1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/machdep.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/cputable.h> 35 #include <asm/udbg.h> 36 #include <asm/smp.h> 37 #include <asm/trace.h> 38 #include <asm/firmware.h> 39 #include <asm/plpar_wrappers.h> 40 #include <asm/kexec.h> 41 #include <asm/fadump.h> 42 #include <asm/dtl.h> 43 44 #include "pseries.h" 45 46 /* Flag bits for H_BULK_REMOVE */ 47 #define HBR_REQUEST 0x4000000000000000UL 48 #define HBR_RESPONSE 0x8000000000000000UL 49 #define HBR_END 0xc000000000000000UL 50 #define HBR_AVPN 0x0200000000000000UL 51 #define HBR_ANDCOND 0x0100000000000000UL 52 53 54 /* in hvCall.S */ 55 EXPORT_SYMBOL(plpar_hcall); 56 EXPORT_SYMBOL(plpar_hcall9); 57 EXPORT_SYMBOL(plpar_hcall_norets); 58 59 #ifdef CONFIG_PPC_64S_HASH_MMU 60 /* 61 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 62 * page size is that page size. 63 * 64 * The first index is the segment base page size, the second one is the actual 65 * page size. 66 */ 67 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 68 #endif 69 70 /* 71 * Due to the involved complexity, and that the current hypervisor is only 72 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 73 * buffer size to 8 size block. 74 */ 75 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 76 77 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 78 static u8 dtl_mask = DTL_LOG_PREEMPT; 79 #else 80 static u8 dtl_mask; 81 #endif 82 83 void alloc_dtl_buffers(unsigned long *time_limit) 84 { 85 int cpu; 86 struct paca_struct *pp; 87 struct dtl_entry *dtl; 88 89 for_each_possible_cpu(cpu) { 90 pp = paca_ptrs[cpu]; 91 if (pp->dispatch_log) 92 continue; 93 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 94 if (!dtl) { 95 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 96 cpu); 97 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 98 pr_warn("Stolen time statistics will be unreliable\n"); 99 #endif 100 break; 101 } 102 103 pp->dtl_ridx = 0; 104 pp->dispatch_log = dtl; 105 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 106 pp->dtl_curr = dtl; 107 108 if (time_limit && time_after(jiffies, *time_limit)) { 109 cond_resched(); 110 *time_limit = jiffies + HZ; 111 } 112 } 113 } 114 115 void register_dtl_buffer(int cpu) 116 { 117 long ret; 118 struct paca_struct *pp; 119 struct dtl_entry *dtl; 120 int hwcpu = get_hard_smp_processor_id(cpu); 121 122 pp = paca_ptrs[cpu]; 123 dtl = pp->dispatch_log; 124 if (dtl && dtl_mask) { 125 pp->dtl_ridx = 0; 126 pp->dtl_curr = dtl; 127 lppaca_of(cpu).dtl_idx = 0; 128 129 /* hypervisor reads buffer length from this field */ 130 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 131 ret = register_dtl(hwcpu, __pa(dtl)); 132 if (ret) 133 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 134 cpu, hwcpu, ret); 135 136 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 137 } 138 } 139 140 #ifdef CONFIG_PPC_SPLPAR 141 struct dtl_worker { 142 struct delayed_work work; 143 int cpu; 144 }; 145 146 struct vcpu_dispatch_data { 147 int last_disp_cpu; 148 149 int total_disp; 150 151 int same_cpu_disp; 152 int same_chip_disp; 153 int diff_chip_disp; 154 int far_chip_disp; 155 156 int numa_home_disp; 157 int numa_remote_disp; 158 int numa_far_disp; 159 }; 160 161 /* 162 * This represents the number of cpus in the hypervisor. Since there is no 163 * architected way to discover the number of processors in the host, we 164 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 165 * is sufficient for our purposes. This will need to be tweaked if 166 * CONFIG_NR_CPUS is changed. 167 */ 168 #define NR_CPUS_H NR_CPUS 169 170 DEFINE_RWLOCK(dtl_access_lock); 171 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 172 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 173 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 174 static enum cpuhp_state dtl_worker_state; 175 static DEFINE_MUTEX(dtl_enable_mutex); 176 static int vcpudispatch_stats_on __read_mostly; 177 static int vcpudispatch_stats_freq = 50; 178 static __be32 *vcpu_associativity, *pcpu_associativity; 179 180 181 static void free_dtl_buffers(unsigned long *time_limit) 182 { 183 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 184 int cpu; 185 struct paca_struct *pp; 186 187 for_each_possible_cpu(cpu) { 188 pp = paca_ptrs[cpu]; 189 if (!pp->dispatch_log) 190 continue; 191 kmem_cache_free(dtl_cache, pp->dispatch_log); 192 pp->dtl_ridx = 0; 193 pp->dispatch_log = 0; 194 pp->dispatch_log_end = 0; 195 pp->dtl_curr = 0; 196 197 if (time_limit && time_after(jiffies, *time_limit)) { 198 cond_resched(); 199 *time_limit = jiffies + HZ; 200 } 201 } 202 #endif 203 } 204 205 static int init_cpu_associativity(void) 206 { 207 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 209 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 211 212 if (!vcpu_associativity || !pcpu_associativity) { 213 pr_err("error allocating memory for associativity information\n"); 214 return -ENOMEM; 215 } 216 217 return 0; 218 } 219 220 static void destroy_cpu_associativity(void) 221 { 222 kfree(vcpu_associativity); 223 kfree(pcpu_associativity); 224 vcpu_associativity = pcpu_associativity = 0; 225 } 226 227 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 228 { 229 __be32 *assoc; 230 int rc = 0; 231 232 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 233 if (!assoc[0]) { 234 rc = hcall_vphn(cpu, flag, &assoc[0]); 235 if (rc) 236 return NULL; 237 } 238 239 return assoc; 240 } 241 242 static __be32 *get_pcpu_associativity(int cpu) 243 { 244 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 245 } 246 247 static __be32 *get_vcpu_associativity(int cpu) 248 { 249 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 250 } 251 252 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 253 { 254 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 255 256 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 257 return -EINVAL; 258 259 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 260 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 261 262 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 263 return -EIO; 264 265 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 266 } 267 268 static int cpu_home_node_dispatch_distance(int disp_cpu) 269 { 270 __be32 *disp_cpu_assoc, *vcpu_assoc; 271 int vcpu_id = smp_processor_id(); 272 273 if (disp_cpu >= NR_CPUS_H) { 274 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 275 disp_cpu, NR_CPUS_H); 276 return -EINVAL; 277 } 278 279 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 280 vcpu_assoc = get_vcpu_associativity(vcpu_id); 281 282 if (!disp_cpu_assoc || !vcpu_assoc) 283 return -EIO; 284 285 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 286 } 287 288 static void update_vcpu_disp_stat(int disp_cpu) 289 { 290 struct vcpu_dispatch_data *disp; 291 int distance; 292 293 disp = this_cpu_ptr(&vcpu_disp_data); 294 if (disp->last_disp_cpu == -1) { 295 disp->last_disp_cpu = disp_cpu; 296 return; 297 } 298 299 disp->total_disp++; 300 301 if (disp->last_disp_cpu == disp_cpu || 302 (cpu_first_thread_sibling(disp->last_disp_cpu) == 303 cpu_first_thread_sibling(disp_cpu))) 304 disp->same_cpu_disp++; 305 else { 306 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 307 disp_cpu); 308 if (distance < 0) 309 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 310 smp_processor_id()); 311 else { 312 switch (distance) { 313 case 0: 314 disp->same_chip_disp++; 315 break; 316 case 1: 317 disp->diff_chip_disp++; 318 break; 319 case 2: 320 disp->far_chip_disp++; 321 break; 322 default: 323 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 324 smp_processor_id(), 325 disp->last_disp_cpu, 326 disp_cpu, 327 distance); 328 } 329 } 330 } 331 332 distance = cpu_home_node_dispatch_distance(disp_cpu); 333 if (distance < 0) 334 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 335 smp_processor_id()); 336 else { 337 switch (distance) { 338 case 0: 339 disp->numa_home_disp++; 340 break; 341 case 1: 342 disp->numa_remote_disp++; 343 break; 344 case 2: 345 disp->numa_far_disp++; 346 break; 347 default: 348 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 349 smp_processor_id(), 350 disp_cpu, 351 distance); 352 } 353 } 354 355 disp->last_disp_cpu = disp_cpu; 356 } 357 358 static void process_dtl_buffer(struct work_struct *work) 359 { 360 struct dtl_entry dtle; 361 u64 i = __this_cpu_read(dtl_entry_ridx); 362 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 363 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 364 struct lppaca *vpa = local_paca->lppaca_ptr; 365 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 366 367 if (!local_paca->dispatch_log) 368 return; 369 370 /* if we have been migrated away, we cancel ourself */ 371 if (d->cpu != smp_processor_id()) { 372 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 373 smp_processor_id()); 374 return; 375 } 376 377 if (i == be64_to_cpu(vpa->dtl_idx)) 378 goto out; 379 380 while (i < be64_to_cpu(vpa->dtl_idx)) { 381 dtle = *dtl; 382 barrier(); 383 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 384 /* buffer has overflowed */ 385 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 386 d->cpu, 387 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 388 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 389 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 390 continue; 391 } 392 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 393 ++i; 394 ++dtl; 395 if (dtl == dtl_end) 396 dtl = local_paca->dispatch_log; 397 } 398 399 __this_cpu_write(dtl_entry_ridx, i); 400 401 out: 402 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 403 HZ / vcpudispatch_stats_freq); 404 } 405 406 static int dtl_worker_online(unsigned int cpu) 407 { 408 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 409 410 memset(d, 0, sizeof(*d)); 411 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 412 d->cpu = cpu; 413 414 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 415 per_cpu(dtl_entry_ridx, cpu) = 0; 416 register_dtl_buffer(cpu); 417 #else 418 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 419 #endif 420 421 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 422 return 0; 423 } 424 425 static int dtl_worker_offline(unsigned int cpu) 426 { 427 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 428 429 cancel_delayed_work_sync(&d->work); 430 431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 432 unregister_dtl(get_hard_smp_processor_id(cpu)); 433 #endif 434 435 return 0; 436 } 437 438 static void set_global_dtl_mask(u8 mask) 439 { 440 int cpu; 441 442 dtl_mask = mask; 443 for_each_present_cpu(cpu) 444 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 445 } 446 447 static void reset_global_dtl_mask(void) 448 { 449 int cpu; 450 451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 452 dtl_mask = DTL_LOG_PREEMPT; 453 #else 454 dtl_mask = 0; 455 #endif 456 for_each_present_cpu(cpu) 457 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 458 } 459 460 static int dtl_worker_enable(unsigned long *time_limit) 461 { 462 int rc = 0, state; 463 464 if (!write_trylock(&dtl_access_lock)) { 465 rc = -EBUSY; 466 goto out; 467 } 468 469 set_global_dtl_mask(DTL_LOG_ALL); 470 471 /* Setup dtl buffers and register those */ 472 alloc_dtl_buffers(time_limit); 473 474 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 475 dtl_worker_online, dtl_worker_offline); 476 if (state < 0) { 477 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 478 free_dtl_buffers(time_limit); 479 reset_global_dtl_mask(); 480 write_unlock(&dtl_access_lock); 481 rc = -EINVAL; 482 goto out; 483 } 484 dtl_worker_state = state; 485 486 out: 487 return rc; 488 } 489 490 static void dtl_worker_disable(unsigned long *time_limit) 491 { 492 cpuhp_remove_state(dtl_worker_state); 493 free_dtl_buffers(time_limit); 494 reset_global_dtl_mask(); 495 write_unlock(&dtl_access_lock); 496 } 497 498 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 499 size_t count, loff_t *ppos) 500 { 501 unsigned long time_limit = jiffies + HZ; 502 struct vcpu_dispatch_data *disp; 503 int rc, cmd, cpu; 504 char buf[16]; 505 506 if (count > 15) 507 return -EINVAL; 508 509 if (copy_from_user(buf, p, count)) 510 return -EFAULT; 511 512 buf[count] = 0; 513 rc = kstrtoint(buf, 0, &cmd); 514 if (rc || cmd < 0 || cmd > 1) { 515 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 516 return rc ? rc : -EINVAL; 517 } 518 519 mutex_lock(&dtl_enable_mutex); 520 521 if ((cmd == 0 && !vcpudispatch_stats_on) || 522 (cmd == 1 && vcpudispatch_stats_on)) 523 goto out; 524 525 if (cmd) { 526 rc = init_cpu_associativity(); 527 if (rc) 528 goto out; 529 530 for_each_possible_cpu(cpu) { 531 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 532 memset(disp, 0, sizeof(*disp)); 533 disp->last_disp_cpu = -1; 534 } 535 536 rc = dtl_worker_enable(&time_limit); 537 if (rc) { 538 destroy_cpu_associativity(); 539 goto out; 540 } 541 } else { 542 dtl_worker_disable(&time_limit); 543 destroy_cpu_associativity(); 544 } 545 546 vcpudispatch_stats_on = cmd; 547 548 out: 549 mutex_unlock(&dtl_enable_mutex); 550 if (rc) 551 return rc; 552 return count; 553 } 554 555 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 556 { 557 int cpu; 558 struct vcpu_dispatch_data *disp; 559 560 if (!vcpudispatch_stats_on) { 561 seq_puts(p, "off\n"); 562 return 0; 563 } 564 565 for_each_online_cpu(cpu) { 566 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 567 seq_printf(p, "cpu%d", cpu); 568 seq_put_decimal_ull(p, " ", disp->total_disp); 569 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 570 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 571 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 572 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 573 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 574 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 575 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 576 seq_puts(p, "\n"); 577 } 578 579 return 0; 580 } 581 582 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 583 { 584 return single_open(file, vcpudispatch_stats_display, NULL); 585 } 586 587 static const struct proc_ops vcpudispatch_stats_proc_ops = { 588 .proc_open = vcpudispatch_stats_open, 589 .proc_read = seq_read, 590 .proc_write = vcpudispatch_stats_write, 591 .proc_lseek = seq_lseek, 592 .proc_release = single_release, 593 }; 594 595 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 596 const char __user *p, size_t count, loff_t *ppos) 597 { 598 int rc, freq; 599 char buf[16]; 600 601 if (count > 15) 602 return -EINVAL; 603 604 if (copy_from_user(buf, p, count)) 605 return -EFAULT; 606 607 buf[count] = 0; 608 rc = kstrtoint(buf, 0, &freq); 609 if (rc || freq < 1 || freq > HZ) { 610 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 611 HZ); 612 return rc ? rc : -EINVAL; 613 } 614 615 vcpudispatch_stats_freq = freq; 616 617 return count; 618 } 619 620 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 621 { 622 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 623 return 0; 624 } 625 626 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 627 { 628 return single_open(file, vcpudispatch_stats_freq_display, NULL); 629 } 630 631 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 632 .proc_open = vcpudispatch_stats_freq_open, 633 .proc_read = seq_read, 634 .proc_write = vcpudispatch_stats_freq_write, 635 .proc_lseek = seq_lseek, 636 .proc_release = single_release, 637 }; 638 639 static int __init vcpudispatch_stats_procfs_init(void) 640 { 641 /* 642 * Avoid smp_processor_id while preemptible. All CPUs should have 643 * the same value for lppaca_shared_proc. 644 */ 645 preempt_disable(); 646 if (!lppaca_shared_proc(get_lppaca())) { 647 preempt_enable(); 648 return 0; 649 } 650 preempt_enable(); 651 652 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 653 &vcpudispatch_stats_proc_ops)) 654 pr_err("vcpudispatch_stats: error creating procfs file\n"); 655 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 656 &vcpudispatch_stats_freq_proc_ops)) 657 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 658 659 return 0; 660 } 661 662 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 663 #endif /* CONFIG_PPC_SPLPAR */ 664 665 void vpa_init(int cpu) 666 { 667 int hwcpu = get_hard_smp_processor_id(cpu); 668 unsigned long addr; 669 long ret; 670 671 /* 672 * The spec says it "may be problematic" if CPU x registers the VPA of 673 * CPU y. We should never do that, but wail if we ever do. 674 */ 675 WARN_ON(cpu != smp_processor_id()); 676 677 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 678 lppaca_of(cpu).vmxregs_in_use = 1; 679 680 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 681 lppaca_of(cpu).ebb_regs_in_use = 1; 682 683 addr = __pa(&lppaca_of(cpu)); 684 ret = register_vpa(hwcpu, addr); 685 686 if (ret) { 687 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 688 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 689 return; 690 } 691 692 #ifdef CONFIG_PPC_64S_HASH_MMU 693 /* 694 * PAPR says this feature is SLB-Buffer but firmware never 695 * reports that. All SPLPAR support SLB shadow buffer. 696 */ 697 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 698 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 699 ret = register_slb_shadow(hwcpu, addr); 700 if (ret) 701 pr_err("WARNING: SLB shadow buffer registration for " 702 "cpu %d (hw %d) of area %lx failed with %ld\n", 703 cpu, hwcpu, addr, ret); 704 } 705 #endif /* CONFIG_PPC_64S_HASH_MMU */ 706 707 /* 708 * Register dispatch trace log, if one has been allocated. 709 */ 710 register_dtl_buffer(cpu); 711 } 712 713 #ifdef CONFIG_PPC_BOOK3S_64 714 715 static int __init pseries_lpar_register_process_table(unsigned long base, 716 unsigned long page_size, unsigned long table_size) 717 { 718 long rc; 719 unsigned long flags = 0; 720 721 if (table_size) 722 flags |= PROC_TABLE_NEW; 723 if (radix_enabled()) { 724 flags |= PROC_TABLE_RADIX; 725 if (mmu_has_feature(MMU_FTR_GTSE)) 726 flags |= PROC_TABLE_GTSE; 727 } else 728 flags |= PROC_TABLE_HPT_SLB; 729 for (;;) { 730 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 731 page_size, table_size); 732 if (!H_IS_LONG_BUSY(rc)) 733 break; 734 mdelay(get_longbusy_msecs(rc)); 735 } 736 if (rc != H_SUCCESS) { 737 pr_err("Failed to register process table (rc=%ld)\n", rc); 738 BUG(); 739 } 740 return rc; 741 } 742 743 #ifdef CONFIG_PPC_64S_HASH_MMU 744 745 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 746 unsigned long vpn, unsigned long pa, 747 unsigned long rflags, unsigned long vflags, 748 int psize, int apsize, int ssize) 749 { 750 unsigned long lpar_rc; 751 unsigned long flags; 752 unsigned long slot; 753 unsigned long hpte_v, hpte_r; 754 755 if (!(vflags & HPTE_V_BOLTED)) 756 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 757 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 758 hpte_group, vpn, pa, rflags, vflags, psize); 759 760 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 761 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 762 763 if (!(vflags & HPTE_V_BOLTED)) 764 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 765 766 /* Now fill in the actual HPTE */ 767 /* Set CEC cookie to 0 */ 768 /* Zero page = 0 */ 769 /* I-cache Invalidate = 0 */ 770 /* I-cache synchronize = 0 */ 771 /* Exact = 0 */ 772 flags = 0; 773 774 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 775 flags |= H_COALESCE_CAND; 776 777 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 778 if (unlikely(lpar_rc == H_PTEG_FULL)) { 779 pr_devel("Hash table group is full\n"); 780 return -1; 781 } 782 783 /* 784 * Since we try and ioremap PHBs we don't own, the pte insert 785 * will fail. However we must catch the failure in hash_page 786 * or we will loop forever, so return -2 in this case. 787 */ 788 if (unlikely(lpar_rc != H_SUCCESS)) { 789 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 790 return -2; 791 } 792 if (!(vflags & HPTE_V_BOLTED)) 793 pr_devel(" -> slot: %lu\n", slot & 7); 794 795 /* Because of iSeries, we have to pass down the secondary 796 * bucket bit here as well 797 */ 798 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 799 } 800 801 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 802 803 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 804 { 805 unsigned long slot_offset; 806 unsigned long lpar_rc; 807 int i; 808 unsigned long dummy1, dummy2; 809 810 /* pick a random slot to start at */ 811 slot_offset = mftb() & 0x7; 812 813 for (i = 0; i < HPTES_PER_GROUP; i++) { 814 815 /* don't remove a bolted entry */ 816 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 817 HPTE_V_BOLTED, &dummy1, &dummy2); 818 if (lpar_rc == H_SUCCESS) 819 return i; 820 821 /* 822 * The test for adjunct partition is performed before the 823 * ANDCOND test. H_RESOURCE may be returned, so we need to 824 * check for that as well. 825 */ 826 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 827 828 slot_offset++; 829 slot_offset &= 0x7; 830 } 831 832 return -1; 833 } 834 835 /* Called during kexec sequence with MMU off */ 836 static notrace void manual_hpte_clear_all(void) 837 { 838 unsigned long size_bytes = 1UL << ppc64_pft_size; 839 unsigned long hpte_count = size_bytes >> 4; 840 struct { 841 unsigned long pteh; 842 unsigned long ptel; 843 } ptes[4]; 844 long lpar_rc; 845 unsigned long i, j; 846 847 /* Read in batches of 4, 848 * invalidate only valid entries not in the VRMA 849 * hpte_count will be a multiple of 4 850 */ 851 for (i = 0; i < hpte_count; i += 4) { 852 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 853 if (lpar_rc != H_SUCCESS) { 854 pr_info("Failed to read hash page table at %ld err %ld\n", 855 i, lpar_rc); 856 continue; 857 } 858 for (j = 0; j < 4; j++){ 859 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 860 HPTE_V_VRMA_MASK) 861 continue; 862 if (ptes[j].pteh & HPTE_V_VALID) 863 plpar_pte_remove_raw(0, i + j, 0, 864 &(ptes[j].pteh), &(ptes[j].ptel)); 865 } 866 } 867 } 868 869 /* Called during kexec sequence with MMU off */ 870 static notrace int hcall_hpte_clear_all(void) 871 { 872 int rc; 873 874 do { 875 rc = plpar_hcall_norets(H_CLEAR_HPT); 876 } while (rc == H_CONTINUE); 877 878 return rc; 879 } 880 881 /* Called during kexec sequence with MMU off */ 882 static notrace void pseries_hpte_clear_all(void) 883 { 884 int rc; 885 886 rc = hcall_hpte_clear_all(); 887 if (rc != H_SUCCESS) 888 manual_hpte_clear_all(); 889 890 #ifdef __LITTLE_ENDIAN__ 891 /* 892 * Reset exceptions to big endian. 893 * 894 * FIXME this is a hack for kexec, we need to reset the exception 895 * endian before starting the new kernel and this is a convenient place 896 * to do it. 897 * 898 * This is also called on boot when a fadump happens. In that case we 899 * must not change the exception endian mode. 900 */ 901 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 902 pseries_big_endian_exceptions(); 903 #endif 904 } 905 906 /* 907 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 908 * the low 3 bits of flags happen to line up. So no transform is needed. 909 * We can probably optimize here and assume the high bits of newpp are 910 * already zero. For now I am paranoid. 911 */ 912 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 913 unsigned long newpp, 914 unsigned long vpn, 915 int psize, int apsize, 916 int ssize, unsigned long inv_flags) 917 { 918 unsigned long lpar_rc; 919 unsigned long flags; 920 unsigned long want_v; 921 922 want_v = hpte_encode_avpn(vpn, psize, ssize); 923 924 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 925 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 926 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 927 /* Move pp0 into bit 8 (IBM 55) */ 928 flags |= (newpp & HPTE_R_PP0) >> 55; 929 930 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 931 want_v, slot, flags, psize); 932 933 lpar_rc = plpar_pte_protect(flags, slot, want_v); 934 935 if (lpar_rc == H_NOT_FOUND) { 936 pr_devel("not found !\n"); 937 return -1; 938 } 939 940 pr_devel("ok\n"); 941 942 BUG_ON(lpar_rc != H_SUCCESS); 943 944 return 0; 945 } 946 947 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 948 { 949 long lpar_rc; 950 unsigned long i, j; 951 struct { 952 unsigned long pteh; 953 unsigned long ptel; 954 } ptes[4]; 955 956 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 957 958 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 959 if (lpar_rc != H_SUCCESS) { 960 pr_info("Failed to read hash page table at %ld err %ld\n", 961 hpte_group, lpar_rc); 962 continue; 963 } 964 965 for (j = 0; j < 4; j++) { 966 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 967 (ptes[j].pteh & HPTE_V_VALID)) 968 return i + j; 969 } 970 } 971 972 return -1; 973 } 974 975 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 976 { 977 long slot; 978 unsigned long hash; 979 unsigned long want_v; 980 unsigned long hpte_group; 981 982 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 983 want_v = hpte_encode_avpn(vpn, psize, ssize); 984 985 /* 986 * We try to keep bolted entries always in primary hash 987 * But in some case we can find them in secondary too. 988 */ 989 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 990 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 991 if (slot < 0) { 992 /* Try in secondary */ 993 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 994 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 995 if (slot < 0) 996 return -1; 997 } 998 return hpte_group + slot; 999 } 1000 1001 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1002 unsigned long ea, 1003 int psize, int ssize) 1004 { 1005 unsigned long vpn; 1006 unsigned long lpar_rc, slot, vsid, flags; 1007 1008 vsid = get_kernel_vsid(ea, ssize); 1009 vpn = hpt_vpn(ea, vsid, ssize); 1010 1011 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1012 BUG_ON(slot == -1); 1013 1014 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1015 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1016 /* Move pp0 into bit 8 (IBM 55) */ 1017 flags |= (newpp & HPTE_R_PP0) >> 55; 1018 1019 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1020 1021 lpar_rc = plpar_pte_protect(flags, slot, 0); 1022 1023 BUG_ON(lpar_rc != H_SUCCESS); 1024 } 1025 1026 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1027 int psize, int apsize, 1028 int ssize, int local) 1029 { 1030 unsigned long want_v; 1031 unsigned long lpar_rc; 1032 unsigned long dummy1, dummy2; 1033 1034 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1035 slot, vpn, psize, local); 1036 1037 want_v = hpte_encode_avpn(vpn, psize, ssize); 1038 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1039 if (lpar_rc == H_NOT_FOUND) 1040 return; 1041 1042 BUG_ON(lpar_rc != H_SUCCESS); 1043 } 1044 1045 1046 /* 1047 * As defined in the PAPR's section 14.5.4.1.8 1048 * The control mask doesn't include the returned reference and change bit from 1049 * the processed PTE. 1050 */ 1051 #define HBLKR_AVPN 0x0100000000000000UL 1052 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1053 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1054 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1055 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1056 1057 /* 1058 * Returned true if we are supporting this block size for the specified segment 1059 * base page size and actual page size. 1060 * 1061 * Currently, we only support 8 size block. 1062 */ 1063 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1064 { 1065 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1066 } 1067 1068 /** 1069 * H_BLOCK_REMOVE caller. 1070 * @idx should point to the latest @param entry set with a PTEX. 1071 * If PTE cannot be processed because another CPUs has already locked that 1072 * group, those entries are put back in @param starting at index 1. 1073 * If entries has to be retried and @retry_busy is set to true, these entries 1074 * are retried until success. If @retry_busy is set to false, the returned 1075 * is the number of entries yet to process. 1076 */ 1077 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1078 bool retry_busy) 1079 { 1080 unsigned long i, rc, new_idx; 1081 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1082 1083 if (idx < 2) { 1084 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1085 return 0; 1086 } 1087 again: 1088 new_idx = 0; 1089 if (idx > PLPAR_HCALL9_BUFSIZE) { 1090 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1091 idx = PLPAR_HCALL9_BUFSIZE; 1092 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1093 param[idx] = HBR_END; 1094 1095 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1096 param[0], /* AVA */ 1097 param[1], param[2], param[3], param[4], /* TS0-7 */ 1098 param[5], param[6], param[7], param[8]); 1099 if (rc == H_SUCCESS) 1100 return 0; 1101 1102 BUG_ON(rc != H_PARTIAL); 1103 1104 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1105 for (i = 0; i < idx-1; i++) { 1106 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1107 1108 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1109 param[++new_idx] = param[i+1]; 1110 continue; 1111 } 1112 1113 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1114 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1115 } 1116 1117 /* 1118 * If there were entries found busy, retry these entries if requested, 1119 * of if all the entries have to be retried. 1120 */ 1121 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1122 idx = new_idx + 1; 1123 goto again; 1124 } 1125 1126 return new_idx; 1127 } 1128 1129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1130 /* 1131 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1132 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1133 */ 1134 #define PPC64_HUGE_HPTE_BATCH 12 1135 1136 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1137 int count, int psize, int ssize) 1138 { 1139 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1140 unsigned long shift, current_vpgb, vpgb; 1141 int i, pix = 0; 1142 1143 shift = mmu_psize_defs[psize].shift; 1144 1145 for (i = 0; i < count; i++) { 1146 /* 1147 * Shifting 3 bits more on the right to get a 1148 * 8 pages aligned virtual addresse. 1149 */ 1150 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1151 if (!pix || vpgb != current_vpgb) { 1152 /* 1153 * Need to start a new 8 pages block, flush 1154 * the current one if needed. 1155 */ 1156 if (pix) 1157 (void)call_block_remove(pix, param, true); 1158 current_vpgb = vpgb; 1159 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1160 pix = 1; 1161 } 1162 1163 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1164 if (pix == PLPAR_HCALL9_BUFSIZE) { 1165 pix = call_block_remove(pix, param, false); 1166 /* 1167 * pix = 0 means that all the entries were 1168 * removed, we can start a new block. 1169 * Otherwise, this means that there are entries 1170 * to retry, and pix points to latest one, so 1171 * we should increment it and try to continue 1172 * the same block. 1173 */ 1174 if (pix) 1175 pix++; 1176 } 1177 } 1178 if (pix) 1179 (void)call_block_remove(pix, param, true); 1180 } 1181 1182 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1183 int count, int psize, int ssize) 1184 { 1185 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1186 int i = 0, pix = 0, rc; 1187 1188 for (i = 0; i < count; i++) { 1189 1190 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1191 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1192 ssize, 0); 1193 } else { 1194 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1195 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1196 pix += 2; 1197 if (pix == 8) { 1198 rc = plpar_hcall9(H_BULK_REMOVE, param, 1199 param[0], param[1], param[2], 1200 param[3], param[4], param[5], 1201 param[6], param[7]); 1202 BUG_ON(rc != H_SUCCESS); 1203 pix = 0; 1204 } 1205 } 1206 } 1207 if (pix) { 1208 param[pix] = HBR_END; 1209 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1210 param[2], param[3], param[4], param[5], 1211 param[6], param[7]); 1212 BUG_ON(rc != H_SUCCESS); 1213 } 1214 } 1215 1216 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1217 unsigned long *vpn, 1218 int count, int psize, 1219 int ssize) 1220 { 1221 unsigned long flags = 0; 1222 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1223 1224 if (lock_tlbie) 1225 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1226 1227 /* Assuming THP size is 16M */ 1228 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1229 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1230 else 1231 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1232 1233 if (lock_tlbie) 1234 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1235 } 1236 1237 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1238 unsigned long addr, 1239 unsigned char *hpte_slot_array, 1240 int psize, int ssize, int local) 1241 { 1242 int i, index = 0; 1243 unsigned long s_addr = addr; 1244 unsigned int max_hpte_count, valid; 1245 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1246 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1247 unsigned long shift, hidx, vpn = 0, hash, slot; 1248 1249 shift = mmu_psize_defs[psize].shift; 1250 max_hpte_count = 1U << (PMD_SHIFT - shift); 1251 1252 for (i = 0; i < max_hpte_count; i++) { 1253 valid = hpte_valid(hpte_slot_array, i); 1254 if (!valid) 1255 continue; 1256 hidx = hpte_hash_index(hpte_slot_array, i); 1257 1258 /* get the vpn */ 1259 addr = s_addr + (i * (1ul << shift)); 1260 vpn = hpt_vpn(addr, vsid, ssize); 1261 hash = hpt_hash(vpn, shift, ssize); 1262 if (hidx & _PTEIDX_SECONDARY) 1263 hash = ~hash; 1264 1265 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1266 slot += hidx & _PTEIDX_GROUP_IX; 1267 1268 slot_array[index] = slot; 1269 vpn_array[index] = vpn; 1270 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1271 /* 1272 * Now do a bluk invalidate 1273 */ 1274 __pSeries_lpar_hugepage_invalidate(slot_array, 1275 vpn_array, 1276 PPC64_HUGE_HPTE_BATCH, 1277 psize, ssize); 1278 index = 0; 1279 } else 1280 index++; 1281 } 1282 if (index) 1283 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1284 index, psize, ssize); 1285 } 1286 #else 1287 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1288 unsigned long addr, 1289 unsigned char *hpte_slot_array, 1290 int psize, int ssize, int local) 1291 { 1292 WARN(1, "%s called without THP support\n", __func__); 1293 } 1294 #endif 1295 1296 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1297 int psize, int ssize) 1298 { 1299 unsigned long vpn; 1300 unsigned long slot, vsid; 1301 1302 vsid = get_kernel_vsid(ea, ssize); 1303 vpn = hpt_vpn(ea, vsid, ssize); 1304 1305 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1306 if (slot == -1) 1307 return -ENOENT; 1308 1309 /* 1310 * lpar doesn't use the passed actual page size 1311 */ 1312 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1313 return 0; 1314 } 1315 1316 1317 static inline unsigned long compute_slot(real_pte_t pte, 1318 unsigned long vpn, 1319 unsigned long index, 1320 unsigned long shift, 1321 int ssize) 1322 { 1323 unsigned long slot, hash, hidx; 1324 1325 hash = hpt_hash(vpn, shift, ssize); 1326 hidx = __rpte_to_hidx(pte, index); 1327 if (hidx & _PTEIDX_SECONDARY) 1328 hash = ~hash; 1329 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1330 slot += hidx & _PTEIDX_GROUP_IX; 1331 return slot; 1332 } 1333 1334 /** 1335 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1336 * "all within the same naturally aligned 8 page virtual address block". 1337 */ 1338 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1339 unsigned long *param) 1340 { 1341 unsigned long vpn; 1342 unsigned long i, pix = 0; 1343 unsigned long index, shift, slot, current_vpgb, vpgb; 1344 real_pte_t pte; 1345 int psize, ssize; 1346 1347 psize = batch->psize; 1348 ssize = batch->ssize; 1349 1350 for (i = 0; i < number; i++) { 1351 vpn = batch->vpn[i]; 1352 pte = batch->pte[i]; 1353 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1354 /* 1355 * Shifting 3 bits more on the right to get a 1356 * 8 pages aligned virtual addresse. 1357 */ 1358 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1359 if (!pix || vpgb != current_vpgb) { 1360 /* 1361 * Need to start a new 8 pages block, flush 1362 * the current one if needed. 1363 */ 1364 if (pix) 1365 (void)call_block_remove(pix, param, 1366 true); 1367 current_vpgb = vpgb; 1368 param[0] = hpte_encode_avpn(vpn, psize, 1369 ssize); 1370 pix = 1; 1371 } 1372 1373 slot = compute_slot(pte, vpn, index, shift, ssize); 1374 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1375 1376 if (pix == PLPAR_HCALL9_BUFSIZE) { 1377 pix = call_block_remove(pix, param, false); 1378 /* 1379 * pix = 0 means that all the entries were 1380 * removed, we can start a new block. 1381 * Otherwise, this means that there are entries 1382 * to retry, and pix points to latest one, so 1383 * we should increment it and try to continue 1384 * the same block. 1385 */ 1386 if (pix) 1387 pix++; 1388 } 1389 } pte_iterate_hashed_end(); 1390 } 1391 1392 if (pix) 1393 (void)call_block_remove(pix, param, true); 1394 } 1395 1396 /* 1397 * TLB Block Invalidate Characteristics 1398 * 1399 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1400 * is able to process for each couple segment base page size, actual page size. 1401 * 1402 * The ibm,get-system-parameter properties is returning a buffer with the 1403 * following layout: 1404 * 1405 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1406 * ----------------- 1407 * TLB Block Invalidate Specifiers: 1408 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1409 * [ 1 byte Number of page sizes (N) that are supported for the specified 1410 * TLB invalidate block size ] 1411 * [ 1 byte Encoded segment base page size and actual page size 1412 * MSB=0 means 4k segment base page size and actual page size 1413 * MSB=1 the penc value in mmu_psize_def ] 1414 * ... 1415 * ----------------- 1416 * Next TLB Block Invalidate Specifiers... 1417 * ----------------- 1418 * [ 0 ] 1419 */ 1420 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1421 unsigned int block_size) 1422 { 1423 if (block_size > hblkrm_size[bpsize][psize]) 1424 hblkrm_size[bpsize][psize] = block_size; 1425 } 1426 1427 /* 1428 * Decode the Encoded segment base page size and actual page size. 1429 * PAPR specifies: 1430 * - bit 7 is the L bit 1431 * - bits 0-5 are the penc value 1432 * If the L bit is 0, this means 4K segment base page size and actual page size 1433 * otherwise the penc value should be read. 1434 */ 1435 #define HBLKRM_L_MASK 0x80 1436 #define HBLKRM_PENC_MASK 0x3f 1437 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1438 unsigned int block_size) 1439 { 1440 unsigned int bpsize, psize; 1441 1442 /* First, check the L bit, if not set, this means 4K */ 1443 if ((lp & HBLKRM_L_MASK) == 0) { 1444 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1445 return; 1446 } 1447 1448 lp &= HBLKRM_PENC_MASK; 1449 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1450 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1451 1452 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1453 if (def->penc[psize] == lp) { 1454 set_hblkrm_bloc_size(bpsize, psize, block_size); 1455 return; 1456 } 1457 } 1458 } 1459 } 1460 1461 #define SPLPAR_TLB_BIC_TOKEN 50 1462 1463 /* 1464 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1465 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1466 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1467 * (128 bytes) for the buffer to get plenty of space. 1468 */ 1469 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1470 1471 void __init pseries_lpar_read_hblkrm_characteristics(void) 1472 { 1473 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1474 int call_status, len, idx, bpsize; 1475 1476 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1477 return; 1478 1479 spin_lock(&rtas_data_buf_lock); 1480 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1481 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1482 NULL, 1483 SPLPAR_TLB_BIC_TOKEN, 1484 __pa(rtas_data_buf), 1485 RTAS_DATA_BUF_SIZE); 1486 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1487 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1488 spin_unlock(&rtas_data_buf_lock); 1489 1490 if (call_status != 0) { 1491 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1492 __FILE__, __func__, call_status); 1493 return; 1494 } 1495 1496 /* 1497 * The first two (2) bytes of the data in the buffer are the length of 1498 * the returned data, not counting these first two (2) bytes. 1499 */ 1500 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1501 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1502 pr_warn("%s too large returned buffer %d", __func__, len); 1503 return; 1504 } 1505 1506 idx = 2; 1507 while (idx < len) { 1508 u8 block_shift = local_buffer[idx++]; 1509 u32 block_size; 1510 unsigned int npsize; 1511 1512 if (!block_shift) 1513 break; 1514 1515 block_size = 1 << block_shift; 1516 1517 for (npsize = local_buffer[idx++]; 1518 npsize > 0 && idx < len; npsize--) 1519 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1520 block_size); 1521 } 1522 1523 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1524 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1525 if (hblkrm_size[bpsize][idx]) 1526 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1527 bpsize, idx, hblkrm_size[bpsize][idx]); 1528 } 1529 1530 /* 1531 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1532 * lock. 1533 */ 1534 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1535 { 1536 unsigned long vpn; 1537 unsigned long i, pix, rc; 1538 unsigned long flags = 0; 1539 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1540 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1541 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1542 unsigned long index, shift, slot; 1543 real_pte_t pte; 1544 int psize, ssize; 1545 1546 if (lock_tlbie) 1547 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1548 1549 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1550 do_block_remove(number, batch, param); 1551 goto out; 1552 } 1553 1554 psize = batch->psize; 1555 ssize = batch->ssize; 1556 pix = 0; 1557 for (i = 0; i < number; i++) { 1558 vpn = batch->vpn[i]; 1559 pte = batch->pte[i]; 1560 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1561 slot = compute_slot(pte, vpn, index, shift, ssize); 1562 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1563 /* 1564 * lpar doesn't use the passed actual page size 1565 */ 1566 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1567 0, ssize, local); 1568 } else { 1569 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1570 param[pix+1] = hpte_encode_avpn(vpn, psize, 1571 ssize); 1572 pix += 2; 1573 if (pix == 8) { 1574 rc = plpar_hcall9(H_BULK_REMOVE, param, 1575 param[0], param[1], param[2], 1576 param[3], param[4], param[5], 1577 param[6], param[7]); 1578 BUG_ON(rc != H_SUCCESS); 1579 pix = 0; 1580 } 1581 } 1582 } pte_iterate_hashed_end(); 1583 } 1584 if (pix) { 1585 param[pix] = HBR_END; 1586 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1587 param[2], param[3], param[4], param[5], 1588 param[6], param[7]); 1589 BUG_ON(rc != H_SUCCESS); 1590 } 1591 1592 out: 1593 if (lock_tlbie) 1594 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1595 } 1596 1597 static int __init disable_bulk_remove(char *str) 1598 { 1599 if (strcmp(str, "off") == 0 && 1600 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1601 pr_info("Disabling BULK_REMOVE firmware feature"); 1602 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1603 } 1604 return 1; 1605 } 1606 1607 __setup("bulk_remove=", disable_bulk_remove); 1608 1609 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1610 1611 struct hpt_resize_state { 1612 unsigned long shift; 1613 int commit_rc; 1614 }; 1615 1616 static int pseries_lpar_resize_hpt_commit(void *data) 1617 { 1618 struct hpt_resize_state *state = data; 1619 1620 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1621 if (state->commit_rc != H_SUCCESS) 1622 return -EIO; 1623 1624 /* Hypervisor has transitioned the HTAB, update our globals */ 1625 ppc64_pft_size = state->shift; 1626 htab_size_bytes = 1UL << ppc64_pft_size; 1627 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1628 1629 return 0; 1630 } 1631 1632 /* 1633 * Must be called in process context. The caller must hold the 1634 * cpus_lock. 1635 */ 1636 static int pseries_lpar_resize_hpt(unsigned long shift) 1637 { 1638 struct hpt_resize_state state = { 1639 .shift = shift, 1640 .commit_rc = H_FUNCTION, 1641 }; 1642 unsigned int delay, total_delay = 0; 1643 int rc; 1644 ktime_t t0, t1, t2; 1645 1646 might_sleep(); 1647 1648 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1649 return -ENODEV; 1650 1651 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1652 1653 t0 = ktime_get(); 1654 1655 rc = plpar_resize_hpt_prepare(0, shift); 1656 while (H_IS_LONG_BUSY(rc)) { 1657 delay = get_longbusy_msecs(rc); 1658 total_delay += delay; 1659 if (total_delay > HPT_RESIZE_TIMEOUT) { 1660 /* prepare with shift==0 cancels an in-progress resize */ 1661 rc = plpar_resize_hpt_prepare(0, 0); 1662 if (rc != H_SUCCESS) 1663 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1664 rc); 1665 return -ETIMEDOUT; 1666 } 1667 msleep(delay); 1668 rc = plpar_resize_hpt_prepare(0, shift); 1669 } 1670 1671 switch (rc) { 1672 case H_SUCCESS: 1673 /* Continue on */ 1674 break; 1675 1676 case H_PARAMETER: 1677 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1678 return -EINVAL; 1679 case H_RESOURCE: 1680 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1681 return -EPERM; 1682 default: 1683 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1684 return -EIO; 1685 } 1686 1687 t1 = ktime_get(); 1688 1689 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1690 &state, NULL); 1691 1692 t2 = ktime_get(); 1693 1694 if (rc != 0) { 1695 switch (state.commit_rc) { 1696 case H_PTEG_FULL: 1697 return -ENOSPC; 1698 1699 default: 1700 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1701 state.commit_rc); 1702 return -EIO; 1703 }; 1704 } 1705 1706 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1707 shift, (long long) ktime_ms_delta(t1, t0), 1708 (long long) ktime_ms_delta(t2, t1)); 1709 1710 return 0; 1711 } 1712 1713 void __init hpte_init_pseries(void) 1714 { 1715 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1716 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1717 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1718 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1719 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1720 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1721 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1722 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1723 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1724 1725 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1726 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1727 1728 /* 1729 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1730 * to inform the hypervisor that we wish to use the HPT. 1731 */ 1732 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1733 pseries_lpar_register_process_table(0, 0, 0); 1734 } 1735 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1736 1737 #ifdef CONFIG_PPC_RADIX_MMU 1738 void __init radix_init_pseries(void) 1739 { 1740 pr_info("Using radix MMU under hypervisor\n"); 1741 1742 pseries_lpar_register_process_table(__pa(process_tb), 1743 0, PRTB_SIZE_SHIFT - 12); 1744 } 1745 #endif 1746 1747 #ifdef CONFIG_PPC_SMLPAR 1748 #define CMO_FREE_HINT_DEFAULT 1 1749 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1750 1751 static int __init cmo_free_hint(char *str) 1752 { 1753 char *parm; 1754 parm = strstrip(str); 1755 1756 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1757 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1758 cmo_free_hint_flag = 0; 1759 return 1; 1760 } 1761 1762 cmo_free_hint_flag = 1; 1763 pr_info("%s: CMO free page hinting is active.\n", __func__); 1764 1765 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1766 return 1; 1767 1768 return 0; 1769 } 1770 1771 __setup("cmo_free_hint=", cmo_free_hint); 1772 1773 static void pSeries_set_page_state(struct page *page, int order, 1774 unsigned long state) 1775 { 1776 int i, j; 1777 unsigned long cmo_page_sz, addr; 1778 1779 cmo_page_sz = cmo_get_page_size(); 1780 addr = __pa((unsigned long)page_address(page)); 1781 1782 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1783 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1784 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1785 } 1786 } 1787 1788 void arch_free_page(struct page *page, int order) 1789 { 1790 if (radix_enabled()) 1791 return; 1792 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1793 return; 1794 1795 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1796 } 1797 EXPORT_SYMBOL(arch_free_page); 1798 1799 #endif /* CONFIG_PPC_SMLPAR */ 1800 #endif /* CONFIG_PPC_BOOK3S_64 */ 1801 1802 #ifdef CONFIG_TRACEPOINTS 1803 #ifdef CONFIG_JUMP_LABEL 1804 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1805 1806 int hcall_tracepoint_regfunc(void) 1807 { 1808 static_key_slow_inc(&hcall_tracepoint_key); 1809 return 0; 1810 } 1811 1812 void hcall_tracepoint_unregfunc(void) 1813 { 1814 static_key_slow_dec(&hcall_tracepoint_key); 1815 } 1816 #else 1817 /* 1818 * We optimise our hcall path by placing hcall_tracepoint_refcount 1819 * directly in the TOC so we can check if the hcall tracepoints are 1820 * enabled via a single load. 1821 */ 1822 1823 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1824 extern long hcall_tracepoint_refcount; 1825 1826 int hcall_tracepoint_regfunc(void) 1827 { 1828 hcall_tracepoint_refcount++; 1829 return 0; 1830 } 1831 1832 void hcall_tracepoint_unregfunc(void) 1833 { 1834 hcall_tracepoint_refcount--; 1835 } 1836 #endif 1837 1838 /* 1839 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1840 * detected because it may indicate a problem. This will not catch all 1841 * problems with tracing code making hcalls, because the tracing might have 1842 * been invoked from a non-hcall, so the first hcall could recurse into it 1843 * without warning here, but this better than nothing. 1844 * 1845 * Hcalls with specific problems being traced should use the _notrace 1846 * plpar_hcall variants. 1847 */ 1848 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1849 1850 1851 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1852 { 1853 unsigned long flags; 1854 unsigned int *depth; 1855 1856 local_irq_save(flags); 1857 1858 depth = this_cpu_ptr(&hcall_trace_depth); 1859 1860 if (WARN_ON_ONCE(*depth)) 1861 goto out; 1862 1863 (*depth)++; 1864 preempt_disable(); 1865 trace_hcall_entry(opcode, args); 1866 (*depth)--; 1867 1868 out: 1869 local_irq_restore(flags); 1870 } 1871 1872 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1873 { 1874 unsigned long flags; 1875 unsigned int *depth; 1876 1877 local_irq_save(flags); 1878 1879 depth = this_cpu_ptr(&hcall_trace_depth); 1880 1881 if (*depth) /* Don't warn again on the way out */ 1882 goto out; 1883 1884 (*depth)++; 1885 trace_hcall_exit(opcode, retval, retbuf); 1886 preempt_enable(); 1887 (*depth)--; 1888 1889 out: 1890 local_irq_restore(flags); 1891 } 1892 #endif 1893 1894 /** 1895 * h_get_mpp 1896 * H_GET_MPP hcall returns info in 7 parms 1897 */ 1898 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1899 { 1900 int rc; 1901 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1902 1903 rc = plpar_hcall9(H_GET_MPP, retbuf); 1904 1905 mpp_data->entitled_mem = retbuf[0]; 1906 mpp_data->mapped_mem = retbuf[1]; 1907 1908 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1909 mpp_data->pool_num = retbuf[2] & 0xffff; 1910 1911 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1912 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1913 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1914 1915 mpp_data->pool_size = retbuf[4]; 1916 mpp_data->loan_request = retbuf[5]; 1917 mpp_data->backing_mem = retbuf[6]; 1918 1919 return rc; 1920 } 1921 EXPORT_SYMBOL(h_get_mpp); 1922 1923 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1924 { 1925 int rc; 1926 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1927 1928 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1929 1930 mpp_x_data->coalesced_bytes = retbuf[0]; 1931 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1932 mpp_x_data->pool_purr_cycles = retbuf[2]; 1933 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1934 1935 return rc; 1936 } 1937 1938 #ifdef CONFIG_PPC_64S_HASH_MMU 1939 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1940 { 1941 unsigned long protovsid; 1942 unsigned long va_bits = VA_BITS; 1943 unsigned long modinv, vsid_modulus; 1944 unsigned long max_mod_inv, tmp_modinv; 1945 1946 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1947 va_bits = 65; 1948 1949 if (ssize == MMU_SEGSIZE_256M) { 1950 modinv = VSID_MULINV_256M; 1951 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1952 } else { 1953 modinv = VSID_MULINV_1T; 1954 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1955 } 1956 1957 /* 1958 * vsid outside our range. 1959 */ 1960 if (vsid >= vsid_modulus) 1961 return 0; 1962 1963 /* 1964 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1965 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1966 * protovsid = (vsid * modinv) % vsid_modulus 1967 */ 1968 1969 /* Check if (vsid * modinv) overflow (63 bits) */ 1970 max_mod_inv = 0x7fffffffffffffffull / vsid; 1971 if (modinv < max_mod_inv) 1972 return (vsid * modinv) % vsid_modulus; 1973 1974 tmp_modinv = modinv/max_mod_inv; 1975 modinv %= max_mod_inv; 1976 1977 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1978 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1979 1980 return protovsid; 1981 } 1982 1983 static int __init reserve_vrma_context_id(void) 1984 { 1985 unsigned long protovsid; 1986 1987 /* 1988 * Reserve context ids which map to reserved virtual addresses. For now 1989 * we only reserve the context id which maps to the VRMA VSID. We ignore 1990 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1991 * enable adjunct support via the "ibm,client-architecture-support" 1992 * interface. 1993 */ 1994 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1995 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1996 return 0; 1997 } 1998 machine_device_initcall(pseries, reserve_vrma_context_id); 1999 #endif 2000 2001 #ifdef CONFIG_DEBUG_FS 2002 /* debugfs file interface for vpa data */ 2003 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 2004 loff_t *pos) 2005 { 2006 int cpu = (long)filp->private_data; 2007 struct lppaca *lppaca = &lppaca_of(cpu); 2008 2009 return simple_read_from_buffer(buf, len, pos, lppaca, 2010 sizeof(struct lppaca)); 2011 } 2012 2013 static const struct file_operations vpa_fops = { 2014 .open = simple_open, 2015 .read = vpa_file_read, 2016 .llseek = default_llseek, 2017 }; 2018 2019 static int __init vpa_debugfs_init(void) 2020 { 2021 char name[16]; 2022 long i; 2023 struct dentry *vpa_dir; 2024 2025 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2026 return 0; 2027 2028 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2029 2030 /* set up the per-cpu vpa file*/ 2031 for_each_possible_cpu(i) { 2032 sprintf(name, "cpu-%ld", i); 2033 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2034 } 2035 2036 return 0; 2037 } 2038 machine_arch_initcall(pseries, vpa_debugfs_init); 2039 #endif /* CONFIG_DEBUG_FS */ 2040