xref: /openbmc/linux/arch/powerpc/platforms/pseries/lpar.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8 
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <asm/processor.h>
26 #include <asm/mmu.h>
27 #include <asm/page.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43 
44 #include "pseries.h"
45 
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST	0x4000000000000000UL
48 #define HBR_RESPONSE	0x8000000000000000UL
49 #define HBR_END		0xc000000000000000UL
50 #define HBR_AVPN	0x0200000000000000UL
51 #define HBR_ANDCOND	0x0100000000000000UL
52 
53 
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58 
59 /*
60  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
61  * page size is that page size.
62  *
63  * The first index is the segment base page size, the second one is the actual
64  * page size.
65  */
66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
67 
68 /*
69  * Due to the involved complexity, and that the current hypervisor is only
70  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
71  * buffer size to 8 size block.
72  */
73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
74 
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
76 static u8 dtl_mask = DTL_LOG_PREEMPT;
77 #else
78 static u8 dtl_mask;
79 #endif
80 
81 void alloc_dtl_buffers(unsigned long *time_limit)
82 {
83 	int cpu;
84 	struct paca_struct *pp;
85 	struct dtl_entry *dtl;
86 
87 	for_each_possible_cpu(cpu) {
88 		pp = paca_ptrs[cpu];
89 		if (pp->dispatch_log)
90 			continue;
91 		dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
92 		if (!dtl) {
93 			pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
94 				cpu);
95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
96 			pr_warn("Stolen time statistics will be unreliable\n");
97 #endif
98 			break;
99 		}
100 
101 		pp->dtl_ridx = 0;
102 		pp->dispatch_log = dtl;
103 		pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
104 		pp->dtl_curr = dtl;
105 
106 		if (time_limit && time_after(jiffies, *time_limit)) {
107 			cond_resched();
108 			*time_limit = jiffies + HZ;
109 		}
110 	}
111 }
112 
113 void register_dtl_buffer(int cpu)
114 {
115 	long ret;
116 	struct paca_struct *pp;
117 	struct dtl_entry *dtl;
118 	int hwcpu = get_hard_smp_processor_id(cpu);
119 
120 	pp = paca_ptrs[cpu];
121 	dtl = pp->dispatch_log;
122 	if (dtl && dtl_mask) {
123 		pp->dtl_ridx = 0;
124 		pp->dtl_curr = dtl;
125 		lppaca_of(cpu).dtl_idx = 0;
126 
127 		/* hypervisor reads buffer length from this field */
128 		dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
129 		ret = register_dtl(hwcpu, __pa(dtl));
130 		if (ret)
131 			pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
132 			       cpu, hwcpu, ret);
133 
134 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
135 	}
136 }
137 
138 #ifdef CONFIG_PPC_SPLPAR
139 struct dtl_worker {
140 	struct delayed_work work;
141 	int cpu;
142 };
143 
144 struct vcpu_dispatch_data {
145 	int last_disp_cpu;
146 
147 	int total_disp;
148 
149 	int same_cpu_disp;
150 	int same_chip_disp;
151 	int diff_chip_disp;
152 	int far_chip_disp;
153 
154 	int numa_home_disp;
155 	int numa_remote_disp;
156 	int numa_far_disp;
157 };
158 
159 /*
160  * This represents the number of cpus in the hypervisor. Since there is no
161  * architected way to discover the number of processors in the host, we
162  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
163  * is sufficient for our purposes. This will need to be tweaked if
164  * CONFIG_NR_CPUS is changed.
165  */
166 #define NR_CPUS_H	NR_CPUS
167 
168 DEFINE_RWLOCK(dtl_access_lock);
169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
170 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
172 static enum cpuhp_state dtl_worker_state;
173 static DEFINE_MUTEX(dtl_enable_mutex);
174 static int vcpudispatch_stats_on __read_mostly;
175 static int vcpudispatch_stats_freq = 50;
176 static __be32 *vcpu_associativity, *pcpu_associativity;
177 
178 
179 static void free_dtl_buffers(unsigned long *time_limit)
180 {
181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
182 	int cpu;
183 	struct paca_struct *pp;
184 
185 	for_each_possible_cpu(cpu) {
186 		pp = paca_ptrs[cpu];
187 		if (!pp->dispatch_log)
188 			continue;
189 		kmem_cache_free(dtl_cache, pp->dispatch_log);
190 		pp->dtl_ridx = 0;
191 		pp->dispatch_log = 0;
192 		pp->dispatch_log_end = 0;
193 		pp->dtl_curr = 0;
194 
195 		if (time_limit && time_after(jiffies, *time_limit)) {
196 			cond_resched();
197 			*time_limit = jiffies + HZ;
198 		}
199 	}
200 #endif
201 }
202 
203 static int init_cpu_associativity(void)
204 {
205 	vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
206 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
207 	pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
208 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209 
210 	if (!vcpu_associativity || !pcpu_associativity) {
211 		pr_err("error allocating memory for associativity information\n");
212 		return -ENOMEM;
213 	}
214 
215 	return 0;
216 }
217 
218 static void destroy_cpu_associativity(void)
219 {
220 	kfree(vcpu_associativity);
221 	kfree(pcpu_associativity);
222 	vcpu_associativity = pcpu_associativity = 0;
223 }
224 
225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
226 {
227 	__be32 *assoc;
228 	int rc = 0;
229 
230 	assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
231 	if (!assoc[0]) {
232 		rc = hcall_vphn(cpu, flag, &assoc[0]);
233 		if (rc)
234 			return NULL;
235 	}
236 
237 	return assoc;
238 }
239 
240 static __be32 *get_pcpu_associativity(int cpu)
241 {
242 	return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
243 }
244 
245 static __be32 *get_vcpu_associativity(int cpu)
246 {
247 	return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
248 }
249 
250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
251 {
252 	__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
253 
254 	if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
255 		return -EINVAL;
256 
257 	last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
258 	cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
259 
260 	if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
261 		return -EIO;
262 
263 	return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
264 }
265 
266 static int cpu_home_node_dispatch_distance(int disp_cpu)
267 {
268 	__be32 *disp_cpu_assoc, *vcpu_assoc;
269 	int vcpu_id = smp_processor_id();
270 
271 	if (disp_cpu >= NR_CPUS_H) {
272 		pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
273 						disp_cpu, NR_CPUS_H);
274 		return -EINVAL;
275 	}
276 
277 	disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
278 	vcpu_assoc = get_vcpu_associativity(vcpu_id);
279 
280 	if (!disp_cpu_assoc || !vcpu_assoc)
281 		return -EIO;
282 
283 	return cpu_distance(disp_cpu_assoc, vcpu_assoc);
284 }
285 
286 static void update_vcpu_disp_stat(int disp_cpu)
287 {
288 	struct vcpu_dispatch_data *disp;
289 	int distance;
290 
291 	disp = this_cpu_ptr(&vcpu_disp_data);
292 	if (disp->last_disp_cpu == -1) {
293 		disp->last_disp_cpu = disp_cpu;
294 		return;
295 	}
296 
297 	disp->total_disp++;
298 
299 	if (disp->last_disp_cpu == disp_cpu ||
300 		(cpu_first_thread_sibling(disp->last_disp_cpu) ==
301 					cpu_first_thread_sibling(disp_cpu)))
302 		disp->same_cpu_disp++;
303 	else {
304 		distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
305 								disp_cpu);
306 		if (distance < 0)
307 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
308 					smp_processor_id());
309 		else {
310 			switch (distance) {
311 			case 0:
312 				disp->same_chip_disp++;
313 				break;
314 			case 1:
315 				disp->diff_chip_disp++;
316 				break;
317 			case 2:
318 				disp->far_chip_disp++;
319 				break;
320 			default:
321 				pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
322 						 smp_processor_id(),
323 						 disp->last_disp_cpu,
324 						 disp_cpu,
325 						 distance);
326 			}
327 		}
328 	}
329 
330 	distance = cpu_home_node_dispatch_distance(disp_cpu);
331 	if (distance < 0)
332 		pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
333 				smp_processor_id());
334 	else {
335 		switch (distance) {
336 		case 0:
337 			disp->numa_home_disp++;
338 			break;
339 		case 1:
340 			disp->numa_remote_disp++;
341 			break;
342 		case 2:
343 			disp->numa_far_disp++;
344 			break;
345 		default:
346 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
347 						 smp_processor_id(),
348 						 disp_cpu,
349 						 distance);
350 		}
351 	}
352 
353 	disp->last_disp_cpu = disp_cpu;
354 }
355 
356 static void process_dtl_buffer(struct work_struct *work)
357 {
358 	struct dtl_entry dtle;
359 	u64 i = __this_cpu_read(dtl_entry_ridx);
360 	struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
361 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
362 	struct lppaca *vpa = local_paca->lppaca_ptr;
363 	struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
364 
365 	if (!local_paca->dispatch_log)
366 		return;
367 
368 	/* if we have been migrated away, we cancel ourself */
369 	if (d->cpu != smp_processor_id()) {
370 		pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
371 						smp_processor_id());
372 		return;
373 	}
374 
375 	if (i == be64_to_cpu(vpa->dtl_idx))
376 		goto out;
377 
378 	while (i < be64_to_cpu(vpa->dtl_idx)) {
379 		dtle = *dtl;
380 		barrier();
381 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
382 			/* buffer has overflowed */
383 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
384 				d->cpu,
385 				be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
386 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
387 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
388 			continue;
389 		}
390 		update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
391 		++i;
392 		++dtl;
393 		if (dtl == dtl_end)
394 			dtl = local_paca->dispatch_log;
395 	}
396 
397 	__this_cpu_write(dtl_entry_ridx, i);
398 
399 out:
400 	schedule_delayed_work_on(d->cpu, to_delayed_work(work),
401 					HZ / vcpudispatch_stats_freq);
402 }
403 
404 static int dtl_worker_online(unsigned int cpu)
405 {
406 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
407 
408 	memset(d, 0, sizeof(*d));
409 	INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
410 	d->cpu = cpu;
411 
412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
413 	per_cpu(dtl_entry_ridx, cpu) = 0;
414 	register_dtl_buffer(cpu);
415 #else
416 	per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
417 #endif
418 
419 	schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
420 	return 0;
421 }
422 
423 static int dtl_worker_offline(unsigned int cpu)
424 {
425 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
426 
427 	cancel_delayed_work_sync(&d->work);
428 
429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430 	unregister_dtl(get_hard_smp_processor_id(cpu));
431 #endif
432 
433 	return 0;
434 }
435 
436 static void set_global_dtl_mask(u8 mask)
437 {
438 	int cpu;
439 
440 	dtl_mask = mask;
441 	for_each_present_cpu(cpu)
442 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
443 }
444 
445 static void reset_global_dtl_mask(void)
446 {
447 	int cpu;
448 
449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
450 	dtl_mask = DTL_LOG_PREEMPT;
451 #else
452 	dtl_mask = 0;
453 #endif
454 	for_each_present_cpu(cpu)
455 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
456 }
457 
458 static int dtl_worker_enable(unsigned long *time_limit)
459 {
460 	int rc = 0, state;
461 
462 	if (!write_trylock(&dtl_access_lock)) {
463 		rc = -EBUSY;
464 		goto out;
465 	}
466 
467 	set_global_dtl_mask(DTL_LOG_ALL);
468 
469 	/* Setup dtl buffers and register those */
470 	alloc_dtl_buffers(time_limit);
471 
472 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
473 					dtl_worker_online, dtl_worker_offline);
474 	if (state < 0) {
475 		pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
476 		free_dtl_buffers(time_limit);
477 		reset_global_dtl_mask();
478 		write_unlock(&dtl_access_lock);
479 		rc = -EINVAL;
480 		goto out;
481 	}
482 	dtl_worker_state = state;
483 
484 out:
485 	return rc;
486 }
487 
488 static void dtl_worker_disable(unsigned long *time_limit)
489 {
490 	cpuhp_remove_state(dtl_worker_state);
491 	free_dtl_buffers(time_limit);
492 	reset_global_dtl_mask();
493 	write_unlock(&dtl_access_lock);
494 }
495 
496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
497 		size_t count, loff_t *ppos)
498 {
499 	unsigned long time_limit = jiffies + HZ;
500 	struct vcpu_dispatch_data *disp;
501 	int rc, cmd, cpu;
502 	char buf[16];
503 
504 	if (count > 15)
505 		return -EINVAL;
506 
507 	if (copy_from_user(buf, p, count))
508 		return -EFAULT;
509 
510 	buf[count] = 0;
511 	rc = kstrtoint(buf, 0, &cmd);
512 	if (rc || cmd < 0 || cmd > 1) {
513 		pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
514 		return rc ? rc : -EINVAL;
515 	}
516 
517 	mutex_lock(&dtl_enable_mutex);
518 
519 	if ((cmd == 0 && !vcpudispatch_stats_on) ||
520 			(cmd == 1 && vcpudispatch_stats_on))
521 		goto out;
522 
523 	if (cmd) {
524 		rc = init_cpu_associativity();
525 		if (rc)
526 			goto out;
527 
528 		for_each_possible_cpu(cpu) {
529 			disp = per_cpu_ptr(&vcpu_disp_data, cpu);
530 			memset(disp, 0, sizeof(*disp));
531 			disp->last_disp_cpu = -1;
532 		}
533 
534 		rc = dtl_worker_enable(&time_limit);
535 		if (rc) {
536 			destroy_cpu_associativity();
537 			goto out;
538 		}
539 	} else {
540 		dtl_worker_disable(&time_limit);
541 		destroy_cpu_associativity();
542 	}
543 
544 	vcpudispatch_stats_on = cmd;
545 
546 out:
547 	mutex_unlock(&dtl_enable_mutex);
548 	if (rc)
549 		return rc;
550 	return count;
551 }
552 
553 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
554 {
555 	int cpu;
556 	struct vcpu_dispatch_data *disp;
557 
558 	if (!vcpudispatch_stats_on) {
559 		seq_puts(p, "off\n");
560 		return 0;
561 	}
562 
563 	for_each_online_cpu(cpu) {
564 		disp = per_cpu_ptr(&vcpu_disp_data, cpu);
565 		seq_printf(p, "cpu%d", cpu);
566 		seq_put_decimal_ull(p, " ", disp->total_disp);
567 		seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
568 		seq_put_decimal_ull(p, " ", disp->same_chip_disp);
569 		seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
570 		seq_put_decimal_ull(p, " ", disp->far_chip_disp);
571 		seq_put_decimal_ull(p, " ", disp->numa_home_disp);
572 		seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
573 		seq_put_decimal_ull(p, " ", disp->numa_far_disp);
574 		seq_puts(p, "\n");
575 	}
576 
577 	return 0;
578 }
579 
580 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
581 {
582 	return single_open(file, vcpudispatch_stats_display, NULL);
583 }
584 
585 static const struct proc_ops vcpudispatch_stats_proc_ops = {
586 	.proc_open	= vcpudispatch_stats_open,
587 	.proc_read	= seq_read,
588 	.proc_write	= vcpudispatch_stats_write,
589 	.proc_lseek	= seq_lseek,
590 	.proc_release	= single_release,
591 };
592 
593 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
594 		const char __user *p, size_t count, loff_t *ppos)
595 {
596 	int rc, freq;
597 	char buf[16];
598 
599 	if (count > 15)
600 		return -EINVAL;
601 
602 	if (copy_from_user(buf, p, count))
603 		return -EFAULT;
604 
605 	buf[count] = 0;
606 	rc = kstrtoint(buf, 0, &freq);
607 	if (rc || freq < 1 || freq > HZ) {
608 		pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
609 				HZ);
610 		return rc ? rc : -EINVAL;
611 	}
612 
613 	vcpudispatch_stats_freq = freq;
614 
615 	return count;
616 }
617 
618 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
619 {
620 	seq_printf(p, "%d\n", vcpudispatch_stats_freq);
621 	return 0;
622 }
623 
624 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
625 {
626 	return single_open(file, vcpudispatch_stats_freq_display, NULL);
627 }
628 
629 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
630 	.proc_open	= vcpudispatch_stats_freq_open,
631 	.proc_read	= seq_read,
632 	.proc_write	= vcpudispatch_stats_freq_write,
633 	.proc_lseek	= seq_lseek,
634 	.proc_release	= single_release,
635 };
636 
637 static int __init vcpudispatch_stats_procfs_init(void)
638 {
639 	/*
640 	 * Avoid smp_processor_id while preemptible. All CPUs should have
641 	 * the same value for lppaca_shared_proc.
642 	 */
643 	preempt_disable();
644 	if (!lppaca_shared_proc(get_lppaca())) {
645 		preempt_enable();
646 		return 0;
647 	}
648 	preempt_enable();
649 
650 	if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
651 					&vcpudispatch_stats_proc_ops))
652 		pr_err("vcpudispatch_stats: error creating procfs file\n");
653 	else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
654 					&vcpudispatch_stats_freq_proc_ops))
655 		pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
656 
657 	return 0;
658 }
659 
660 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
661 #endif /* CONFIG_PPC_SPLPAR */
662 
663 void vpa_init(int cpu)
664 {
665 	int hwcpu = get_hard_smp_processor_id(cpu);
666 	unsigned long addr;
667 	long ret;
668 
669 	/*
670 	 * The spec says it "may be problematic" if CPU x registers the VPA of
671 	 * CPU y. We should never do that, but wail if we ever do.
672 	 */
673 	WARN_ON(cpu != smp_processor_id());
674 
675 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
676 		lppaca_of(cpu).vmxregs_in_use = 1;
677 
678 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
679 		lppaca_of(cpu).ebb_regs_in_use = 1;
680 
681 	addr = __pa(&lppaca_of(cpu));
682 	ret = register_vpa(hwcpu, addr);
683 
684 	if (ret) {
685 		pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
686 		       "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
687 		return;
688 	}
689 
690 #ifdef CONFIG_PPC_BOOK3S_64
691 	/*
692 	 * PAPR says this feature is SLB-Buffer but firmware never
693 	 * reports that.  All SPLPAR support SLB shadow buffer.
694 	 */
695 	if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
696 		addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
697 		ret = register_slb_shadow(hwcpu, addr);
698 		if (ret)
699 			pr_err("WARNING: SLB shadow buffer registration for "
700 			       "cpu %d (hw %d) of area %lx failed with %ld\n",
701 			       cpu, hwcpu, addr, ret);
702 	}
703 #endif /* CONFIG_PPC_BOOK3S_64 */
704 
705 	/*
706 	 * Register dispatch trace log, if one has been allocated.
707 	 */
708 	register_dtl_buffer(cpu);
709 }
710 
711 #ifdef CONFIG_PPC_BOOK3S_64
712 
713 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
714 				     unsigned long vpn, unsigned long pa,
715 				     unsigned long rflags, unsigned long vflags,
716 				     int psize, int apsize, int ssize)
717 {
718 	unsigned long lpar_rc;
719 	unsigned long flags;
720 	unsigned long slot;
721 	unsigned long hpte_v, hpte_r;
722 
723 	if (!(vflags & HPTE_V_BOLTED))
724 		pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
725 			 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
726 			 hpte_group, vpn,  pa, rflags, vflags, psize);
727 
728 	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
729 	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
730 
731 	if (!(vflags & HPTE_V_BOLTED))
732 		pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
733 
734 	/* Now fill in the actual HPTE */
735 	/* Set CEC cookie to 0         */
736 	/* Zero page = 0               */
737 	/* I-cache Invalidate = 0      */
738 	/* I-cache synchronize = 0     */
739 	/* Exact = 0                   */
740 	flags = 0;
741 
742 	if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
743 		flags |= H_COALESCE_CAND;
744 
745 	lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
746 	if (unlikely(lpar_rc == H_PTEG_FULL)) {
747 		pr_devel("Hash table group is full\n");
748 		return -1;
749 	}
750 
751 	/*
752 	 * Since we try and ioremap PHBs we don't own, the pte insert
753 	 * will fail. However we must catch the failure in hash_page
754 	 * or we will loop forever, so return -2 in this case.
755 	 */
756 	if (unlikely(lpar_rc != H_SUCCESS)) {
757 		pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
758 		return -2;
759 	}
760 	if (!(vflags & HPTE_V_BOLTED))
761 		pr_devel(" -> slot: %lu\n", slot & 7);
762 
763 	/* Because of iSeries, we have to pass down the secondary
764 	 * bucket bit here as well
765 	 */
766 	return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
767 }
768 
769 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
770 
771 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
772 {
773 	unsigned long slot_offset;
774 	unsigned long lpar_rc;
775 	int i;
776 	unsigned long dummy1, dummy2;
777 
778 	/* pick a random slot to start at */
779 	slot_offset = mftb() & 0x7;
780 
781 	for (i = 0; i < HPTES_PER_GROUP; i++) {
782 
783 		/* don't remove a bolted entry */
784 		lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
785 					   HPTE_V_BOLTED, &dummy1, &dummy2);
786 		if (lpar_rc == H_SUCCESS)
787 			return i;
788 
789 		/*
790 		 * The test for adjunct partition is performed before the
791 		 * ANDCOND test.  H_RESOURCE may be returned, so we need to
792 		 * check for that as well.
793 		 */
794 		BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
795 
796 		slot_offset++;
797 		slot_offset &= 0x7;
798 	}
799 
800 	return -1;
801 }
802 
803 static void manual_hpte_clear_all(void)
804 {
805 	unsigned long size_bytes = 1UL << ppc64_pft_size;
806 	unsigned long hpte_count = size_bytes >> 4;
807 	struct {
808 		unsigned long pteh;
809 		unsigned long ptel;
810 	} ptes[4];
811 	long lpar_rc;
812 	unsigned long i, j;
813 
814 	/* Read in batches of 4,
815 	 * invalidate only valid entries not in the VRMA
816 	 * hpte_count will be a multiple of 4
817          */
818 	for (i = 0; i < hpte_count; i += 4) {
819 		lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
820 		if (lpar_rc != H_SUCCESS) {
821 			pr_info("Failed to read hash page table at %ld err %ld\n",
822 				i, lpar_rc);
823 			continue;
824 		}
825 		for (j = 0; j < 4; j++){
826 			if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
827 				HPTE_V_VRMA_MASK)
828 				continue;
829 			if (ptes[j].pteh & HPTE_V_VALID)
830 				plpar_pte_remove_raw(0, i + j, 0,
831 					&(ptes[j].pteh), &(ptes[j].ptel));
832 		}
833 	}
834 }
835 
836 static int hcall_hpte_clear_all(void)
837 {
838 	int rc;
839 
840 	do {
841 		rc = plpar_hcall_norets(H_CLEAR_HPT);
842 	} while (rc == H_CONTINUE);
843 
844 	return rc;
845 }
846 
847 static void pseries_hpte_clear_all(void)
848 {
849 	int rc;
850 
851 	rc = hcall_hpte_clear_all();
852 	if (rc != H_SUCCESS)
853 		manual_hpte_clear_all();
854 
855 #ifdef __LITTLE_ENDIAN__
856 	/*
857 	 * Reset exceptions to big endian.
858 	 *
859 	 * FIXME this is a hack for kexec, we need to reset the exception
860 	 * endian before starting the new kernel and this is a convenient place
861 	 * to do it.
862 	 *
863 	 * This is also called on boot when a fadump happens. In that case we
864 	 * must not change the exception endian mode.
865 	 */
866 	if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
867 		pseries_big_endian_exceptions();
868 #endif
869 }
870 
871 /*
872  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
873  * the low 3 bits of flags happen to line up.  So no transform is needed.
874  * We can probably optimize here and assume the high bits of newpp are
875  * already zero.  For now I am paranoid.
876  */
877 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
878 				       unsigned long newpp,
879 				       unsigned long vpn,
880 				       int psize, int apsize,
881 				       int ssize, unsigned long inv_flags)
882 {
883 	unsigned long lpar_rc;
884 	unsigned long flags;
885 	unsigned long want_v;
886 
887 	want_v = hpte_encode_avpn(vpn, psize, ssize);
888 
889 	flags = (newpp & 7) | H_AVPN;
890 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
891 		/* Move pp0 into bit 8 (IBM 55) */
892 		flags |= (newpp & HPTE_R_PP0) >> 55;
893 
894 	pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
895 		 want_v, slot, flags, psize);
896 
897 	lpar_rc = plpar_pte_protect(flags, slot, want_v);
898 
899 	if (lpar_rc == H_NOT_FOUND) {
900 		pr_devel("not found !\n");
901 		return -1;
902 	}
903 
904 	pr_devel("ok\n");
905 
906 	BUG_ON(lpar_rc != H_SUCCESS);
907 
908 	return 0;
909 }
910 
911 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
912 {
913 	long lpar_rc;
914 	unsigned long i, j;
915 	struct {
916 		unsigned long pteh;
917 		unsigned long ptel;
918 	} ptes[4];
919 
920 	for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
921 
922 		lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
923 		if (lpar_rc != H_SUCCESS) {
924 			pr_info("Failed to read hash page table at %ld err %ld\n",
925 				hpte_group, lpar_rc);
926 			continue;
927 		}
928 
929 		for (j = 0; j < 4; j++) {
930 			if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
931 			    (ptes[j].pteh & HPTE_V_VALID))
932 				return i + j;
933 		}
934 	}
935 
936 	return -1;
937 }
938 
939 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
940 {
941 	long slot;
942 	unsigned long hash;
943 	unsigned long want_v;
944 	unsigned long hpte_group;
945 
946 	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
947 	want_v = hpte_encode_avpn(vpn, psize, ssize);
948 
949 	/*
950 	 * We try to keep bolted entries always in primary hash
951 	 * But in some case we can find them in secondary too.
952 	 */
953 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
954 	slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
955 	if (slot < 0) {
956 		/* Try in secondary */
957 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
958 		slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
959 		if (slot < 0)
960 			return -1;
961 	}
962 	return hpte_group + slot;
963 }
964 
965 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
966 					     unsigned long ea,
967 					     int psize, int ssize)
968 {
969 	unsigned long vpn;
970 	unsigned long lpar_rc, slot, vsid, flags;
971 
972 	vsid = get_kernel_vsid(ea, ssize);
973 	vpn = hpt_vpn(ea, vsid, ssize);
974 
975 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
976 	BUG_ON(slot == -1);
977 
978 	flags = newpp & 7;
979 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
980 		/* Move pp0 into bit 8 (IBM 55) */
981 		flags |= (newpp & HPTE_R_PP0) >> 55;
982 
983 	lpar_rc = plpar_pte_protect(flags, slot, 0);
984 
985 	BUG_ON(lpar_rc != H_SUCCESS);
986 }
987 
988 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
989 					 int psize, int apsize,
990 					 int ssize, int local)
991 {
992 	unsigned long want_v;
993 	unsigned long lpar_rc;
994 	unsigned long dummy1, dummy2;
995 
996 	pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
997 		 slot, vpn, psize, local);
998 
999 	want_v = hpte_encode_avpn(vpn, psize, ssize);
1000 	lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1001 	if (lpar_rc == H_NOT_FOUND)
1002 		return;
1003 
1004 	BUG_ON(lpar_rc != H_SUCCESS);
1005 }
1006 
1007 
1008 /*
1009  * As defined in the PAPR's section 14.5.4.1.8
1010  * The control mask doesn't include the returned reference and change bit from
1011  * the processed PTE.
1012  */
1013 #define HBLKR_AVPN		0x0100000000000000UL
1014 #define HBLKR_CTRL_MASK		0xf800000000000000UL
1015 #define HBLKR_CTRL_SUCCESS	0x8000000000000000UL
1016 #define HBLKR_CTRL_ERRNOTFOUND	0x8800000000000000UL
1017 #define HBLKR_CTRL_ERRBUSY	0xa000000000000000UL
1018 
1019 /*
1020  * Returned true if we are supporting this block size for the specified segment
1021  * base page size and actual page size.
1022  *
1023  * Currently, we only support 8 size block.
1024  */
1025 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1026 {
1027 	return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1028 }
1029 
1030 /**
1031  * H_BLOCK_REMOVE caller.
1032  * @idx should point to the latest @param entry set with a PTEX.
1033  * If PTE cannot be processed because another CPUs has already locked that
1034  * group, those entries are put back in @param starting at index 1.
1035  * If entries has to be retried and @retry_busy is set to true, these entries
1036  * are retried until success. If @retry_busy is set to false, the returned
1037  * is the number of entries yet to process.
1038  */
1039 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1040 				       bool retry_busy)
1041 {
1042 	unsigned long i, rc, new_idx;
1043 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1044 
1045 	if (idx < 2) {
1046 		pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1047 		return 0;
1048 	}
1049 again:
1050 	new_idx = 0;
1051 	if (idx > PLPAR_HCALL9_BUFSIZE) {
1052 		pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1053 		idx = PLPAR_HCALL9_BUFSIZE;
1054 	} else if (idx < PLPAR_HCALL9_BUFSIZE)
1055 		param[idx] = HBR_END;
1056 
1057 	rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1058 			  param[0], /* AVA */
1059 			  param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1060 			  param[5],  param[6],  param[7],  param[8]);
1061 	if (rc == H_SUCCESS)
1062 		return 0;
1063 
1064 	BUG_ON(rc != H_PARTIAL);
1065 
1066 	/* Check that the unprocessed entries were 'not found' or 'busy' */
1067 	for (i = 0; i < idx-1; i++) {
1068 		unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1069 
1070 		if (ctrl == HBLKR_CTRL_ERRBUSY) {
1071 			param[++new_idx] = param[i+1];
1072 			continue;
1073 		}
1074 
1075 		BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1076 		       && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1077 	}
1078 
1079 	/*
1080 	 * If there were entries found busy, retry these entries if requested,
1081 	 * of if all the entries have to be retried.
1082 	 */
1083 	if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1084 		idx = new_idx + 1;
1085 		goto again;
1086 	}
1087 
1088 	return new_idx;
1089 }
1090 
1091 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1092 /*
1093  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1094  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1095  */
1096 #define PPC64_HUGE_HPTE_BATCH 12
1097 
1098 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1099 				      int count, int psize, int ssize)
1100 {
1101 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1102 	unsigned long shift, current_vpgb, vpgb;
1103 	int i, pix = 0;
1104 
1105 	shift = mmu_psize_defs[psize].shift;
1106 
1107 	for (i = 0; i < count; i++) {
1108 		/*
1109 		 * Shifting 3 bits more on the right to get a
1110 		 * 8 pages aligned virtual addresse.
1111 		 */
1112 		vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1113 		if (!pix || vpgb != current_vpgb) {
1114 			/*
1115 			 * Need to start a new 8 pages block, flush
1116 			 * the current one if needed.
1117 			 */
1118 			if (pix)
1119 				(void)call_block_remove(pix, param, true);
1120 			current_vpgb = vpgb;
1121 			param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1122 			pix = 1;
1123 		}
1124 
1125 		param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1126 		if (pix == PLPAR_HCALL9_BUFSIZE) {
1127 			pix = call_block_remove(pix, param, false);
1128 			/*
1129 			 * pix = 0 means that all the entries were
1130 			 * removed, we can start a new block.
1131 			 * Otherwise, this means that there are entries
1132 			 * to retry, and pix points to latest one, so
1133 			 * we should increment it and try to continue
1134 			 * the same block.
1135 			 */
1136 			if (pix)
1137 				pix++;
1138 		}
1139 	}
1140 	if (pix)
1141 		(void)call_block_remove(pix, param, true);
1142 }
1143 
1144 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1145 				     int count, int psize, int ssize)
1146 {
1147 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1148 	int i = 0, pix = 0, rc;
1149 
1150 	for (i = 0; i < count; i++) {
1151 
1152 		if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1153 			pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1154 						     ssize, 0);
1155 		} else {
1156 			param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1157 			param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1158 			pix += 2;
1159 			if (pix == 8) {
1160 				rc = plpar_hcall9(H_BULK_REMOVE, param,
1161 						  param[0], param[1], param[2],
1162 						  param[3], param[4], param[5],
1163 						  param[6], param[7]);
1164 				BUG_ON(rc != H_SUCCESS);
1165 				pix = 0;
1166 			}
1167 		}
1168 	}
1169 	if (pix) {
1170 		param[pix] = HBR_END;
1171 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1172 				  param[2], param[3], param[4], param[5],
1173 				  param[6], param[7]);
1174 		BUG_ON(rc != H_SUCCESS);
1175 	}
1176 }
1177 
1178 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1179 						      unsigned long *vpn,
1180 						      int count, int psize,
1181 						      int ssize)
1182 {
1183 	unsigned long flags = 0;
1184 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1185 
1186 	if (lock_tlbie)
1187 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1188 
1189 	/* Assuming THP size is 16M */
1190 	if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1191 		hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1192 	else
1193 		hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1194 
1195 	if (lock_tlbie)
1196 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1197 }
1198 
1199 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1200 					     unsigned long addr,
1201 					     unsigned char *hpte_slot_array,
1202 					     int psize, int ssize, int local)
1203 {
1204 	int i, index = 0;
1205 	unsigned long s_addr = addr;
1206 	unsigned int max_hpte_count, valid;
1207 	unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1208 	unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1209 	unsigned long shift, hidx, vpn = 0, hash, slot;
1210 
1211 	shift = mmu_psize_defs[psize].shift;
1212 	max_hpte_count = 1U << (PMD_SHIFT - shift);
1213 
1214 	for (i = 0; i < max_hpte_count; i++) {
1215 		valid = hpte_valid(hpte_slot_array, i);
1216 		if (!valid)
1217 			continue;
1218 		hidx =  hpte_hash_index(hpte_slot_array, i);
1219 
1220 		/* get the vpn */
1221 		addr = s_addr + (i * (1ul << shift));
1222 		vpn = hpt_vpn(addr, vsid, ssize);
1223 		hash = hpt_hash(vpn, shift, ssize);
1224 		if (hidx & _PTEIDX_SECONDARY)
1225 			hash = ~hash;
1226 
1227 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1228 		slot += hidx & _PTEIDX_GROUP_IX;
1229 
1230 		slot_array[index] = slot;
1231 		vpn_array[index] = vpn;
1232 		if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1233 			/*
1234 			 * Now do a bluk invalidate
1235 			 */
1236 			__pSeries_lpar_hugepage_invalidate(slot_array,
1237 							   vpn_array,
1238 							   PPC64_HUGE_HPTE_BATCH,
1239 							   psize, ssize);
1240 			index = 0;
1241 		} else
1242 			index++;
1243 	}
1244 	if (index)
1245 		__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1246 						   index, psize, ssize);
1247 }
1248 #else
1249 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1250 					     unsigned long addr,
1251 					     unsigned char *hpte_slot_array,
1252 					     int psize, int ssize, int local)
1253 {
1254 	WARN(1, "%s called without THP support\n", __func__);
1255 }
1256 #endif
1257 
1258 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1259 					  int psize, int ssize)
1260 {
1261 	unsigned long vpn;
1262 	unsigned long slot, vsid;
1263 
1264 	vsid = get_kernel_vsid(ea, ssize);
1265 	vpn = hpt_vpn(ea, vsid, ssize);
1266 
1267 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1268 	if (slot == -1)
1269 		return -ENOENT;
1270 
1271 	/*
1272 	 * lpar doesn't use the passed actual page size
1273 	 */
1274 	pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1275 	return 0;
1276 }
1277 
1278 
1279 static inline unsigned long compute_slot(real_pte_t pte,
1280 					 unsigned long vpn,
1281 					 unsigned long index,
1282 					 unsigned long shift,
1283 					 int ssize)
1284 {
1285 	unsigned long slot, hash, hidx;
1286 
1287 	hash = hpt_hash(vpn, shift, ssize);
1288 	hidx = __rpte_to_hidx(pte, index);
1289 	if (hidx & _PTEIDX_SECONDARY)
1290 		hash = ~hash;
1291 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1292 	slot += hidx & _PTEIDX_GROUP_IX;
1293 	return slot;
1294 }
1295 
1296 /**
1297  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1298  * "all within the same naturally aligned 8 page virtual address block".
1299  */
1300 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1301 			    unsigned long *param)
1302 {
1303 	unsigned long vpn;
1304 	unsigned long i, pix = 0;
1305 	unsigned long index, shift, slot, current_vpgb, vpgb;
1306 	real_pte_t pte;
1307 	int psize, ssize;
1308 
1309 	psize = batch->psize;
1310 	ssize = batch->ssize;
1311 
1312 	for (i = 0; i < number; i++) {
1313 		vpn = batch->vpn[i];
1314 		pte = batch->pte[i];
1315 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1316 			/*
1317 			 * Shifting 3 bits more on the right to get a
1318 			 * 8 pages aligned virtual addresse.
1319 			 */
1320 			vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1321 			if (!pix || vpgb != current_vpgb) {
1322 				/*
1323 				 * Need to start a new 8 pages block, flush
1324 				 * the current one if needed.
1325 				 */
1326 				if (pix)
1327 					(void)call_block_remove(pix, param,
1328 								true);
1329 				current_vpgb = vpgb;
1330 				param[0] = hpte_encode_avpn(vpn, psize,
1331 							    ssize);
1332 				pix = 1;
1333 			}
1334 
1335 			slot = compute_slot(pte, vpn, index, shift, ssize);
1336 			param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1337 
1338 			if (pix == PLPAR_HCALL9_BUFSIZE) {
1339 				pix = call_block_remove(pix, param, false);
1340 				/*
1341 				 * pix = 0 means that all the entries were
1342 				 * removed, we can start a new block.
1343 				 * Otherwise, this means that there are entries
1344 				 * to retry, and pix points to latest one, so
1345 				 * we should increment it and try to continue
1346 				 * the same block.
1347 				 */
1348 				if (pix)
1349 					pix++;
1350 			}
1351 		} pte_iterate_hashed_end();
1352 	}
1353 
1354 	if (pix)
1355 		(void)call_block_remove(pix, param, true);
1356 }
1357 
1358 /*
1359  * TLB Block Invalidate Characteristics
1360  *
1361  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1362  * is able to process for each couple segment base page size, actual page size.
1363  *
1364  * The ibm,get-system-parameter properties is returning a buffer with the
1365  * following layout:
1366  *
1367  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1368  * -----------------
1369  * TLB Block Invalidate Specifiers:
1370  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1371  * [ 1 byte Number of page sizes (N) that are supported for the specified
1372  *          TLB invalidate block size ]
1373  * [ 1 byte Encoded segment base page size and actual page size
1374  *          MSB=0 means 4k segment base page size and actual page size
1375  *          MSB=1 the penc value in mmu_psize_def ]
1376  * ...
1377  * -----------------
1378  * Next TLB Block Invalidate Specifiers...
1379  * -----------------
1380  * [ 0 ]
1381  */
1382 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1383 					unsigned int block_size)
1384 {
1385 	if (block_size > hblkrm_size[bpsize][psize])
1386 		hblkrm_size[bpsize][psize] = block_size;
1387 }
1388 
1389 /*
1390  * Decode the Encoded segment base page size and actual page size.
1391  * PAPR specifies:
1392  *   - bit 7 is the L bit
1393  *   - bits 0-5 are the penc value
1394  * If the L bit is 0, this means 4K segment base page size and actual page size
1395  * otherwise the penc value should be read.
1396  */
1397 #define HBLKRM_L_MASK		0x80
1398 #define HBLKRM_PENC_MASK	0x3f
1399 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1400 					      unsigned int block_size)
1401 {
1402 	unsigned int bpsize, psize;
1403 
1404 	/* First, check the L bit, if not set, this means 4K */
1405 	if ((lp & HBLKRM_L_MASK) == 0) {
1406 		set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1407 		return;
1408 	}
1409 
1410 	lp &= HBLKRM_PENC_MASK;
1411 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1412 		struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1413 
1414 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1415 			if (def->penc[psize] == lp) {
1416 				set_hblkrm_bloc_size(bpsize, psize, block_size);
1417 				return;
1418 			}
1419 		}
1420 	}
1421 }
1422 
1423 #define SPLPAR_TLB_BIC_TOKEN		50
1424 
1425 /*
1426  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1427  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1428  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1429  * (128 bytes) for the buffer to get plenty of space.
1430  */
1431 #define SPLPAR_TLB_BIC_MAXLENGTH	128
1432 
1433 void __init pseries_lpar_read_hblkrm_characteristics(void)
1434 {
1435 	unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1436 	int call_status, len, idx, bpsize;
1437 
1438 	if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1439 		return;
1440 
1441 	spin_lock(&rtas_data_buf_lock);
1442 	memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1443 	call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1444 				NULL,
1445 				SPLPAR_TLB_BIC_TOKEN,
1446 				__pa(rtas_data_buf),
1447 				RTAS_DATA_BUF_SIZE);
1448 	memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1449 	local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1450 	spin_unlock(&rtas_data_buf_lock);
1451 
1452 	if (call_status != 0) {
1453 		pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1454 			__FILE__, __func__, call_status);
1455 		return;
1456 	}
1457 
1458 	/*
1459 	 * The first two (2) bytes of the data in the buffer are the length of
1460 	 * the returned data, not counting these first two (2) bytes.
1461 	 */
1462 	len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1463 	if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1464 		pr_warn("%s too large returned buffer %d", __func__, len);
1465 		return;
1466 	}
1467 
1468 	idx = 2;
1469 	while (idx < len) {
1470 		u8 block_shift = local_buffer[idx++];
1471 		u32 block_size;
1472 		unsigned int npsize;
1473 
1474 		if (!block_shift)
1475 			break;
1476 
1477 		block_size = 1 << block_shift;
1478 
1479 		for (npsize = local_buffer[idx++];
1480 		     npsize > 0 && idx < len; npsize--)
1481 			check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1482 					    block_size);
1483 	}
1484 
1485 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1486 		for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1487 			if (hblkrm_size[bpsize][idx])
1488 				pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1489 					bpsize, idx, hblkrm_size[bpsize][idx]);
1490 }
1491 
1492 /*
1493  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1494  * lock.
1495  */
1496 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1497 {
1498 	unsigned long vpn;
1499 	unsigned long i, pix, rc;
1500 	unsigned long flags = 0;
1501 	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1502 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1503 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1504 	unsigned long index, shift, slot;
1505 	real_pte_t pte;
1506 	int psize, ssize;
1507 
1508 	if (lock_tlbie)
1509 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1510 
1511 	if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1512 		do_block_remove(number, batch, param);
1513 		goto out;
1514 	}
1515 
1516 	psize = batch->psize;
1517 	ssize = batch->ssize;
1518 	pix = 0;
1519 	for (i = 0; i < number; i++) {
1520 		vpn = batch->vpn[i];
1521 		pte = batch->pte[i];
1522 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1523 			slot = compute_slot(pte, vpn, index, shift, ssize);
1524 			if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1525 				/*
1526 				 * lpar doesn't use the passed actual page size
1527 				 */
1528 				pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1529 							     0, ssize, local);
1530 			} else {
1531 				param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1532 				param[pix+1] = hpte_encode_avpn(vpn, psize,
1533 								ssize);
1534 				pix += 2;
1535 				if (pix == 8) {
1536 					rc = plpar_hcall9(H_BULK_REMOVE, param,
1537 						param[0], param[1], param[2],
1538 						param[3], param[4], param[5],
1539 						param[6], param[7]);
1540 					BUG_ON(rc != H_SUCCESS);
1541 					pix = 0;
1542 				}
1543 			}
1544 		} pte_iterate_hashed_end();
1545 	}
1546 	if (pix) {
1547 		param[pix] = HBR_END;
1548 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1549 				  param[2], param[3], param[4], param[5],
1550 				  param[6], param[7]);
1551 		BUG_ON(rc != H_SUCCESS);
1552 	}
1553 
1554 out:
1555 	if (lock_tlbie)
1556 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1557 }
1558 
1559 static int __init disable_bulk_remove(char *str)
1560 {
1561 	if (strcmp(str, "off") == 0 &&
1562 	    firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1563 		pr_info("Disabling BULK_REMOVE firmware feature");
1564 		powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1565 	}
1566 	return 1;
1567 }
1568 
1569 __setup("bulk_remove=", disable_bulk_remove);
1570 
1571 #define HPT_RESIZE_TIMEOUT	10000 /* ms */
1572 
1573 struct hpt_resize_state {
1574 	unsigned long shift;
1575 	int commit_rc;
1576 };
1577 
1578 static int pseries_lpar_resize_hpt_commit(void *data)
1579 {
1580 	struct hpt_resize_state *state = data;
1581 
1582 	state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1583 	if (state->commit_rc != H_SUCCESS)
1584 		return -EIO;
1585 
1586 	/* Hypervisor has transitioned the HTAB, update our globals */
1587 	ppc64_pft_size = state->shift;
1588 	htab_size_bytes = 1UL << ppc64_pft_size;
1589 	htab_hash_mask = (htab_size_bytes >> 7) - 1;
1590 
1591 	return 0;
1592 }
1593 
1594 /*
1595  * Must be called in process context. The caller must hold the
1596  * cpus_lock.
1597  */
1598 static int pseries_lpar_resize_hpt(unsigned long shift)
1599 {
1600 	struct hpt_resize_state state = {
1601 		.shift = shift,
1602 		.commit_rc = H_FUNCTION,
1603 	};
1604 	unsigned int delay, total_delay = 0;
1605 	int rc;
1606 	ktime_t t0, t1, t2;
1607 
1608 	might_sleep();
1609 
1610 	if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1611 		return -ENODEV;
1612 
1613 	pr_info("Attempting to resize HPT to shift %lu\n", shift);
1614 
1615 	t0 = ktime_get();
1616 
1617 	rc = plpar_resize_hpt_prepare(0, shift);
1618 	while (H_IS_LONG_BUSY(rc)) {
1619 		delay = get_longbusy_msecs(rc);
1620 		total_delay += delay;
1621 		if (total_delay > HPT_RESIZE_TIMEOUT) {
1622 			/* prepare with shift==0 cancels an in-progress resize */
1623 			rc = plpar_resize_hpt_prepare(0, 0);
1624 			if (rc != H_SUCCESS)
1625 				pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1626 				       rc);
1627 			return -ETIMEDOUT;
1628 		}
1629 		msleep(delay);
1630 		rc = plpar_resize_hpt_prepare(0, shift);
1631 	};
1632 
1633 	switch (rc) {
1634 	case H_SUCCESS:
1635 		/* Continue on */
1636 		break;
1637 
1638 	case H_PARAMETER:
1639 		pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1640 		return -EINVAL;
1641 	case H_RESOURCE:
1642 		pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1643 		return -EPERM;
1644 	default:
1645 		pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1646 		return -EIO;
1647 	}
1648 
1649 	t1 = ktime_get();
1650 
1651 	rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1652 				     &state, NULL);
1653 
1654 	t2 = ktime_get();
1655 
1656 	if (rc != 0) {
1657 		switch (state.commit_rc) {
1658 		case H_PTEG_FULL:
1659 			return -ENOSPC;
1660 
1661 		default:
1662 			pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1663 				state.commit_rc);
1664 			return -EIO;
1665 		};
1666 	}
1667 
1668 	pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1669 		shift, (long long) ktime_ms_delta(t1, t0),
1670 		(long long) ktime_ms_delta(t2, t1));
1671 
1672 	return 0;
1673 }
1674 
1675 static int pseries_lpar_register_process_table(unsigned long base,
1676 			unsigned long page_size, unsigned long table_size)
1677 {
1678 	long rc;
1679 	unsigned long flags = 0;
1680 
1681 	if (table_size)
1682 		flags |= PROC_TABLE_NEW;
1683 	if (radix_enabled())
1684 		flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
1685 	else
1686 		flags |= PROC_TABLE_HPT_SLB;
1687 	for (;;) {
1688 		rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1689 					page_size, table_size);
1690 		if (!H_IS_LONG_BUSY(rc))
1691 			break;
1692 		mdelay(get_longbusy_msecs(rc));
1693 	}
1694 	if (rc != H_SUCCESS) {
1695 		pr_err("Failed to register process table (rc=%ld)\n", rc);
1696 		BUG();
1697 	}
1698 	return rc;
1699 }
1700 
1701 void __init hpte_init_pseries(void)
1702 {
1703 	mmu_hash_ops.hpte_invalidate	 = pSeries_lpar_hpte_invalidate;
1704 	mmu_hash_ops.hpte_updatepp	 = pSeries_lpar_hpte_updatepp;
1705 	mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1706 	mmu_hash_ops.hpte_insert	 = pSeries_lpar_hpte_insert;
1707 	mmu_hash_ops.hpte_remove	 = pSeries_lpar_hpte_remove;
1708 	mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1709 	mmu_hash_ops.flush_hash_range	 = pSeries_lpar_flush_hash_range;
1710 	mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1711 	mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1712 
1713 	if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1714 		mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1715 
1716 	/*
1717 	 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1718 	 * to inform the hypervisor that we wish to use the HPT.
1719 	 */
1720 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1721 		pseries_lpar_register_process_table(0, 0, 0);
1722 }
1723 
1724 void radix_init_pseries(void)
1725 {
1726 	pr_info("Using radix MMU under hypervisor\n");
1727 
1728 	pseries_lpar_register_process_table(__pa(process_tb),
1729 						0, PRTB_SIZE_SHIFT - 12);
1730 }
1731 
1732 #ifdef CONFIG_PPC_SMLPAR
1733 #define CMO_FREE_HINT_DEFAULT 1
1734 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1735 
1736 static int __init cmo_free_hint(char *str)
1737 {
1738 	char *parm;
1739 	parm = strstrip(str);
1740 
1741 	if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1742 		pr_info("%s: CMO free page hinting is not active.\n", __func__);
1743 		cmo_free_hint_flag = 0;
1744 		return 1;
1745 	}
1746 
1747 	cmo_free_hint_flag = 1;
1748 	pr_info("%s: CMO free page hinting is active.\n", __func__);
1749 
1750 	if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1751 		return 1;
1752 
1753 	return 0;
1754 }
1755 
1756 __setup("cmo_free_hint=", cmo_free_hint);
1757 
1758 static void pSeries_set_page_state(struct page *page, int order,
1759 				   unsigned long state)
1760 {
1761 	int i, j;
1762 	unsigned long cmo_page_sz, addr;
1763 
1764 	cmo_page_sz = cmo_get_page_size();
1765 	addr = __pa((unsigned long)page_address(page));
1766 
1767 	for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1768 		for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1769 			plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1770 	}
1771 }
1772 
1773 void arch_free_page(struct page *page, int order)
1774 {
1775 	if (radix_enabled())
1776 		return;
1777 	if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1778 		return;
1779 
1780 	pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1781 }
1782 EXPORT_SYMBOL(arch_free_page);
1783 
1784 #endif /* CONFIG_PPC_SMLPAR */
1785 #endif /* CONFIG_PPC_BOOK3S_64 */
1786 
1787 #ifdef CONFIG_TRACEPOINTS
1788 #ifdef CONFIG_JUMP_LABEL
1789 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1790 
1791 int hcall_tracepoint_regfunc(void)
1792 {
1793 	static_key_slow_inc(&hcall_tracepoint_key);
1794 	return 0;
1795 }
1796 
1797 void hcall_tracepoint_unregfunc(void)
1798 {
1799 	static_key_slow_dec(&hcall_tracepoint_key);
1800 }
1801 #else
1802 /*
1803  * We optimise our hcall path by placing hcall_tracepoint_refcount
1804  * directly in the TOC so we can check if the hcall tracepoints are
1805  * enabled via a single load.
1806  */
1807 
1808 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1809 extern long hcall_tracepoint_refcount;
1810 
1811 int hcall_tracepoint_regfunc(void)
1812 {
1813 	hcall_tracepoint_refcount++;
1814 	return 0;
1815 }
1816 
1817 void hcall_tracepoint_unregfunc(void)
1818 {
1819 	hcall_tracepoint_refcount--;
1820 }
1821 #endif
1822 
1823 /*
1824  * Since the tracing code might execute hcalls we need to guard against
1825  * recursion. One example of this are spinlocks calling H_YIELD on
1826  * shared processor partitions.
1827  */
1828 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1829 
1830 
1831 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1832 {
1833 	unsigned long flags;
1834 	unsigned int *depth;
1835 
1836 	/*
1837 	 * We cannot call tracepoints inside RCU idle regions which
1838 	 * means we must not trace H_CEDE.
1839 	 */
1840 	if (opcode == H_CEDE)
1841 		return;
1842 
1843 	local_irq_save(flags);
1844 
1845 	depth = this_cpu_ptr(&hcall_trace_depth);
1846 
1847 	if (*depth)
1848 		goto out;
1849 
1850 	(*depth)++;
1851 	preempt_disable();
1852 	trace_hcall_entry(opcode, args);
1853 	(*depth)--;
1854 
1855 out:
1856 	local_irq_restore(flags);
1857 }
1858 
1859 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1860 {
1861 	unsigned long flags;
1862 	unsigned int *depth;
1863 
1864 	if (opcode == H_CEDE)
1865 		return;
1866 
1867 	local_irq_save(flags);
1868 
1869 	depth = this_cpu_ptr(&hcall_trace_depth);
1870 
1871 	if (*depth)
1872 		goto out;
1873 
1874 	(*depth)++;
1875 	trace_hcall_exit(opcode, retval, retbuf);
1876 	preempt_enable();
1877 	(*depth)--;
1878 
1879 out:
1880 	local_irq_restore(flags);
1881 }
1882 #endif
1883 
1884 /**
1885  * h_get_mpp
1886  * H_GET_MPP hcall returns info in 7 parms
1887  */
1888 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1889 {
1890 	int rc;
1891 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1892 
1893 	rc = plpar_hcall9(H_GET_MPP, retbuf);
1894 
1895 	mpp_data->entitled_mem = retbuf[0];
1896 	mpp_data->mapped_mem = retbuf[1];
1897 
1898 	mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1899 	mpp_data->pool_num = retbuf[2] & 0xffff;
1900 
1901 	mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1902 	mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1903 	mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1904 
1905 	mpp_data->pool_size = retbuf[4];
1906 	mpp_data->loan_request = retbuf[5];
1907 	mpp_data->backing_mem = retbuf[6];
1908 
1909 	return rc;
1910 }
1911 EXPORT_SYMBOL(h_get_mpp);
1912 
1913 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1914 {
1915 	int rc;
1916 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1917 
1918 	rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1919 
1920 	mpp_x_data->coalesced_bytes = retbuf[0];
1921 	mpp_x_data->pool_coalesced_bytes = retbuf[1];
1922 	mpp_x_data->pool_purr_cycles = retbuf[2];
1923 	mpp_x_data->pool_spurr_cycles = retbuf[3];
1924 
1925 	return rc;
1926 }
1927 
1928 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1929 {
1930 	unsigned long protovsid;
1931 	unsigned long va_bits = VA_BITS;
1932 	unsigned long modinv, vsid_modulus;
1933 	unsigned long max_mod_inv, tmp_modinv;
1934 
1935 	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1936 		va_bits = 65;
1937 
1938 	if (ssize == MMU_SEGSIZE_256M) {
1939 		modinv = VSID_MULINV_256M;
1940 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1941 	} else {
1942 		modinv = VSID_MULINV_1T;
1943 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1944 	}
1945 
1946 	/*
1947 	 * vsid outside our range.
1948 	 */
1949 	if (vsid >= vsid_modulus)
1950 		return 0;
1951 
1952 	/*
1953 	 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1954 	 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1955 	 *   protovsid = (vsid * modinv) % vsid_modulus
1956 	 */
1957 
1958 	/* Check if (vsid * modinv) overflow (63 bits) */
1959 	max_mod_inv = 0x7fffffffffffffffull / vsid;
1960 	if (modinv < max_mod_inv)
1961 		return (vsid * modinv) % vsid_modulus;
1962 
1963 	tmp_modinv = modinv/max_mod_inv;
1964 	modinv %= max_mod_inv;
1965 
1966 	protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1967 	protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1968 
1969 	return protovsid;
1970 }
1971 
1972 static int __init reserve_vrma_context_id(void)
1973 {
1974 	unsigned long protovsid;
1975 
1976 	/*
1977 	 * Reserve context ids which map to reserved virtual addresses. For now
1978 	 * we only reserve the context id which maps to the VRMA VSID. We ignore
1979 	 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1980 	 * enable adjunct support via the "ibm,client-architecture-support"
1981 	 * interface.
1982 	 */
1983 	protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1984 	hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1985 	return 0;
1986 }
1987 machine_device_initcall(pseries, reserve_vrma_context_id);
1988 
1989 #ifdef CONFIG_DEBUG_FS
1990 /* debugfs file interface for vpa data */
1991 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1992 			      loff_t *pos)
1993 {
1994 	int cpu = (long)filp->private_data;
1995 	struct lppaca *lppaca = &lppaca_of(cpu);
1996 
1997 	return simple_read_from_buffer(buf, len, pos, lppaca,
1998 				sizeof(struct lppaca));
1999 }
2000 
2001 static const struct file_operations vpa_fops = {
2002 	.open		= simple_open,
2003 	.read		= vpa_file_read,
2004 	.llseek		= default_llseek,
2005 };
2006 
2007 static int __init vpa_debugfs_init(void)
2008 {
2009 	char name[16];
2010 	long i;
2011 	struct dentry *vpa_dir;
2012 
2013 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2014 		return 0;
2015 
2016 	vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2017 
2018 	/* set up the per-cpu vpa file*/
2019 	for_each_possible_cpu(i) {
2020 		sprintf(name, "cpu-%ld", i);
2021 		debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2022 	}
2023 
2024 	return 0;
2025 }
2026 machine_arch_initcall(pseries, vpa_debugfs_init);
2027 #endif /* CONFIG_DEBUG_FS */
2028