in the actual HPTE */ 737 /* Set CEC cookie to 0 */ 738 /* Zero page = 0 */ 739 /* I-cache Invalidate = 0 */ 740 /* I-cache synchronize = 0 */ 741 /* Exact = 0 */ 742 flags = 0; 743 744 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 745 flags |= H_COALESCE_CAND; 746 747 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 748 if (unlikely(lpar_rc == H_PTEG_FULL)) { 749 pr_devel("Hash table group is full\n"); 750 return -1; 751 } 752 753 /* 754 * Since we try and ioremap PHBs we don't own, the pte insert 755 * will fail. However we must catch the failure in hash_page 756 * or we will loop forever, so return -2 in this case. 757 */ 758 if (unlikely(lpar_rc != H_SUCCESS)) { 759 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 760 return -2; 761 } 762 if (!(vflags & HPTE_V_BOLTED)) 763 pr_devel(" -> slot: %lu\n", slot & 7); 764 765 /* Because of iSeries, we have to pass down the secondary 766 * bucket bit here as well 767 */ 768 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 769 } 770 771 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 772 773 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 774 { 775 unsigned long slot_offset; 776 unsigned long lpar_rc; 777 int i; 778 unsigned long dummy1, dummy2; 779 780 /* pick a random slot to start at */ 781 slot_offset = mftb() & 0x7; 782 783 for (i = 0; i < HPTES_PER_GROUP; i++) { 784 785 /* don't remove a bolted entry */ 786 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 787 HPTE_V_BOLTED, &dummy1, &dummy2); 788 if (lpar_rc == H_SUCCESS) 789 return i; 790 791 /* 792 * The test for adjunct partition is performed before the 793 * ANDCOND test. H_RESOURCE may be returned, so we need to 794 * check for that as well. 795 */ 796 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 797 798 slot_offset++; 799 slot_offset &= 0x7; 800 } 801 802 return -1; 803 } 804 805 /* Called during kexec sequence with MMU off */ 806 static notrace void manual_hpte_clear_all(void) 807 { 808 unsigned long size_bytes = 1UL << ppc64_pft_size; 809 unsigned long hpte_count = size_bytes >> 4; 810 struct { 811 unsigned long pteh; 812 unsigned long ptel; 813 } ptes[4]; 814 long lpar_rc; 815 unsigned long i, j; 816 817 /* Read in batches of 4, 818 * invalidate only valid entries not in the VRMA 819 * hpte_count will be a multiple of 4 820 */ 821 for (i = 0; i < hpte_count; i += 4) { 822 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 823 if (lpar_rc != H_SUCCESS) { 824 pr_info("Failed to read hash page table at %ld err %ld\n", 825 i, lpar_rc); 826 continue; 827 } 828 for (j = 0; j < 4; j++){ 829 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 830 HPTE_V_VRMA_MASK) 831 continue; 832 if (ptes[j].pteh & HPTE_V_VALID) 833 plpar_pte_remove_raw(0, i + j, 0, 834 &(ptes[j].pteh), &(ptes[j].ptel)); 835 } 836 } 837 } 838 839 /* Called during kexec sequence with MMU off */ 840 static notrace int hcall_hpte_clear_all(void) 841 { 842 int rc; 843 844 do { 845 rc = plpar_hcall_norets(H_CLEAR_HPT); 846 } while (rc == H_CONTINUE); 847 848 return rc; 849 } 850 851 /* Called during kexec sequence with MMU off */ 852 static notrace void pseries_hpte_clear_all(void) 853 { 854 int rc; 855 856 rc = hcall_hpte_clear_all(); 857 if (rc != H_SUCCESS) 858 manual_hpte_clear_all(); 859 860 #ifdef __LITTLE_ENDIAN__ 861 /* 862 * Reset exceptions to big endian. 863 * 864 * FIXME this is a hack for kexec, we need to reset the exception 865 * endian before starting the new kernel and this is a convenient place 866 * to do it. 867 * 868 * This is also called on boot when a fadump happens. In that case we 869 * must not change the exception endian mode. 870 */ 871 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 872 pseries_big_endian_exceptions(); 873 #endif 874 } 875 876 /* 877 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 878 * the low 3 bits of flags happen to line up. So no transform is needed. 879 * We can probably optimize here and assume the high bits of newpp are 880 * already zero. For now I am paranoid. 881 */ 882 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 883 unsigned long newpp, 884 unsigned long vpn, 885 int psize, int apsize, 886 int ssize, unsigned long inv_flags) 887 { 888 unsigned long lpar_rc; 889 unsigned long flags; 890 unsigned long want_v; 891 892 want_v = hpte_encode_avpn(vpn, psize, ssize); 893 894 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 895 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 896 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 897 /* Move pp0 into bit 8 (IBM 55) */ 898 flags |= (newpp & HPTE_R_PP0) >> 55; 899 900 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 901 want_v, slot, flags, psize); 902 903 lpar_rc = plpar_pte_protect(flags, slot, want_v); 904 905 if (lpar_rc == H_NOT_FOUND) { 906 pr_devel("not found !\n"); 907 return -1; 908 } 909 910 pr_devel("ok\n"); 911 912 BUG_ON(lpar_rc != H_SUCCESS); 913 914 return 0; 915 } 916 917 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 918 { 919 long lpar_rc; 920 unsigned long i, j; 921 struct { 922 unsigned long pteh; 923 unsigned long ptel; 924 } ptes[4]; 925 926 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 927 928 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 929 if (lpar_rc != H_SUCCESS) { 930 pr_info("Failed to read hash page table at %ld err %ld\n", 931 hpte_group, lpar_rc); 932 continue; 933 } 934 935 for (j = 0; j < 4; j++) { 936 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 937 (ptes[j].pteh & HPTE_V_VALID)) 938 return i + j; 939 } 940 } 941 942 return -1; 943 } 944 945 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 946 { 947 long slot; 948 unsigned long hash; 949 unsigned long want_v; 950 unsigned long hpte_group; 951 952 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 953 want_v = hpte_encode_avpn(vpn, psize, ssize); 954 955 /* 956 * We try to keep bolted entries always in primary hash 957 * But in some case we can find them in secondary too. 958 */ 959 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 960 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 961 if (slot < 0) { 962 /* Try in secondary */ 963 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 964 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 965 if (slot < 0) 966 return -1; 967 } 968 return hpte_group + slot; 969 } 970 971 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 972 unsigned long ea, 973 int psize, int ssize) 974 { 975 unsigned long vpn; 976 unsigned long lpar_rc, slot, vsid, flags; 977 978 vsid = get_kernel_vsid(ea, ssize); 979 vpn = hpt_vpn(ea, vsid, ssize); 980 981 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 982 BUG_ON(slot == -1); 983 984 flags = newpp & (HPTE_R_PP | HPTE_R_N); 985 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 986 /* Move pp0 into bit 8 (IBM 55) */ 987 flags |= (newpp & HPTE_R_PP0) >> 55; 988 989 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 990 991 lpar_rc = plpar_pte_protect(flags, slot, 0); 992 993 BUG_ON(lpar_rc != H_SUCCESS); 994 } 995 996 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 997 int psize, int apsize, 998 int ssize, int local) 999 { 1000 unsigned long want_v; 1001 unsigned long lpar_rc; 1002 unsigned long dummy1, dummy2; 1003 1004 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1005 slot, vpn, psize, local); 1006 1007 want_v = hpte_encode_avpn(vpn, psize, ssize); 1008 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1009 if (lpar_rc == H_NOT_FOUND) 1010 return; 1011 1012 BUG_ON(lpar_rc != H_SUCCESS); 1013 } 1014 1015 1016 /* 1017 * As defined in the PAPR's section 14.5.4.1.8 1018 * The control mask doesn't include the returned reference and change bit from 1019 * the processed PTE. 1020 */ 1021 #define HBLKR_AVPN 0x0100000000000000UL 1022 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1023 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1024 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1025 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1026 1027 /* 1028 * Returned true if we are supporting this block size for the specified segment 1029 * base page size and actual page size. 1030 * 1031 * Currently, we only support 8 size block. 1032 */ 1033 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1034 { 1035 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1036 } 1037 1038 /** 1039 * H_BLOCK_REMOVE caller. 1040 * @idx should point to the latest @param entry set with a PTEX. 1041 * If PTE cannot be processed because another CPUs has already locked that 1042 * group, those entries are put back in @param starting at index 1. 1043 * If entries has to be retried and @retry_busy is set to true, these entries 1044 * are retried until success. If @retry_busy is set to false, the returned 1045 * is the number of entries yet to process. 1046 */ 1047 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1048 bool retry_busy) 1049 { 1050 unsigned long i, rc, new_idx; 1051 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1052 1053 if (idx < 2) { 1054 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1055 return 0; 1056 } 1057 again: 1058 new_idx = 0; 1059 if (idx > PLPAR_HCALL9_BUFSIZE) { 1060 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1061 idx = PLPAR_HCALL9_BUFSIZE; 1062 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1063 param[idx] = HBR_END; 1064 1065 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1066 param[0], /* AVA */ 1067 param[1], param[2], param[3], param[4], /* TS0-7 */ 1068 param[5], param[6], param[7], param[8]); 1069 if (rc == H_SUCCESS) 1070 return 0; 1071 1072 BUG_ON(rc != H_PARTIAL); 1073 1074 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1075 for (i = 0; i < idx-1; i++) { 1076 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1077 1078 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1079 param[++new_idx] = param[i+1]; 1080 continue; 1081 } 1082 1083 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1084 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1085 } 1086 1087 /* 1088 * If there were entries found busy, retry these entries if requested, 1089 * of if all the entries have to be retried. 1090 */ 1091 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1092 idx = new_idx + 1; 1093 goto again; 1094 } 1095 1096 return new_idx; 1097 } 1098 1099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1100 /* 1101 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1102 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1103 */ 1104 #define PPC64_HUGE_HPTE_BATCH 12 1105 1106 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1107 int count, int psize, int ssize) 1108 { 1109 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1110 unsigned long shift, current_vpgb, vpgb; 1111 int i, pix = 0; 1112 1113 shift = mmu_psize_defs[psize].shift; 1114 1115 for (i = 0; i < count; i++) { 1116 /* 1117 * Shifting 3 bits more on the right to get a 1118 * 8 pages aligned virtual addresse. 1119 */ 1120 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1121 if (!pix || vpgb != current_vpgb) { 1122 /* 1123 * Need to start a new 8 pages block, flush 1124 * the current one if needed. 1125 */ 1126 if (pix) 1127 (void)call_block_remove(pix, param, true); 1128 current_vpgb = vpgb; 1129 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1130 pix = 1; 1131 } 1132 1133 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1134 if (pix == PLPAR_HCALL9_BUFSIZE) { 1135 pix = call_block_remove(pix, param, false); 1136 /* 1137 * pix = 0 means that all the entries were 1138 * removed, we can start a new block. 1139 * Otherwise, this means that there are entries 1140 * to retry, and pix points to latest one, so 1141 * we should increment it and try to continue 1142 * the same block. 1143 */ 1144 if (pix) 1145 pix++; 1146 } 1147 } 1148 if (pix) 1149 (void)call_block_remove(pix, param, true); 1150 } 1151 1152 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1153 int count, int psize, int ssize) 1154 { 1155 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1156 int i = 0, pix = 0, rc; 1157 1158 for (i = 0; i < count; i++) { 1159 1160 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1161 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1162 ssize, 0); 1163 } else { 1164 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1165 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1166 pix += 2; 1167 if (pix == 8) { 1168 rc = plpar_hcall9(H_BULK_REMOVE, param, 1169 param[0], param[1], param[2], 1170 param[3], param[4], param[5], 1171 param[6], param[7]); 1172 BUG_ON(rc != H_SUCCESS); 1173 pix = 0; 1174 } 1175 } 1176 } 1177 if (pix) { 1178 param[pix] = HBR_END; 1179 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1180 param[2], param[3], param[4], param[5], 1181 param[6], param[7]); 1182 BUG_ON(rc != H_SUCCESS); 1183 } 1184 } 1185 1186 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1187 unsigned long *vpn, 1188 int count, int psize, 1189 int ssize) 1190 { 1191 unsigned long flags = 0; 1192 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1193 1194 if (lock_tlbie) 1195 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1196 1197 /* Assuming THP size is 16M */ 1198 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1199 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1200 else 1201 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1202 1203 if (lock_tlbie) 1204 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1205 } 1206 1207 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1208 unsigned long addr, 1209 unsigned char *hpte_slot_array, 1210 int psize, int ssize, int local) 1211 { 1212 int i, index = 0; 1213 unsigned long s_addr = addr; 1214 unsigned int max_hpte_count, valid; 1215 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1216 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1217 unsigned long shift, hidx, vpn = 0, hash, slot; 1218 1219 shift = mmu_psize_defs[psize].shift; 1220 max_hpte_count = 1U << (PMD_SHIFT - shift); 1221 1222 for (i = 0; i < max_hpte_count; i++) { 1223 valid = hpte_valid(hpte_slot_array, i); 1224 if (!valid) 1225 continue; 1226 hidx = hpte_hash_index(hpte_slot_array, i); 1227 1228 /* get the vpn */ 1229 addr = s_addr + (i * (1ul << shift)); 1230 vpn = hpt_vpn(addr, vsid, ssize); 1231 hash = hpt_hash(vpn, shift, ssize); 1232 if (hidx & _PTEIDX_SECONDARY) 1233 hash = ~hash; 1234 1235 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1236 slot += hidx & _PTEIDX_GROUP_IX; 1237 1238 slot_array[index] = slot; 1239 vpn_array[index] = vpn; 1240 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1241 /* 1242 * Now do a bluk invalidate 1243 */ 1244 __pSeries_lpar_hugepage_invalidate(slot_array, 1245 vpn_array, 1246 PPC64_HUGE_HPTE_BATCH, 1247 psize, ssize); 1248 index = 0; 1249 } else 1250 index++; 1251 } 1252 if (index) 1253 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1254 index, psize, ssize); 1255 } 1256 #else 1257 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1258 unsigned long addr, 1259 unsigned char *hpte_slot_array, 1260 int psize, int ssize, int local) 1261 { 1262 WARN(1, "%s called without THP support\n", __func__); 1263 } 1264 #endif 1265 1266 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1267 int psize, int ssize) 1268 { 1269 unsigned long vpn; 1270 unsigned long slot, vsid; 1271 1272 vsid = get_kernel_vsid(ea, ssize); 1273 vpn = hpt_vpn(ea, vsid, ssize); 1274 1275 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1276 if (slot == -1) 1277 return -ENOENT; 1278 1279 /* 1280 * lpar doesn't use the passed actual page size 1281 */ 1282 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1283 return 0; 1284 } 1285 1286 1287 static inline unsigned long compute_slot(real_pte_t pte, 1288 unsigned long vpn, 1289 unsigned long index, 1290 unsigned long shift, 1291 int ssize) 1292 { 1293 unsigned long slot, hash, hidx; 1294 1295 hash = hpt_hash(vpn, shift, ssize); 1296 hidx = __rpte_to_hidx(pte, index); 1297 if (hidx & _PTEIDX_SECONDARY) 1298 hash = ~hash; 1299 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1300 slot += hidx & _PTEIDX_GROUP_IX; 1301 return slot; 1302 } 1303 1304 /** 1305 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1306 * "all within the same naturally aligned 8 page virtual address block". 1307 */ 1308 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1309 unsigned long *param) 1310 { 1311 unsigned long vpn; 1312 unsigned long i, pix = 0; 1313 unsigned long index, shift, slot, current_vpgb, vpgb; 1314 real_pte_t pte; 1315 int psize, ssize; 1316 1317 psize = batch->psize; 1318 ssize = batch->ssize; 1319 1320 for (i = 0; i < number; i++) { 1321 vpn = batch->vpn[i]; 1322 pte = batch->pte[i]; 1323 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1324 /* 1325 * Shifting 3 bits more on the right to get a 1326 * 8 pages aligned virtual addresse. 1327 */ 1328 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1329 if (!pix || vpgb != current_vpgb) { 1330 /* 1331 * Need to start a new 8 pages block, flush 1332 * the current one if needed. 1333 */ 1334 if (pix) 1335 (void)call_block_remove(pix, param, 1336 true); 1337 current_vpgb = vpgb; 1338 param[0] = hpte_encode_avpn(vpn, psize, 1339 ssize); 1340 pix = 1; 1341 } 1342 1343 slot = compute_slot(pte, vpn, index, shift, ssize); 1344 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1345 1346 if (pix == PLPAR_HCALL9_BUFSIZE) { 1347 pix = call_block_remove(pix, param, false); 1348 /* 1349 * pix = 0 means that all the entries were 1350 * removed, we can start a new block. 1351 * Otherwise, this means that there are entries 1352 * to retry, and pix points to latest one, so 1353 * we should increment it and try to continue 1354 * the same block. 1355 */ 1356 if (pix) 1357 pix++; 1358 } 1359 } pte_iterate_hashed_end(); 1360 } 1361 1362 if (pix) 1363 (void)call_block_remove(pix, param, true); 1364 } 1365 1366 /* 1367 * TLB Block Invalidate Characteristics 1368 * 1369 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1370 * is able to process for each couple segment base page size, actual page size. 1371 * 1372 * The ibm,get-system-parameter properties is returning a buffer with the 1373 * following layout: 1374 * 1375 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1376 * ----------------- 1377 * TLB Block Invalidate Specifiers: 1378 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1379 * [ 1 byte Number of page sizes (N) that are supported for the specified 1380 * TLB invalidate block size ] 1381 * [ 1 byte Encoded segment base page size and actual page size 1382 * MSB=0 means 4k segment base page size and actual page size 1383 * MSB=1 the penc value in mmu_psize_def ] 1384 * ... 1385 * ----------------- 1386 * Next TLB Block Invalidate Specifiers... 1387 * ----------------- 1388 * [ 0 ] 1389 */ 1390 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1391 unsigned int block_size) 1392 { 1393 if (block_size > hblkrm_size[bpsize][psize]) 1394 hblkrm_size[bpsize][psize] = block_size; 1395 } 1396 1397 /* 1398 * Decode the Encoded segment base page size and actual page size. 1399 * PAPR specifies: 1400 * - bit 7 is the L bit 1401 * - bits 0-5 are the penc value 1402 * If the L bit is 0, this means 4K segment base page size and actual page size 1403 * otherwise the penc value should be read. 1404 */ 1405 #define HBLKRM_L_MASK 0x80 1406 #define HBLKRM_PENC_MASK 0x3f 1407 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1408 unsigned int block_size) 1409 { 1410 unsigned int bpsize, psize; 1411 1412 /* First, check the L bit, if not set, this means 4K */ 1413 if ((lp & HBLKRM_L_MASK) == 0) { 1414 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1415 return; 1416 } 1417 1418 lp &= HBLKRM_PENC_MASK; 1419 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1420 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1421 1422 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1423 if (def->penc[psize] == lp) { 1424 set_hblkrm_bloc_size(bpsize, psize, block_size); 1425 return; 1426 } 1427 } 1428 } 1429 } 1430 1431 #define SPLPAR_TLB_BIC_TOKEN 50 1432 1433 /* 1434 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1435 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1436 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1437 * (128 bytes) for the buffer to get plenty of space. 1438 */ 1439 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1440 1441 void __init pseries_lpar_read_hblkrm_characteristics(void) 1442 { 1443 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1444 int call_status, len, idx, bpsize; 1445 1446 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1447 return; 1448 1449 spin_lock(&rtas_data_buf_lock); 1450 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1451 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1452 NULL, 1453 SPLPAR_TLB_BIC_TOKEN, 1454 __pa(rtas_data_buf), 1455 RTAS_DATA_BUF_SIZE); 1456 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1457 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1458 spin_unlock(&rtas_data_buf_lock); 1459 1460 if (call_status != 0) { 1461 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1462 __FILE__, __func__, call_status); 1463 return; 1464 } 1465 1466 /* 1467 * The first two (2) bytes of the data in the buffer are the length of 1468 * the returned data, not counting these first two (2) bytes. 1469 */ 1470 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1471 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1472 pr_warn("%s too large returned buffer %d", __func__, len); 1473 return; 1474 } 1475 1476 idx = 2; 1477 while (idx < len) { 1478 u8 block_shift = local_buffer[idx++]; 1479 u32 block_size; 1480 unsigned int npsize; 1481 1482 if (!block_shift) 1483 break; 1484 1485 block_size = 1 << block_shift; 1486 1487 for (npsize = local_buffer[idx++]; 1488 npsize > 0 && idx < len; npsize--) 1489 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1490 block_size); 1491 } 1492 1493 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1494 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1495 if (hblkrm_size[bpsize][idx]) 1496 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1497 bpsize, idx, hblkrm_size[bpsize][idx]); 1498 } 1499 1500 /* 1501 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1502 * lock. 1503 */ 1504 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1505 { 1506 unsigned long vpn; 1507 unsigned long i, pix, rc; 1508 unsigned long flags = 0; 1509 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1510 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1511 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1512 unsigned long index, shift, slot; 1513 real_pte_t pte; 1514 int psize, ssize; 1515 1516 if (lock_tlbie) 1517 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1518 1519 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1520 do_block_remove(number, batch, param); 1521 goto out; 1522 } 1523 1524 psize = batch->psize; 1525 ssize = batch->ssize; 1526 pix = 0; 1527 for (i = 0; i < number; i++) { 1528 vpn = batch->vpn[i]; 1529 pte = batch->pte[i]; 1530 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1531 slot = compute_slot(pte, vpn, index, shift, ssize); 1532 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1533 /* 1534 * lpar doesn't use the passed actual page size 1535 */ 1536 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1537 0, ssize, local); 1538 } else { 1539 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1540 param[pix+1] = hpte_encode_avpn(vpn, psize, 1541 ssize); 1542 pix += 2; 1543 if (pix == 8) { 1544 rc = plpar_hcall9(H_BULK_REMOVE, param, 1545 param[0], param[1], param[2], 1546 param[3], param[4], param[5], 1547 param[6], param[7]); 1548 BUG_ON(rc != H_SUCCESS); 1549 pix = 0; 1550 } 1551 } 1552 } pte_iterate_hashed_end(); 1553 } 1554 if (pix) { 1555 param[pix] = HBR_END; 1556 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1557 param[2], param[3], param[4], param[5], 1558 param[6], param[7]); 1559 BUG_ON(rc != H_SUCCESS); 1560 } 1561 1562 out: 1563 if (lock_tlbie) 1564 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1565 } 1566 1567 static int __init disable_bulk_remove(char *str) 1568 { 1569 if (strcmp(str, "off") == 0 && 1570 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1571 pr_info("Disabling BULK_REMOVE firmware feature"); 1572 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1573 } 1574 return 1; 1575 } 1576 1577 __setup("bulk_remove=", disable_bulk_remove); 1578 1579 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1580 1581 struct hpt_resize_state { 1582 unsigned long shift; 1583 int commit_rc; 1584 }; 1585 1586 static int pseries_lpar_resize_hpt_commit(void *data) 1587 { 1588 struct hpt_resize_state *state = data; 1589 1590 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1591 if (state->commit_rc != H_SUCCESS) 1592 return -EIO; 1593 1594 /* Hypervisor has transitioned the HTAB, update our globals */ 1595 ppc64_pft_size = state->shift; 1596 htab_size_bytes = 1UL << ppc64_pft_size; 1597 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Must be called in process context. The caller must hold the 1604 * cpus_lock. 1605 */ 1606 static int pseries_lpar_resize_hpt(unsigned long shift) 1607 { 1608 struct hpt_resize_state state = { 1609 .shift = shift, 1610 .commit_rc = H_FUNCTION, 1611 }; 1612 unsigned int delay, total_delay = 0; 1613 int rc; 1614 ktime_t t0, t1, t2; 1615 1616 might_sleep(); 1617 1618 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1619 return -ENODEV; 1620 1621 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1622 1623 t0 = ktime_get(); 1624 1625 rc = plpar_resize_hpt_prepare(0, shift); 1626 while (H_IS_LONG_BUSY(rc)) { 1627 delay = get_longbusy_msecs(rc); 1628 total_delay += delay; 1629 if (total_delay > HPT_RESIZE_TIMEOUT) { 1630 /* prepare with shift==0 cancels an in-progress resize */ 1631 rc = plpar_resize_hpt_prepare(0, 0); 1632 if (rc != H_SUCCESS) 1633 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1634 rc); 1635 return -ETIMEDOUT; 1636 } 1637 msleep(delay); 1638 rc = plpar_resize_hpt_prepare(0, shift); 1639 } 1640 1641 switch (rc) { 1642 case H_SUCCESS: 1643 /* Continue on */ 1644 break; 1645 1646 case H_PARAMETER: 1647 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1648 return -EINVAL; 1649 case H_RESOURCE: 1650 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1651 return -EPERM; 1652 default: 1653 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1654 return -EIO; 1655 } 1656 1657 t1 = ktime_get(); 1658 1659 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1660 &state, NULL); 1661 1662 t2 = ktime_get(); 1663 1664 if (rc != 0) { 1665 switch (state.commit_rc) { 1666 case H_PTEG_FULL: 1667 return -ENOSPC; 1668 1669 default: 1670 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1671 state.commit_rc); 1672 return -EIO; 1673 }; 1674 } 1675 1676 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1677 shift, (long long) ktime_ms_delta(t1, t0), 1678 (long long) ktime_ms_delta(t2, t1)); 1679 1680 return 0; 1681 } 1682 1683 static int pseries_lpar_register_process_table(unsigned long base, 1684 unsigned long page_size, unsigned long table_size) 1685 { 1686 long rc; 1687 unsigned long flags = 0; 1688 1689 if (table_size) 1690 flags |= PROC_TABLE_NEW; 1691 if (radix_enabled()) { 1692 flags |= PROC_TABLE_RADIX; 1693 if (mmu_has_feature(MMU_FTR_GTSE)) 1694 flags |= PROC_TABLE_GTSE; 1695 } else 1696 flags |= PROC_TABLE_HPT_SLB; 1697 for (;;) { 1698 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 1699 page_size, table_size); 1700 if (!H_IS_LONG_BUSY(rc)) 1701 break; 1702 mdelay(get_longbusy_msecs(rc)); 1703 } 1704 if (rc != H_SUCCESS) { 1705 pr_err("Failed to register process table (rc=%ld)\n", rc); 1706 BUG(); 1707 } 1708 return rc; 1709 } 1710 1711 void __init hpte_init_pseries(void) 1712 { 1713 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1714 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1715 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1716 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1717 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1718 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1719 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1720 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1721 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1722 1723 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1724 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1725 1726 /* 1727 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1728 * to inform the hypervisor that we wish to use the HPT. 1729 */ 1730 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1731 pseries_lpar_register_process_table(0, 0, 0); 1732 } 1733 1734 #ifdef CONFIG_PPC_RADIX_MMU 1735 void radix_init_pseries(void) 1736 { 1737 pr_info("Using radix MMU under hypervisor\n"); 1738 1739 pseries_lpar_register_process_table(__pa(process_tb), 1740 0, PRTB_SIZE_SHIFT - 12); 1741 } 1742 #endif 1743 1744 #ifdef CONFIG_PPC_SMLPAR 1745 #define CMO_FREE_HINT_DEFAULT 1 1746 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1747 1748 static int __init cmo_free_hint(char *str) 1749 { 1750 char *parm; 1751 parm = strstrip(str); 1752 1753 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1754 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1755 cmo_free_hint_flag = 0; 1756 return 1; 1757 } 1758 1759 cmo_free_hint_flag = 1; 1760 pr_info("%s: CMO free page hinting is active.\n", __func__); 1761 1762 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1763 return 1; 1764 1765 return 0; 1766 } 1767 1768 __setup("cmo_free_hint=", cmo_free_hint); 1769 1770 static void pSeries_set_page_state(struct page *page, int order, 1771 unsigned long state) 1772 { 1773 int i, j; 1774 unsigned long cmo_page_sz, addr; 1775 1776 cmo_page_sz = cmo_get_page_size(); 1777 addr = __pa((unsigned long)page_address(page)); 1778 1779 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1780 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1781 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1782 } 1783 } 1784 1785 void arch_free_page(struct page *page, int order) 1786 { 1787 if (radix_enabled()) 1788 return; 1789 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1790 return; 1791 1792 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1793 } 1794 EXPORT_SYMBOL(arch_free_page); 1795 1796 #endif /* CONFIG_PPC_SMLPAR */ 1797 #endif /* CONFIG_PPC_BOOK3S_64 */ 1798 1799 #ifdef CONFIG_TRACEPOINTS 1800 #ifdef CONFIG_JUMP_LABEL 1801 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1802 1803 int hcall_tracepoint_regfunc(void) 1804 { 1805 static_key_slow_inc(&hcall_tracepoint_key); 1806 return 0; 1807 } 1808 1809 void hcall_tracepoint_unregfunc(void) 1810 { 1811 static_key_slow_dec(&hcall_tracepoint_key); 1812 } 1813 #else 1814 /* 1815 * We optimise our hcall path by placing hcall_tracepoint_refcount 1816 * directly in the TOC so we can check if the hcall tracepoints are 1817 * enabled via a single load. 1818 */ 1819 1820 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1821 extern long hcall_tracepoint_refcount; 1822 1823 int hcall_tracepoint_regfunc(void) 1824 { 1825 hcall_tracepoint_refcount++; 1826 return 0; 1827 } 1828 1829 void hcall_tracepoint_unregfunc(void) 1830 { 1831 hcall_tracepoint_refcount--; 1832 } 1833 #endif 1834 1835 /* 1836 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1837 * detected because it may indicate a problem. This will not catch all 1838 * problems with tracing code making hcalls, because the tracing might have 1839 * been invoked from a non-hcall, so the first hcall could recurse into it 1840 * without warning here, but this better than nothing. 1841 * 1842 * Hcalls with specific problems being traced should use the _notrace 1843 * plpar_hcall variants. 1844 */ 1845 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1846 1847 1848 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1849 { 1850 unsigned long flags; 1851 unsigned int *depth; 1852 1853 local_irq_save(flags); 1854 1855 depth = this_cpu_ptr(&hcall_trace_depth); 1856 1857 if (WARN_ON_ONCE(*depth)) 1858 goto out; 1859 1860 (*depth)++; 1861 preempt_disable(); 1862 trace_hcall_entry(opcode, args); 1863 (*depth)--; 1864 1865 out: 1866 local_irq_restore(flags); 1867 } 1868 1869 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1870 { 1871 unsigned long flags; 1872 unsigned int *depth; 1873 1874 local_irq_save(flags); 1875 1876 depth = this_cpu_ptr(&hcall_trace_depth); 1877 1878 if (*depth) /* Don't warn again on the way out */ 1879 goto out; 1880 1881 (*depth)++; 1882 trace_hcall_exit(opcode, retval, retbuf); 1883 preempt_enable(); 1884 (*depth)--; 1885 1886 out: 1887 local_irq_restore(flags); 1888 } 1889 #endif 1890 1891 /** 1892 * h_get_mpp 1893 * H_GET_MPP hcall returns info in 7 parms 1894 */ 1895 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1896 { 1897 int rc; 1898 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1899 1900 rc = plpar_hcall9(H_GET_MPP, retbuf); 1901 1902 mpp_data->entitled_mem = retbuf[0]; 1903 mpp_data->mapped_mem = retbuf[1]; 1904 1905 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1906 mpp_data->pool_num = retbuf[2] & 0xffff; 1907 1908 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1909 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1910 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1911 1912 mpp_data->pool_size = retbuf[4]; 1913 mpp_data->loan_request = retbuf[5]; 1914 mpp_data->backing_mem = retbuf[6]; 1915 1916 return rc; 1917 } 1918 EXPORT_SYMBOL(h_get_mpp); 1919 1920 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1921 { 1922 int rc; 1923 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1924 1925 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1926 1927 mpp_x_data->coalesced_bytes = retbuf[0]; 1928 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1929 mpp_x_data->pool_purr_cycles = retbuf[2]; 1930 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1931 1932 return rc; 1933 } 1934 1935 static unsigned long vsid_unscramble(unsigned long vsid, int ssize) 1936 { 1937 unsigned long protovsid; 1938 unsigned long va_bits = VA_BITS; 1939 unsigned long modinv, vsid_modulus; 1940 unsigned long max_mod_inv, tmp_modinv; 1941 1942 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1943 va_bits = 65; 1944 1945 if (ssize == MMU_SEGSIZE_256M) { 1946 modinv = VSID_MULINV_256M; 1947 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1948 } else { 1949 modinv = VSID_MULINV_1T; 1950 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1951 } 1952 1953 /* 1954 * vsid outside our range. 1955 */ 1956 if (vsid >= vsid_modulus) 1957 return 0; 1958 1959 /* 1960 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1961 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1962 * protovsid = (vsid * modinv) % vsid_modulus 1963 */ 1964 1965 /* Check if (vsid * modinv) overflow (63 bits) */ 1966 max_mod_inv = 0x7fffffffffffffffull / vsid; 1967 if (modinv < max_mod_inv) 1968 return (vsid * modinv) % vsid_modulus; 1969 1970 tmp_modinv = modinv/max_mod_inv; 1971 modinv %= max_mod_inv; 1972 1973 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1974 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1975 1976 return protovsid; 1977 } 1978 1979 static int __init reserve_vrma_context_id(void) 1980 { 1981 unsigned long protovsid; 1982 1983 /* 1984 * Reserve context ids which map to reserved virtual addresses. For now 1985 * we only reserve the context id which maps to the VRMA VSID. We ignore 1986 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1987 * enable adjunct support via the "ibm,client-architecture-support" 1988 * interface. 1989 */ 1990 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1991 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1992 return 0; 1993 } 1994 machine_device_initcall(pseries, reserve_vrma_context_id); 1995 1996 #ifdef CONFIG_DEBUG_FS 1997 /* debugfs file interface for vpa data */ 1998 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1999 loff_t *pos) 2000 { 2001 int cpu = (long)filp->private_data; 2002 struct lppaca *lppaca = &lppaca_of(cpu); 2003 2004 return simple_read_from_buffer(buf, len, pos, lppaca, 2005 sizeof(struct lppaca)); 2006 } 2007 2008 static const struct file_operations vpa_fops = { 2009 .open = simple_open, 2010 .read = vpa_file_read, 2011 .llseek = default_llseek, 2012 }; 2013 2014 static int __init vpa_debugfs_init(void) 2015 { 2016 char name[16]; 2017 long i; 2018 struct dentry *vpa_dir; 2019 2020 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2021 return 0; 2022 2023 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2024 2025 /* set up the per-cpu vpa file*/ 2026 for_each_possible_cpu(i) { 2027 sprintf(name, "cpu-%ld", i); 2028 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2029 } 2030 2031 return 0; 2032 } 2033 machine_arch_initcall(pseries, vpa_debugfs_init); 2034 #endif /* CONFIG_DEBUG_FS */ 2035