1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/setup.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/cputable.h> 35 #include <asm/papr-sysparm.h> 36 #include <asm/udbg.h> 37 #include <asm/smp.h> 38 #include <asm/trace.h> 39 #include <asm/firmware.h> 40 #include <asm/plpar_wrappers.h> 41 #include <asm/kexec.h> 42 #include <asm/fadump.h> 43 #include <asm/dtl.h> 44 #include <asm/vphn.h> 45 46 #include "pseries.h" 47 48 /* Flag bits for H_BULK_REMOVE */ 49 #define HBR_REQUEST 0x4000000000000000UL 50 #define HBR_RESPONSE 0x8000000000000000UL 51 #define HBR_END 0xc000000000000000UL 52 #define HBR_AVPN 0x0200000000000000UL 53 #define HBR_ANDCOND 0x0100000000000000UL 54 55 56 /* in hvCall.S */ 57 EXPORT_SYMBOL(plpar_hcall); 58 EXPORT_SYMBOL(plpar_hcall9); 59 EXPORT_SYMBOL(plpar_hcall_norets); 60 61 #ifdef CONFIG_PPC_64S_HASH_MMU 62 /* 63 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 64 * page size is that page size. 65 * 66 * The first index is the segment base page size, the second one is the actual 67 * page size. 68 */ 69 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 70 #endif 71 72 /* 73 * Due to the involved complexity, and that the current hypervisor is only 74 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 75 * buffer size to 8 size block. 76 */ 77 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 78 79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 80 static u8 dtl_mask = DTL_LOG_PREEMPT; 81 #else 82 static u8 dtl_mask; 83 #endif 84 85 void alloc_dtl_buffers(unsigned long *time_limit) 86 { 87 int cpu; 88 struct paca_struct *pp; 89 struct dtl_entry *dtl; 90 91 for_each_possible_cpu(cpu) { 92 pp = paca_ptrs[cpu]; 93 if (pp->dispatch_log) 94 continue; 95 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 96 if (!dtl) { 97 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 98 cpu); 99 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 100 pr_warn("Stolen time statistics will be unreliable\n"); 101 #endif 102 break; 103 } 104 105 pp->dtl_ridx = 0; 106 pp->dispatch_log = dtl; 107 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 108 pp->dtl_curr = dtl; 109 110 if (time_limit && time_after(jiffies, *time_limit)) { 111 cond_resched(); 112 *time_limit = jiffies + HZ; 113 } 114 } 115 } 116 117 void register_dtl_buffer(int cpu) 118 { 119 long ret; 120 struct paca_struct *pp; 121 struct dtl_entry *dtl; 122 int hwcpu = get_hard_smp_processor_id(cpu); 123 124 pp = paca_ptrs[cpu]; 125 dtl = pp->dispatch_log; 126 if (dtl && dtl_mask) { 127 pp->dtl_ridx = 0; 128 pp->dtl_curr = dtl; 129 lppaca_of(cpu).dtl_idx = 0; 130 131 /* hypervisor reads buffer length from this field */ 132 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 133 ret = register_dtl(hwcpu, __pa(dtl)); 134 if (ret) 135 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 136 cpu, hwcpu, ret); 137 138 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 139 } 140 } 141 142 #ifdef CONFIG_PPC_SPLPAR 143 struct dtl_worker { 144 struct delayed_work work; 145 int cpu; 146 }; 147 148 struct vcpu_dispatch_data { 149 int last_disp_cpu; 150 151 int total_disp; 152 153 int same_cpu_disp; 154 int same_chip_disp; 155 int diff_chip_disp; 156 int far_chip_disp; 157 158 int numa_home_disp; 159 int numa_remote_disp; 160 int numa_far_disp; 161 }; 162 163 /* 164 * This represents the number of cpus in the hypervisor. Since there is no 165 * architected way to discover the number of processors in the host, we 166 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 167 * is sufficient for our purposes. This will need to be tweaked if 168 * CONFIG_NR_CPUS is changed. 169 */ 170 #define NR_CPUS_H NR_CPUS 171 172 DEFINE_RWLOCK(dtl_access_lock); 173 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 174 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 175 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 176 static enum cpuhp_state dtl_worker_state; 177 static DEFINE_MUTEX(dtl_enable_mutex); 178 static int vcpudispatch_stats_on __read_mostly; 179 static int vcpudispatch_stats_freq = 50; 180 static __be32 *vcpu_associativity, *pcpu_associativity; 181 182 183 static void free_dtl_buffers(unsigned long *time_limit) 184 { 185 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 186 int cpu; 187 struct paca_struct *pp; 188 189 for_each_possible_cpu(cpu) { 190 pp = paca_ptrs[cpu]; 191 if (!pp->dispatch_log) 192 continue; 193 kmem_cache_free(dtl_cache, pp->dispatch_log); 194 pp->dtl_ridx = 0; 195 pp->dispatch_log = 0; 196 pp->dispatch_log_end = 0; 197 pp->dtl_curr = 0; 198 199 if (time_limit && time_after(jiffies, *time_limit)) { 200 cond_resched(); 201 *time_limit = jiffies + HZ; 202 } 203 } 204 #endif 205 } 206 207 static int init_cpu_associativity(void) 208 { 209 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 211 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 212 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 213 214 if (!vcpu_associativity || !pcpu_associativity) { 215 pr_err("error allocating memory for associativity information\n"); 216 return -ENOMEM; 217 } 218 219 return 0; 220 } 221 222 static void destroy_cpu_associativity(void) 223 { 224 kfree(vcpu_associativity); 225 kfree(pcpu_associativity); 226 vcpu_associativity = pcpu_associativity = 0; 227 } 228 229 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 230 { 231 __be32 *assoc; 232 int rc = 0; 233 234 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 235 if (!assoc[0]) { 236 rc = hcall_vphn(cpu, flag, &assoc[0]); 237 if (rc) 238 return NULL; 239 } 240 241 return assoc; 242 } 243 244 static __be32 *get_pcpu_associativity(int cpu) 245 { 246 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 247 } 248 249 static __be32 *get_vcpu_associativity(int cpu) 250 { 251 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 252 } 253 254 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 255 { 256 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 257 258 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 259 return -EINVAL; 260 261 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 262 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 263 264 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 265 return -EIO; 266 267 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 268 } 269 270 static int cpu_home_node_dispatch_distance(int disp_cpu) 271 { 272 __be32 *disp_cpu_assoc, *vcpu_assoc; 273 int vcpu_id = smp_processor_id(); 274 275 if (disp_cpu >= NR_CPUS_H) { 276 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 277 disp_cpu, NR_CPUS_H); 278 return -EINVAL; 279 } 280 281 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 282 vcpu_assoc = get_vcpu_associativity(vcpu_id); 283 284 if (!disp_cpu_assoc || !vcpu_assoc) 285 return -EIO; 286 287 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 288 } 289 290 static void update_vcpu_disp_stat(int disp_cpu) 291 { 292 struct vcpu_dispatch_data *disp; 293 int distance; 294 295 disp = this_cpu_ptr(&vcpu_disp_data); 296 if (disp->last_disp_cpu == -1) { 297 disp->last_disp_cpu = disp_cpu; 298 return; 299 } 300 301 disp->total_disp++; 302 303 if (disp->last_disp_cpu == disp_cpu || 304 (cpu_first_thread_sibling(disp->last_disp_cpu) == 305 cpu_first_thread_sibling(disp_cpu))) 306 disp->same_cpu_disp++; 307 else { 308 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 309 disp_cpu); 310 if (distance < 0) 311 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 312 smp_processor_id()); 313 else { 314 switch (distance) { 315 case 0: 316 disp->same_chip_disp++; 317 break; 318 case 1: 319 disp->diff_chip_disp++; 320 break; 321 case 2: 322 disp->far_chip_disp++; 323 break; 324 default: 325 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 326 smp_processor_id(), 327 disp->last_disp_cpu, 328 disp_cpu, 329 distance); 330 } 331 } 332 } 333 334 distance = cpu_home_node_dispatch_distance(disp_cpu); 335 if (distance < 0) 336 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 337 smp_processor_id()); 338 else { 339 switch (distance) { 340 case 0: 341 disp->numa_home_disp++; 342 break; 343 case 1: 344 disp->numa_remote_disp++; 345 break; 346 case 2: 347 disp->numa_far_disp++; 348 break; 349 default: 350 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 351 smp_processor_id(), 352 disp_cpu, 353 distance); 354 } 355 } 356 357 disp->last_disp_cpu = disp_cpu; 358 } 359 360 static void process_dtl_buffer(struct work_struct *work) 361 { 362 struct dtl_entry dtle; 363 u64 i = __this_cpu_read(dtl_entry_ridx); 364 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 365 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 366 struct lppaca *vpa = local_paca->lppaca_ptr; 367 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 368 369 if (!local_paca->dispatch_log) 370 return; 371 372 /* if we have been migrated away, we cancel ourself */ 373 if (d->cpu != smp_processor_id()) { 374 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 375 smp_processor_id()); 376 return; 377 } 378 379 if (i == be64_to_cpu(vpa->dtl_idx)) 380 goto out; 381 382 while (i < be64_to_cpu(vpa->dtl_idx)) { 383 dtle = *dtl; 384 barrier(); 385 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 386 /* buffer has overflowed */ 387 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 388 d->cpu, 389 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 390 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 391 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 392 continue; 393 } 394 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 395 ++i; 396 ++dtl; 397 if (dtl == dtl_end) 398 dtl = local_paca->dispatch_log; 399 } 400 401 __this_cpu_write(dtl_entry_ridx, i); 402 403 out: 404 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 405 HZ / vcpudispatch_stats_freq); 406 } 407 408 static int dtl_worker_online(unsigned int cpu) 409 { 410 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 411 412 memset(d, 0, sizeof(*d)); 413 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 414 d->cpu = cpu; 415 416 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 417 per_cpu(dtl_entry_ridx, cpu) = 0; 418 register_dtl_buffer(cpu); 419 #else 420 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 421 #endif 422 423 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 424 return 0; 425 } 426 427 static int dtl_worker_offline(unsigned int cpu) 428 { 429 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 430 431 cancel_delayed_work_sync(&d->work); 432 433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 434 unregister_dtl(get_hard_smp_processor_id(cpu)); 435 #endif 436 437 return 0; 438 } 439 440 static void set_global_dtl_mask(u8 mask) 441 { 442 int cpu; 443 444 dtl_mask = mask; 445 for_each_present_cpu(cpu) 446 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 447 } 448 449 static void reset_global_dtl_mask(void) 450 { 451 int cpu; 452 453 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 454 dtl_mask = DTL_LOG_PREEMPT; 455 #else 456 dtl_mask = 0; 457 #endif 458 for_each_present_cpu(cpu) 459 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 460 } 461 462 static int dtl_worker_enable(unsigned long *time_limit) 463 { 464 int rc = 0, state; 465 466 if (!write_trylock(&dtl_access_lock)) { 467 rc = -EBUSY; 468 goto out; 469 } 470 471 set_global_dtl_mask(DTL_LOG_ALL); 472 473 /* Setup dtl buffers and register those */ 474 alloc_dtl_buffers(time_limit); 475 476 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 477 dtl_worker_online, dtl_worker_offline); 478 if (state < 0) { 479 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 480 free_dtl_buffers(time_limit); 481 reset_global_dtl_mask(); 482 write_unlock(&dtl_access_lock); 483 rc = -EINVAL; 484 goto out; 485 } 486 dtl_worker_state = state; 487 488 out: 489 return rc; 490 } 491 492 static void dtl_worker_disable(unsigned long *time_limit) 493 { 494 cpuhp_remove_state(dtl_worker_state); 495 free_dtl_buffers(time_limit); 496 reset_global_dtl_mask(); 497 write_unlock(&dtl_access_lock); 498 } 499 500 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 501 size_t count, loff_t *ppos) 502 { 503 unsigned long time_limit = jiffies + HZ; 504 struct vcpu_dispatch_data *disp; 505 int rc, cmd, cpu; 506 char buf[16]; 507 508 if (count > 15) 509 return -EINVAL; 510 511 if (copy_from_user(buf, p, count)) 512 return -EFAULT; 513 514 buf[count] = 0; 515 rc = kstrtoint(buf, 0, &cmd); 516 if (rc || cmd < 0 || cmd > 1) { 517 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 518 return rc ? rc : -EINVAL; 519 } 520 521 mutex_lock(&dtl_enable_mutex); 522 523 if ((cmd == 0 && !vcpudispatch_stats_on) || 524 (cmd == 1 && vcpudispatch_stats_on)) 525 goto out; 526 527 if (cmd) { 528 rc = init_cpu_associativity(); 529 if (rc) { 530 destroy_cpu_associativity(); 531 goto out; 532 } 533 534 for_each_possible_cpu(cpu) { 535 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 536 memset(disp, 0, sizeof(*disp)); 537 disp->last_disp_cpu = -1; 538 } 539 540 rc = dtl_worker_enable(&time_limit); 541 if (rc) { 542 destroy_cpu_associativity(); 543 goto out; 544 } 545 } else { 546 dtl_worker_disable(&time_limit); 547 destroy_cpu_associativity(); 548 } 549 550 vcpudispatch_stats_on = cmd; 551 552 out: 553 mutex_unlock(&dtl_enable_mutex); 554 if (rc) 555 return rc; 556 return count; 557 } 558 559 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 560 { 561 int cpu; 562 struct vcpu_dispatch_data *disp; 563 564 if (!vcpudispatch_stats_on) { 565 seq_puts(p, "off\n"); 566 return 0; 567 } 568 569 for_each_online_cpu(cpu) { 570 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 571 seq_printf(p, "cpu%d", cpu); 572 seq_put_decimal_ull(p, " ", disp->total_disp); 573 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 574 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 575 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 576 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 577 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 578 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 579 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 580 seq_puts(p, "\n"); 581 } 582 583 return 0; 584 } 585 586 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 587 { 588 return single_open(file, vcpudispatch_stats_display, NULL); 589 } 590 591 static const struct proc_ops vcpudispatch_stats_proc_ops = { 592 .proc_open = vcpudispatch_stats_open, 593 .proc_read = seq_read, 594 .proc_write = vcpudispatch_stats_write, 595 .proc_lseek = seq_lseek, 596 .proc_release = single_release, 597 }; 598 599 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 600 const char __user *p, size_t count, loff_t *ppos) 601 { 602 int rc, freq; 603 char buf[16]; 604 605 if (count > 15) 606 return -EINVAL; 607 608 if (copy_from_user(buf, p, count)) 609 return -EFAULT; 610 611 buf[count] = 0; 612 rc = kstrtoint(buf, 0, &freq); 613 if (rc || freq < 1 || freq > HZ) { 614 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 615 HZ); 616 return rc ? rc : -EINVAL; 617 } 618 619 vcpudispatch_stats_freq = freq; 620 621 return count; 622 } 623 624 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 625 { 626 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 627 return 0; 628 } 629 630 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 631 { 632 return single_open(file, vcpudispatch_stats_freq_display, NULL); 633 } 634 635 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 636 .proc_open = vcpudispatch_stats_freq_open, 637 .proc_read = seq_read, 638 .proc_write = vcpudispatch_stats_freq_write, 639 .proc_lseek = seq_lseek, 640 .proc_release = single_release, 641 }; 642 643 static int __init vcpudispatch_stats_procfs_init(void) 644 { 645 if (!lppaca_shared_proc()) 646 return 0; 647 648 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 649 &vcpudispatch_stats_proc_ops)) 650 pr_err("vcpudispatch_stats: error creating procfs file\n"); 651 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 652 &vcpudispatch_stats_freq_proc_ops)) 653 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 654 655 return 0; 656 } 657 658 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 659 660 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 661 u64 pseries_paravirt_steal_clock(int cpu) 662 { 663 struct lppaca *lppaca = &lppaca_of(cpu); 664 665 /* 666 * VPA steal time counters are reported at TB frequency. Hence do a 667 * conversion to ns before returning 668 */ 669 return tb_to_ns(be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) + 670 be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb))); 671 } 672 #endif 673 674 #endif /* CONFIG_PPC_SPLPAR */ 675 676 void vpa_init(int cpu) 677 { 678 int hwcpu = get_hard_smp_processor_id(cpu); 679 unsigned long addr; 680 long ret; 681 682 /* 683 * The spec says it "may be problematic" if CPU x registers the VPA of 684 * CPU y. We should never do that, but wail if we ever do. 685 */ 686 WARN_ON(cpu != smp_processor_id()); 687 688 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 689 lppaca_of(cpu).vmxregs_in_use = 1; 690 691 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 692 lppaca_of(cpu).ebb_regs_in_use = 1; 693 694 addr = __pa(&lppaca_of(cpu)); 695 ret = register_vpa(hwcpu, addr); 696 697 if (ret) { 698 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 699 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 700 return; 701 } 702 703 #ifdef CONFIG_PPC_64S_HASH_MMU 704 /* 705 * PAPR says this feature is SLB-Buffer but firmware never 706 * reports that. All SPLPAR support SLB shadow buffer. 707 */ 708 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 709 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 710 ret = register_slb_shadow(hwcpu, addr); 711 if (ret) 712 pr_err("WARNING: SLB shadow buffer registration for " 713 "cpu %d (hw %d) of area %lx failed with %ld\n", 714 cpu, hwcpu, addr, ret); 715 } 716 #endif /* CONFIG_PPC_64S_HASH_MMU */ 717 718 /* 719 * Register dispatch trace log, if one has been allocated. 720 */ 721 register_dtl_buffer(cpu); 722 } 723 724 #ifdef CONFIG_PPC_BOOK3S_64 725 726 static int __init pseries_lpar_register_process_table(unsigned long base, 727 unsigned long page_size, unsigned long table_size) 728 { 729 long rc; 730 unsigned long flags = 0; 731 732 if (table_size) 733 flags |= PROC_TABLE_NEW; 734 if (radix_enabled()) { 735 flags |= PROC_TABLE_RADIX; 736 if (mmu_has_feature(MMU_FTR_GTSE)) 737 flags |= PROC_TABLE_GTSE; 738 } else 739 flags |= PROC_TABLE_HPT_SLB; 740 for (;;) { 741 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 742 page_size, table_size); 743 if (!H_IS_LONG_BUSY(rc)) 744 break; 745 mdelay(get_longbusy_msecs(rc)); 746 } 747 if (rc != H_SUCCESS) { 748 pr_err("Failed to register process table (rc=%ld)\n", rc); 749 BUG(); 750 } 751 return rc; 752 } 753 754 #ifdef CONFIG_PPC_64S_HASH_MMU 755 756 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 757 unsigned long vpn, unsigned long pa, 758 unsigned long rflags, unsigned long vflags, 759 int psize, int apsize, int ssize) 760 { 761 unsigned long lpar_rc; 762 unsigned long flags; 763 unsigned long slot; 764 unsigned long hpte_v, hpte_r; 765 766 if (!(vflags & HPTE_V_BOLTED)) 767 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 768 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 769 hpte_group, vpn, pa, rflags, vflags, psize); 770 771 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 772 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 773 774 if (!(vflags & HPTE_V_BOLTED)) 775 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 776 777 /* Now fill in the actual HPTE */ 778 /* Set CEC cookie to 0 */ 779 /* Zero page = 0 */ 780 /* I-cache Invalidate = 0 */ 781 /* I-cache synchronize = 0 */ 782 /* Exact = 0 */ 783 flags = 0; 784 785 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 786 flags |= H_COALESCE_CAND; 787 788 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 789 if (unlikely(lpar_rc == H_PTEG_FULL)) { 790 pr_devel("Hash table group is full\n"); 791 return -1; 792 } 793 794 /* 795 * Since we try and ioremap PHBs we don't own, the pte insert 796 * will fail. However we must catch the failure in hash_page 797 * or we will loop forever, so return -2 in this case. 798 */ 799 if (unlikely(lpar_rc != H_SUCCESS)) { 800 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 801 return -2; 802 } 803 if (!(vflags & HPTE_V_BOLTED)) 804 pr_devel(" -> slot: %lu\n", slot & 7); 805 806 /* Because of iSeries, we have to pass down the secondary 807 * bucket bit here as well 808 */ 809 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 810 } 811 812 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 813 814 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 815 { 816 unsigned long slot_offset; 817 unsigned long lpar_rc; 818 int i; 819 unsigned long dummy1, dummy2; 820 821 /* pick a random slot to start at */ 822 slot_offset = mftb() & 0x7; 823 824 for (i = 0; i < HPTES_PER_GROUP; i++) { 825 826 /* don't remove a bolted entry */ 827 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 828 HPTE_V_BOLTED, &dummy1, &dummy2); 829 if (lpar_rc == H_SUCCESS) 830 return i; 831 832 /* 833 * The test for adjunct partition is performed before the 834 * ANDCOND test. H_RESOURCE may be returned, so we need to 835 * check for that as well. 836 */ 837 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 838 839 slot_offset++; 840 slot_offset &= 0x7; 841 } 842 843 return -1; 844 } 845 846 /* Called during kexec sequence with MMU off */ 847 static notrace void manual_hpte_clear_all(void) 848 { 849 unsigned long size_bytes = 1UL << ppc64_pft_size; 850 unsigned long hpte_count = size_bytes >> 4; 851 struct { 852 unsigned long pteh; 853 unsigned long ptel; 854 } ptes[4]; 855 long lpar_rc; 856 unsigned long i, j; 857 858 /* Read in batches of 4, 859 * invalidate only valid entries not in the VRMA 860 * hpte_count will be a multiple of 4 861 */ 862 for (i = 0; i < hpte_count; i += 4) { 863 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 864 if (lpar_rc != H_SUCCESS) { 865 pr_info("Failed to read hash page table at %ld err %ld\n", 866 i, lpar_rc); 867 continue; 868 } 869 for (j = 0; j < 4; j++){ 870 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 871 HPTE_V_VRMA_MASK) 872 continue; 873 if (ptes[j].pteh & HPTE_V_VALID) 874 plpar_pte_remove_raw(0, i + j, 0, 875 &(ptes[j].pteh), &(ptes[j].ptel)); 876 } 877 } 878 } 879 880 /* Called during kexec sequence with MMU off */ 881 static notrace int hcall_hpte_clear_all(void) 882 { 883 int rc; 884 885 do { 886 rc = plpar_hcall_norets(H_CLEAR_HPT); 887 } while (rc == H_CONTINUE); 888 889 return rc; 890 } 891 892 /* Called during kexec sequence with MMU off */ 893 static notrace void pseries_hpte_clear_all(void) 894 { 895 int rc; 896 897 rc = hcall_hpte_clear_all(); 898 if (rc != H_SUCCESS) 899 manual_hpte_clear_all(); 900 901 #ifdef __LITTLE_ENDIAN__ 902 /* 903 * Reset exceptions to big endian. 904 * 905 * FIXME this is a hack for kexec, we need to reset the exception 906 * endian before starting the new kernel and this is a convenient place 907 * to do it. 908 * 909 * This is also called on boot when a fadump happens. In that case we 910 * must not change the exception endian mode. 911 */ 912 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 913 pseries_big_endian_exceptions(); 914 #endif 915 } 916 917 /* 918 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 919 * the low 3 bits of flags happen to line up. So no transform is needed. 920 * We can probably optimize here and assume the high bits of newpp are 921 * already zero. For now I am paranoid. 922 */ 923 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 924 unsigned long newpp, 925 unsigned long vpn, 926 int psize, int apsize, 927 int ssize, unsigned long inv_flags) 928 { 929 unsigned long lpar_rc; 930 unsigned long flags; 931 unsigned long want_v; 932 933 want_v = hpte_encode_avpn(vpn, psize, ssize); 934 935 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 936 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 937 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 938 /* Move pp0 into bit 8 (IBM 55) */ 939 flags |= (newpp & HPTE_R_PP0) >> 55; 940 941 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 942 want_v, slot, flags, psize); 943 944 lpar_rc = plpar_pte_protect(flags, slot, want_v); 945 946 if (lpar_rc == H_NOT_FOUND) { 947 pr_devel("not found !\n"); 948 return -1; 949 } 950 951 pr_devel("ok\n"); 952 953 BUG_ON(lpar_rc != H_SUCCESS); 954 955 return 0; 956 } 957 958 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 959 { 960 long lpar_rc; 961 unsigned long i, j; 962 struct { 963 unsigned long pteh; 964 unsigned long ptel; 965 } ptes[4]; 966 967 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 968 969 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 970 if (lpar_rc != H_SUCCESS) { 971 pr_info("Failed to read hash page table at %ld err %ld\n", 972 hpte_group, lpar_rc); 973 continue; 974 } 975 976 for (j = 0; j < 4; j++) { 977 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 978 (ptes[j].pteh & HPTE_V_VALID)) 979 return i + j; 980 } 981 } 982 983 return -1; 984 } 985 986 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 987 { 988 long slot; 989 unsigned long hash; 990 unsigned long want_v; 991 unsigned long hpte_group; 992 993 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 994 want_v = hpte_encode_avpn(vpn, psize, ssize); 995 996 /* 997 * We try to keep bolted entries always in primary hash 998 * But in some case we can find them in secondary too. 999 */ 1000 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1001 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1002 if (slot < 0) { 1003 /* Try in secondary */ 1004 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 1005 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1006 if (slot < 0) 1007 return -1; 1008 } 1009 return hpte_group + slot; 1010 } 1011 1012 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1013 unsigned long ea, 1014 int psize, int ssize) 1015 { 1016 unsigned long vpn; 1017 unsigned long lpar_rc, slot, vsid, flags; 1018 1019 vsid = get_kernel_vsid(ea, ssize); 1020 vpn = hpt_vpn(ea, vsid, ssize); 1021 1022 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1023 BUG_ON(slot == -1); 1024 1025 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1026 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1027 /* Move pp0 into bit 8 (IBM 55) */ 1028 flags |= (newpp & HPTE_R_PP0) >> 55; 1029 1030 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1031 1032 lpar_rc = plpar_pte_protect(flags, slot, 0); 1033 1034 BUG_ON(lpar_rc != H_SUCCESS); 1035 } 1036 1037 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1038 int psize, int apsize, 1039 int ssize, int local) 1040 { 1041 unsigned long want_v; 1042 unsigned long lpar_rc; 1043 unsigned long dummy1, dummy2; 1044 1045 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1046 slot, vpn, psize, local); 1047 1048 want_v = hpte_encode_avpn(vpn, psize, ssize); 1049 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1050 if (lpar_rc == H_NOT_FOUND) 1051 return; 1052 1053 BUG_ON(lpar_rc != H_SUCCESS); 1054 } 1055 1056 1057 /* 1058 * As defined in the PAPR's section 14.5.4.1.8 1059 * The control mask doesn't include the returned reference and change bit from 1060 * the processed PTE. 1061 */ 1062 #define HBLKR_AVPN 0x0100000000000000UL 1063 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1064 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1065 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1066 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1067 1068 /* 1069 * Returned true if we are supporting this block size for the specified segment 1070 * base page size and actual page size. 1071 * 1072 * Currently, we only support 8 size block. 1073 */ 1074 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1075 { 1076 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1077 } 1078 1079 /** 1080 * H_BLOCK_REMOVE caller. 1081 * @idx should point to the latest @param entry set with a PTEX. 1082 * If PTE cannot be processed because another CPUs has already locked that 1083 * group, those entries are put back in @param starting at index 1. 1084 * If entries has to be retried and @retry_busy is set to true, these entries 1085 * are retried until success. If @retry_busy is set to false, the returned 1086 * is the number of entries yet to process. 1087 */ 1088 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1089 bool retry_busy) 1090 { 1091 unsigned long i, rc, new_idx; 1092 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1093 1094 if (idx < 2) { 1095 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1096 return 0; 1097 } 1098 again: 1099 new_idx = 0; 1100 if (idx > PLPAR_HCALL9_BUFSIZE) { 1101 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1102 idx = PLPAR_HCALL9_BUFSIZE; 1103 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1104 param[idx] = HBR_END; 1105 1106 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1107 param[0], /* AVA */ 1108 param[1], param[2], param[3], param[4], /* TS0-7 */ 1109 param[5], param[6], param[7], param[8]); 1110 if (rc == H_SUCCESS) 1111 return 0; 1112 1113 BUG_ON(rc != H_PARTIAL); 1114 1115 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1116 for (i = 0; i < idx-1; i++) { 1117 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1118 1119 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1120 param[++new_idx] = param[i+1]; 1121 continue; 1122 } 1123 1124 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1125 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1126 } 1127 1128 /* 1129 * If there were entries found busy, retry these entries if requested, 1130 * of if all the entries have to be retried. 1131 */ 1132 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1133 idx = new_idx + 1; 1134 goto again; 1135 } 1136 1137 return new_idx; 1138 } 1139 1140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1141 /* 1142 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1143 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1144 */ 1145 #define PPC64_HUGE_HPTE_BATCH 12 1146 1147 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1148 int count, int psize, int ssize) 1149 { 1150 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1151 unsigned long shift, current_vpgb, vpgb; 1152 int i, pix = 0; 1153 1154 shift = mmu_psize_defs[psize].shift; 1155 1156 for (i = 0; i < count; i++) { 1157 /* 1158 * Shifting 3 bits more on the right to get a 1159 * 8 pages aligned virtual addresse. 1160 */ 1161 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1162 if (!pix || vpgb != current_vpgb) { 1163 /* 1164 * Need to start a new 8 pages block, flush 1165 * the current one if needed. 1166 */ 1167 if (pix) 1168 (void)call_block_remove(pix, param, true); 1169 current_vpgb = vpgb; 1170 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1171 pix = 1; 1172 } 1173 1174 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1175 if (pix == PLPAR_HCALL9_BUFSIZE) { 1176 pix = call_block_remove(pix, param, false); 1177 /* 1178 * pix = 0 means that all the entries were 1179 * removed, we can start a new block. 1180 * Otherwise, this means that there are entries 1181 * to retry, and pix points to latest one, so 1182 * we should increment it and try to continue 1183 * the same block. 1184 */ 1185 if (pix) 1186 pix++; 1187 } 1188 } 1189 if (pix) 1190 (void)call_block_remove(pix, param, true); 1191 } 1192 1193 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1194 int count, int psize, int ssize) 1195 { 1196 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1197 int i = 0, pix = 0, rc; 1198 1199 for (i = 0; i < count; i++) { 1200 1201 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1202 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1203 ssize, 0); 1204 } else { 1205 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1206 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1207 pix += 2; 1208 if (pix == 8) { 1209 rc = plpar_hcall9(H_BULK_REMOVE, param, 1210 param[0], param[1], param[2], 1211 param[3], param[4], param[5], 1212 param[6], param[7]); 1213 BUG_ON(rc != H_SUCCESS); 1214 pix = 0; 1215 } 1216 } 1217 } 1218 if (pix) { 1219 param[pix] = HBR_END; 1220 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1221 param[2], param[3], param[4], param[5], 1222 param[6], param[7]); 1223 BUG_ON(rc != H_SUCCESS); 1224 } 1225 } 1226 1227 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1228 unsigned long *vpn, 1229 int count, int psize, 1230 int ssize) 1231 { 1232 unsigned long flags = 0; 1233 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1234 1235 if (lock_tlbie) 1236 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1237 1238 /* Assuming THP size is 16M */ 1239 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1240 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1241 else 1242 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1243 1244 if (lock_tlbie) 1245 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1246 } 1247 1248 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1249 unsigned long addr, 1250 unsigned char *hpte_slot_array, 1251 int psize, int ssize, int local) 1252 { 1253 int i, index = 0; 1254 unsigned long s_addr = addr; 1255 unsigned int max_hpte_count, valid; 1256 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1257 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1258 unsigned long shift, hidx, vpn = 0, hash, slot; 1259 1260 shift = mmu_psize_defs[psize].shift; 1261 max_hpte_count = 1U << (PMD_SHIFT - shift); 1262 1263 for (i = 0; i < max_hpte_count; i++) { 1264 valid = hpte_valid(hpte_slot_array, i); 1265 if (!valid) 1266 continue; 1267 hidx = hpte_hash_index(hpte_slot_array, i); 1268 1269 /* get the vpn */ 1270 addr = s_addr + (i * (1ul << shift)); 1271 vpn = hpt_vpn(addr, vsid, ssize); 1272 hash = hpt_hash(vpn, shift, ssize); 1273 if (hidx & _PTEIDX_SECONDARY) 1274 hash = ~hash; 1275 1276 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1277 slot += hidx & _PTEIDX_GROUP_IX; 1278 1279 slot_array[index] = slot; 1280 vpn_array[index] = vpn; 1281 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1282 /* 1283 * Now do a bluk invalidate 1284 */ 1285 __pSeries_lpar_hugepage_invalidate(slot_array, 1286 vpn_array, 1287 PPC64_HUGE_HPTE_BATCH, 1288 psize, ssize); 1289 index = 0; 1290 } else 1291 index++; 1292 } 1293 if (index) 1294 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1295 index, psize, ssize); 1296 } 1297 #else 1298 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1299 unsigned long addr, 1300 unsigned char *hpte_slot_array, 1301 int psize, int ssize, int local) 1302 { 1303 WARN(1, "%s called without THP support\n", __func__); 1304 } 1305 #endif 1306 1307 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1308 int psize, int ssize) 1309 { 1310 unsigned long vpn; 1311 unsigned long slot, vsid; 1312 1313 vsid = get_kernel_vsid(ea, ssize); 1314 vpn = hpt_vpn(ea, vsid, ssize); 1315 1316 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1317 if (slot == -1) 1318 return -ENOENT; 1319 1320 /* 1321 * lpar doesn't use the passed actual page size 1322 */ 1323 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1324 return 0; 1325 } 1326 1327 1328 static inline unsigned long compute_slot(real_pte_t pte, 1329 unsigned long vpn, 1330 unsigned long index, 1331 unsigned long shift, 1332 int ssize) 1333 { 1334 unsigned long slot, hash, hidx; 1335 1336 hash = hpt_hash(vpn, shift, ssize); 1337 hidx = __rpte_to_hidx(pte, index); 1338 if (hidx & _PTEIDX_SECONDARY) 1339 hash = ~hash; 1340 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1341 slot += hidx & _PTEIDX_GROUP_IX; 1342 return slot; 1343 } 1344 1345 /** 1346 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1347 * "all within the same naturally aligned 8 page virtual address block". 1348 */ 1349 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1350 unsigned long *param) 1351 { 1352 unsigned long vpn; 1353 unsigned long i, pix = 0; 1354 unsigned long index, shift, slot, current_vpgb, vpgb; 1355 real_pte_t pte; 1356 int psize, ssize; 1357 1358 psize = batch->psize; 1359 ssize = batch->ssize; 1360 1361 for (i = 0; i < number; i++) { 1362 vpn = batch->vpn[i]; 1363 pte = batch->pte[i]; 1364 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1365 /* 1366 * Shifting 3 bits more on the right to get a 1367 * 8 pages aligned virtual addresse. 1368 */ 1369 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1370 if (!pix || vpgb != current_vpgb) { 1371 /* 1372 * Need to start a new 8 pages block, flush 1373 * the current one if needed. 1374 */ 1375 if (pix) 1376 (void)call_block_remove(pix, param, 1377 true); 1378 current_vpgb = vpgb; 1379 param[0] = hpte_encode_avpn(vpn, psize, 1380 ssize); 1381 pix = 1; 1382 } 1383 1384 slot = compute_slot(pte, vpn, index, shift, ssize); 1385 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1386 1387 if (pix == PLPAR_HCALL9_BUFSIZE) { 1388 pix = call_block_remove(pix, param, false); 1389 /* 1390 * pix = 0 means that all the entries were 1391 * removed, we can start a new block. 1392 * Otherwise, this means that there are entries 1393 * to retry, and pix points to latest one, so 1394 * we should increment it and try to continue 1395 * the same block. 1396 */ 1397 if (pix) 1398 pix++; 1399 } 1400 } pte_iterate_hashed_end(); 1401 } 1402 1403 if (pix) 1404 (void)call_block_remove(pix, param, true); 1405 } 1406 1407 /* 1408 * TLB Block Invalidate Characteristics 1409 * 1410 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1411 * is able to process for each couple segment base page size, actual page size. 1412 * 1413 * The ibm,get-system-parameter properties is returning a buffer with the 1414 * following layout: 1415 * 1416 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1417 * ----------------- 1418 * TLB Block Invalidate Specifiers: 1419 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1420 * [ 1 byte Number of page sizes (N) that are supported for the specified 1421 * TLB invalidate block size ] 1422 * [ 1 byte Encoded segment base page size and actual page size 1423 * MSB=0 means 4k segment base page size and actual page size 1424 * MSB=1 the penc value in mmu_psize_def ] 1425 * ... 1426 * ----------------- 1427 * Next TLB Block Invalidate Specifiers... 1428 * ----------------- 1429 * [ 0 ] 1430 */ 1431 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1432 unsigned int block_size) 1433 { 1434 if (block_size > hblkrm_size[bpsize][psize]) 1435 hblkrm_size[bpsize][psize] = block_size; 1436 } 1437 1438 /* 1439 * Decode the Encoded segment base page size and actual page size. 1440 * PAPR specifies: 1441 * - bit 7 is the L bit 1442 * - bits 0-5 are the penc value 1443 * If the L bit is 0, this means 4K segment base page size and actual page size 1444 * otherwise the penc value should be read. 1445 */ 1446 #define HBLKRM_L_MASK 0x80 1447 #define HBLKRM_PENC_MASK 0x3f 1448 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1449 unsigned int block_size) 1450 { 1451 unsigned int bpsize, psize; 1452 1453 /* First, check the L bit, if not set, this means 4K */ 1454 if ((lp & HBLKRM_L_MASK) == 0) { 1455 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1456 return; 1457 } 1458 1459 lp &= HBLKRM_PENC_MASK; 1460 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1461 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1462 1463 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1464 if (def->penc[psize] == lp) { 1465 set_hblkrm_bloc_size(bpsize, psize, block_size); 1466 return; 1467 } 1468 } 1469 } 1470 } 1471 1472 /* 1473 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1474 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1475 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1476 * (128 bytes) for the buffer to get plenty of space. 1477 */ 1478 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1479 1480 void __init pseries_lpar_read_hblkrm_characteristics(void) 1481 { 1482 static struct papr_sysparm_buf buf __initdata; 1483 int len, idx, bpsize; 1484 1485 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1486 return; 1487 1488 if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf)) 1489 return; 1490 1491 len = be16_to_cpu(buf.len); 1492 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1493 pr_warn("%s too large returned buffer %d", __func__, len); 1494 return; 1495 } 1496 1497 idx = 0; 1498 while (idx < len) { 1499 u8 block_shift = buf.val[idx++]; 1500 u32 block_size; 1501 unsigned int npsize; 1502 1503 if (!block_shift) 1504 break; 1505 1506 block_size = 1 << block_shift; 1507 1508 for (npsize = buf.val[idx++]; 1509 npsize > 0 && idx < len; npsize--) 1510 check_lp_set_hblkrm((unsigned int)buf.val[idx++], 1511 block_size); 1512 } 1513 1514 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1515 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1516 if (hblkrm_size[bpsize][idx]) 1517 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1518 bpsize, idx, hblkrm_size[bpsize][idx]); 1519 } 1520 1521 /* 1522 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1523 * lock. 1524 */ 1525 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1526 { 1527 unsigned long vpn; 1528 unsigned long i, pix, rc; 1529 unsigned long flags = 0; 1530 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1531 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1532 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1533 unsigned long index, shift, slot; 1534 real_pte_t pte; 1535 int psize, ssize; 1536 1537 if (lock_tlbie) 1538 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1539 1540 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1541 do_block_remove(number, batch, param); 1542 goto out; 1543 } 1544 1545 psize = batch->psize; 1546 ssize = batch->ssize; 1547 pix = 0; 1548 for (i = 0; i < number; i++) { 1549 vpn = batch->vpn[i]; 1550 pte = batch->pte[i]; 1551 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1552 slot = compute_slot(pte, vpn, index, shift, ssize); 1553 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1554 /* 1555 * lpar doesn't use the passed actual page size 1556 */ 1557 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1558 0, ssize, local); 1559 } else { 1560 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1561 param[pix+1] = hpte_encode_avpn(vpn, psize, 1562 ssize); 1563 pix += 2; 1564 if (pix == 8) { 1565 rc = plpar_hcall9(H_BULK_REMOVE, param, 1566 param[0], param[1], param[2], 1567 param[3], param[4], param[5], 1568 param[6], param[7]); 1569 BUG_ON(rc != H_SUCCESS); 1570 pix = 0; 1571 } 1572 } 1573 } pte_iterate_hashed_end(); 1574 } 1575 if (pix) { 1576 param[pix] = HBR_END; 1577 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1578 param[2], param[3], param[4], param[5], 1579 param[6], param[7]); 1580 BUG_ON(rc != H_SUCCESS); 1581 } 1582 1583 out: 1584 if (lock_tlbie) 1585 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1586 } 1587 1588 static int __init disable_bulk_remove(char *str) 1589 { 1590 if (strcmp(str, "off") == 0 && 1591 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1592 pr_info("Disabling BULK_REMOVE firmware feature"); 1593 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1594 } 1595 return 1; 1596 } 1597 1598 __setup("bulk_remove=", disable_bulk_remove); 1599 1600 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1601 1602 struct hpt_resize_state { 1603 unsigned long shift; 1604 int commit_rc; 1605 }; 1606 1607 static int pseries_lpar_resize_hpt_commit(void *data) 1608 { 1609 struct hpt_resize_state *state = data; 1610 1611 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1612 if (state->commit_rc != H_SUCCESS) 1613 return -EIO; 1614 1615 /* Hypervisor has transitioned the HTAB, update our globals */ 1616 ppc64_pft_size = state->shift; 1617 htab_size_bytes = 1UL << ppc64_pft_size; 1618 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1619 1620 return 0; 1621 } 1622 1623 /* 1624 * Must be called in process context. The caller must hold the 1625 * cpus_lock. 1626 */ 1627 static int pseries_lpar_resize_hpt(unsigned long shift) 1628 { 1629 struct hpt_resize_state state = { 1630 .shift = shift, 1631 .commit_rc = H_FUNCTION, 1632 }; 1633 unsigned int delay, total_delay = 0; 1634 int rc; 1635 ktime_t t0, t1, t2; 1636 1637 might_sleep(); 1638 1639 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1640 return -ENODEV; 1641 1642 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1643 1644 t0 = ktime_get(); 1645 1646 rc = plpar_resize_hpt_prepare(0, shift); 1647 while (H_IS_LONG_BUSY(rc)) { 1648 delay = get_longbusy_msecs(rc); 1649 total_delay += delay; 1650 if (total_delay > HPT_RESIZE_TIMEOUT) { 1651 /* prepare with shift==0 cancels an in-progress resize */ 1652 rc = plpar_resize_hpt_prepare(0, 0); 1653 if (rc != H_SUCCESS) 1654 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1655 rc); 1656 return -ETIMEDOUT; 1657 } 1658 msleep(delay); 1659 rc = plpar_resize_hpt_prepare(0, shift); 1660 } 1661 1662 switch (rc) { 1663 case H_SUCCESS: 1664 /* Continue on */ 1665 break; 1666 1667 case H_PARAMETER: 1668 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1669 return -EINVAL; 1670 case H_RESOURCE: 1671 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1672 return -EPERM; 1673 default: 1674 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1675 return -EIO; 1676 } 1677 1678 t1 = ktime_get(); 1679 1680 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1681 &state, NULL); 1682 1683 t2 = ktime_get(); 1684 1685 if (rc != 0) { 1686 switch (state.commit_rc) { 1687 case H_PTEG_FULL: 1688 return -ENOSPC; 1689 1690 default: 1691 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1692 state.commit_rc); 1693 return -EIO; 1694 }; 1695 } 1696 1697 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1698 shift, (long long) ktime_ms_delta(t1, t0), 1699 (long long) ktime_ms_delta(t2, t1)); 1700 1701 return 0; 1702 } 1703 1704 void __init hpte_init_pseries(void) 1705 { 1706 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1707 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1708 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1709 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1710 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1711 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1712 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1713 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1714 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1715 1716 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1717 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1718 1719 /* 1720 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1721 * to inform the hypervisor that we wish to use the HPT. 1722 */ 1723 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1724 pseries_lpar_register_process_table(0, 0, 0); 1725 } 1726 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1727 1728 #ifdef CONFIG_PPC_RADIX_MMU 1729 void __init radix_init_pseries(void) 1730 { 1731 pr_info("Using radix MMU under hypervisor\n"); 1732 1733 pseries_lpar_register_process_table(__pa(process_tb), 1734 0, PRTB_SIZE_SHIFT - 12); 1735 } 1736 #endif 1737 1738 #ifdef CONFIG_PPC_SMLPAR 1739 #define CMO_FREE_HINT_DEFAULT 1 1740 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1741 1742 static int __init cmo_free_hint(char *str) 1743 { 1744 char *parm; 1745 parm = strstrip(str); 1746 1747 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1748 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1749 cmo_free_hint_flag = 0; 1750 return 1; 1751 } 1752 1753 cmo_free_hint_flag = 1; 1754 pr_info("%s: CMO free page hinting is active.\n", __func__); 1755 1756 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1757 return 1; 1758 1759 return 0; 1760 } 1761 1762 __setup("cmo_free_hint=", cmo_free_hint); 1763 1764 static void pSeries_set_page_state(struct page *page, int order, 1765 unsigned long state) 1766 { 1767 int i, j; 1768 unsigned long cmo_page_sz, addr; 1769 1770 cmo_page_sz = cmo_get_page_size(); 1771 addr = __pa((unsigned long)page_address(page)); 1772 1773 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1774 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1775 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1776 } 1777 } 1778 1779 void arch_free_page(struct page *page, int order) 1780 { 1781 if (radix_enabled()) 1782 return; 1783 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1784 return; 1785 1786 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1787 } 1788 EXPORT_SYMBOL(arch_free_page); 1789 1790 #endif /* CONFIG_PPC_SMLPAR */ 1791 #endif /* CONFIG_PPC_BOOK3S_64 */ 1792 1793 #ifdef CONFIG_TRACEPOINTS 1794 #ifdef CONFIG_JUMP_LABEL 1795 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1796 1797 int hcall_tracepoint_regfunc(void) 1798 { 1799 static_key_slow_inc(&hcall_tracepoint_key); 1800 return 0; 1801 } 1802 1803 void hcall_tracepoint_unregfunc(void) 1804 { 1805 static_key_slow_dec(&hcall_tracepoint_key); 1806 } 1807 #else 1808 /* 1809 * We optimise our hcall path by placing hcall_tracepoint_refcount 1810 * directly in the TOC so we can check if the hcall tracepoints are 1811 * enabled via a single load. 1812 */ 1813 1814 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1815 extern long hcall_tracepoint_refcount; 1816 1817 int hcall_tracepoint_regfunc(void) 1818 { 1819 hcall_tracepoint_refcount++; 1820 return 0; 1821 } 1822 1823 void hcall_tracepoint_unregfunc(void) 1824 { 1825 hcall_tracepoint_refcount--; 1826 } 1827 #endif 1828 1829 /* 1830 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1831 * detected because it may indicate a problem. This will not catch all 1832 * problems with tracing code making hcalls, because the tracing might have 1833 * been invoked from a non-hcall, so the first hcall could recurse into it 1834 * without warning here, but this better than nothing. 1835 * 1836 * Hcalls with specific problems being traced should use the _notrace 1837 * plpar_hcall variants. 1838 */ 1839 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1840 1841 1842 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1843 { 1844 unsigned long flags; 1845 unsigned int *depth; 1846 1847 local_irq_save(flags); 1848 1849 depth = this_cpu_ptr(&hcall_trace_depth); 1850 1851 if (WARN_ON_ONCE(*depth)) 1852 goto out; 1853 1854 (*depth)++; 1855 preempt_disable(); 1856 trace_hcall_entry(opcode, args); 1857 (*depth)--; 1858 1859 out: 1860 local_irq_restore(flags); 1861 } 1862 1863 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1864 { 1865 unsigned long flags; 1866 unsigned int *depth; 1867 1868 local_irq_save(flags); 1869 1870 depth = this_cpu_ptr(&hcall_trace_depth); 1871 1872 if (*depth) /* Don't warn again on the way out */ 1873 goto out; 1874 1875 (*depth)++; 1876 trace_hcall_exit(opcode, retval, retbuf); 1877 preempt_enable(); 1878 (*depth)--; 1879 1880 out: 1881 local_irq_restore(flags); 1882 } 1883 #endif 1884 1885 /** 1886 * h_get_mpp 1887 * H_GET_MPP hcall returns info in 7 parms 1888 */ 1889 long h_get_mpp(struct hvcall_mpp_data *mpp_data) 1890 { 1891 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1892 long rc; 1893 1894 rc = plpar_hcall9(H_GET_MPP, retbuf); 1895 1896 mpp_data->entitled_mem = retbuf[0]; 1897 mpp_data->mapped_mem = retbuf[1]; 1898 1899 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1900 mpp_data->pool_num = retbuf[2] & 0xffff; 1901 1902 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1903 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1904 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1905 1906 mpp_data->pool_size = retbuf[4]; 1907 mpp_data->loan_request = retbuf[5]; 1908 mpp_data->backing_mem = retbuf[6]; 1909 1910 return rc; 1911 } 1912 EXPORT_SYMBOL(h_get_mpp); 1913 1914 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1915 { 1916 int rc; 1917 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1918 1919 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1920 1921 mpp_x_data->coalesced_bytes = retbuf[0]; 1922 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1923 mpp_x_data->pool_purr_cycles = retbuf[2]; 1924 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1925 1926 return rc; 1927 } 1928 1929 #ifdef CONFIG_PPC_64S_HASH_MMU 1930 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1931 { 1932 unsigned long protovsid; 1933 unsigned long va_bits = VA_BITS; 1934 unsigned long modinv, vsid_modulus; 1935 unsigned long max_mod_inv, tmp_modinv; 1936 1937 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1938 va_bits = 65; 1939 1940 if (ssize == MMU_SEGSIZE_256M) { 1941 modinv = VSID_MULINV_256M; 1942 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1943 } else { 1944 modinv = VSID_MULINV_1T; 1945 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1946 } 1947 1948 /* 1949 * vsid outside our range. 1950 */ 1951 if (vsid >= vsid_modulus) 1952 return 0; 1953 1954 /* 1955 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1956 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1957 * protovsid = (vsid * modinv) % vsid_modulus 1958 */ 1959 1960 /* Check if (vsid * modinv) overflow (63 bits) */ 1961 max_mod_inv = 0x7fffffffffffffffull / vsid; 1962 if (modinv < max_mod_inv) 1963 return (vsid * modinv) % vsid_modulus; 1964 1965 tmp_modinv = modinv/max_mod_inv; 1966 modinv %= max_mod_inv; 1967 1968 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1969 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1970 1971 return protovsid; 1972 } 1973 1974 static int __init reserve_vrma_context_id(void) 1975 { 1976 unsigned long protovsid; 1977 1978 /* 1979 * Reserve context ids which map to reserved virtual addresses. For now 1980 * we only reserve the context id which maps to the VRMA VSID. We ignore 1981 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1982 * enable adjunct support via the "ibm,client-architecture-support" 1983 * interface. 1984 */ 1985 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1986 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1987 return 0; 1988 } 1989 machine_device_initcall(pseries, reserve_vrma_context_id); 1990 #endif 1991 1992 #ifdef CONFIG_DEBUG_FS 1993 /* debugfs file interface for vpa data */ 1994 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1995 loff_t *pos) 1996 { 1997 int cpu = (long)filp->private_data; 1998 struct lppaca *lppaca = &lppaca_of(cpu); 1999 2000 return simple_read_from_buffer(buf, len, pos, lppaca, 2001 sizeof(struct lppaca)); 2002 } 2003 2004 static const struct file_operations vpa_fops = { 2005 .open = simple_open, 2006 .read = vpa_file_read, 2007 .llseek = default_llseek, 2008 }; 2009 2010 static int __init vpa_debugfs_init(void) 2011 { 2012 char name[16]; 2013 long i; 2014 struct dentry *vpa_dir; 2015 2016 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2017 return 0; 2018 2019 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2020 2021 /* set up the per-cpu vpa file*/ 2022 for_each_possible_cpu(i) { 2023 sprintf(name, "cpu-%ld", i); 2024 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2025 } 2026 2027 return 0; 2028 } 2029 machine_arch_initcall(pseries, vpa_debugfs_init); 2030 #endif /* CONFIG_DEBUG_FS */ 2031