1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/setup.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/cputable.h> 35 #include <asm/papr-sysparm.h> 36 #include <asm/udbg.h> 37 #include <asm/smp.h> 38 #include <asm/trace.h> 39 #include <asm/firmware.h> 40 #include <asm/plpar_wrappers.h> 41 #include <asm/kexec.h> 42 #include <asm/fadump.h> 43 #include <asm/dtl.h> 44 #include <asm/vphn.h> 45 46 #include "pseries.h" 47 48 /* Flag bits for H_BULK_REMOVE */ 49 #define HBR_REQUEST 0x4000000000000000UL 50 #define HBR_RESPONSE 0x8000000000000000UL 51 #define HBR_END 0xc000000000000000UL 52 #define HBR_AVPN 0x0200000000000000UL 53 #define HBR_ANDCOND 0x0100000000000000UL 54 55 56 /* in hvCall.S */ 57 EXPORT_SYMBOL(plpar_hcall); 58 EXPORT_SYMBOL(plpar_hcall9); 59 EXPORT_SYMBOL(plpar_hcall_norets); 60 61 #ifdef CONFIG_PPC_64S_HASH_MMU 62 /* 63 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 64 * page size is that page size. 65 * 66 * The first index is the segment base page size, the second one is the actual 67 * page size. 68 */ 69 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 70 #endif 71 72 /* 73 * Due to the involved complexity, and that the current hypervisor is only 74 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 75 * buffer size to 8 size block. 76 */ 77 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 78 79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 80 static u8 dtl_mask = DTL_LOG_PREEMPT; 81 #else 82 static u8 dtl_mask; 83 #endif 84 85 void alloc_dtl_buffers(unsigned long *time_limit) 86 { 87 int cpu; 88 struct paca_struct *pp; 89 struct dtl_entry *dtl; 90 91 for_each_possible_cpu(cpu) { 92 pp = paca_ptrs[cpu]; 93 if (pp->dispatch_log) 94 continue; 95 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 96 if (!dtl) { 97 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 98 cpu); 99 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 100 pr_warn("Stolen time statistics will be unreliable\n"); 101 #endif 102 break; 103 } 104 105 pp->dtl_ridx = 0; 106 pp->dispatch_log = dtl; 107 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 108 pp->dtl_curr = dtl; 109 110 if (time_limit && time_after(jiffies, *time_limit)) { 111 cond_resched(); 112 *time_limit = jiffies + HZ; 113 } 114 } 115 } 116 117 void register_dtl_buffer(int cpu) 118 { 119 long ret; 120 struct paca_struct *pp; 121 struct dtl_entry *dtl; 122 int hwcpu = get_hard_smp_processor_id(cpu); 123 124 pp = paca_ptrs[cpu]; 125 dtl = pp->dispatch_log; 126 if (dtl && dtl_mask) { 127 pp->dtl_ridx = 0; 128 pp->dtl_curr = dtl; 129 lppaca_of(cpu).dtl_idx = 0; 130 131 /* hypervisor reads buffer length from this field */ 132 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 133 ret = register_dtl(hwcpu, __pa(dtl)); 134 if (ret) 135 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 136 cpu, hwcpu, ret); 137 138 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 139 } 140 } 141 142 #ifdef CONFIG_PPC_SPLPAR 143 struct dtl_worker { 144 struct delayed_work work; 145 int cpu; 146 }; 147 148 struct vcpu_dispatch_data { 149 int last_disp_cpu; 150 151 int total_disp; 152 153 int same_cpu_disp; 154 int same_chip_disp; 155 int diff_chip_disp; 156 int far_chip_disp; 157 158 int numa_home_disp; 159 int numa_remote_disp; 160 int numa_far_disp; 161 }; 162 163 /* 164 * This represents the number of cpus in the hypervisor. Since there is no 165 * architected way to discover the number of processors in the host, we 166 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 167 * is sufficient for our purposes. This will need to be tweaked if 168 * CONFIG_NR_CPUS is changed. 169 */ 170 #define NR_CPUS_H NR_CPUS 171 172 DEFINE_RWLOCK(dtl_access_lock); 173 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 174 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 175 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 176 static enum cpuhp_state dtl_worker_state; 177 static DEFINE_MUTEX(dtl_enable_mutex); 178 static int vcpudispatch_stats_on __read_mostly; 179 static int vcpudispatch_stats_freq = 50; 180 static __be32 *vcpu_associativity, *pcpu_associativity; 181 182 183 static void free_dtl_buffers(unsigned long *time_limit) 184 { 185 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 186 int cpu; 187 struct paca_struct *pp; 188 189 for_each_possible_cpu(cpu) { 190 pp = paca_ptrs[cpu]; 191 if (!pp->dispatch_log) 192 continue; 193 kmem_cache_free(dtl_cache, pp->dispatch_log); 194 pp->dtl_ridx = 0; 195 pp->dispatch_log = 0; 196 pp->dispatch_log_end = 0; 197 pp->dtl_curr = 0; 198 199 if (time_limit && time_after(jiffies, *time_limit)) { 200 cond_resched(); 201 *time_limit = jiffies + HZ; 202 } 203 } 204 #endif 205 } 206 207 static int init_cpu_associativity(void) 208 { 209 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 211 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 212 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 213 214 if (!vcpu_associativity || !pcpu_associativity) { 215 pr_err("error allocating memory for associativity information\n"); 216 return -ENOMEM; 217 } 218 219 return 0; 220 } 221 222 static void destroy_cpu_associativity(void) 223 { 224 kfree(vcpu_associativity); 225 kfree(pcpu_associativity); 226 vcpu_associativity = pcpu_associativity = 0; 227 } 228 229 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 230 { 231 __be32 *assoc; 232 int rc = 0; 233 234 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 235 if (!assoc[0]) { 236 rc = hcall_vphn(cpu, flag, &assoc[0]); 237 if (rc) 238 return NULL; 239 } 240 241 return assoc; 242 } 243 244 static __be32 *get_pcpu_associativity(int cpu) 245 { 246 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 247 } 248 249 static __be32 *get_vcpu_associativity(int cpu) 250 { 251 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 252 } 253 254 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 255 { 256 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 257 258 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 259 return -EINVAL; 260 261 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 262 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 263 264 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 265 return -EIO; 266 267 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 268 } 269 270 static int cpu_home_node_dispatch_distance(int disp_cpu) 271 { 272 __be32 *disp_cpu_assoc, *vcpu_assoc; 273 int vcpu_id = smp_processor_id(); 274 275 if (disp_cpu >= NR_CPUS_H) { 276 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 277 disp_cpu, NR_CPUS_H); 278 return -EINVAL; 279 } 280 281 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 282 vcpu_assoc = get_vcpu_associativity(vcpu_id); 283 284 if (!disp_cpu_assoc || !vcpu_assoc) 285 return -EIO; 286 287 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 288 } 289 290 static void update_vcpu_disp_stat(int disp_cpu) 291 { 292 struct vcpu_dispatch_data *disp; 293 int distance; 294 295 disp = this_cpu_ptr(&vcpu_disp_data); 296 if (disp->last_disp_cpu == -1) { 297 disp->last_disp_cpu = disp_cpu; 298 return; 299 } 300 301 disp->total_disp++; 302 303 if (disp->last_disp_cpu == disp_cpu || 304 (cpu_first_thread_sibling(disp->last_disp_cpu) == 305 cpu_first_thread_sibling(disp_cpu))) 306 disp->same_cpu_disp++; 307 else { 308 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 309 disp_cpu); 310 if (distance < 0) 311 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 312 smp_processor_id()); 313 else { 314 switch (distance) { 315 case 0: 316 disp->same_chip_disp++; 317 break; 318 case 1: 319 disp->diff_chip_disp++; 320 break; 321 case 2: 322 disp->far_chip_disp++; 323 break; 324 default: 325 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 326 smp_processor_id(), 327 disp->last_disp_cpu, 328 disp_cpu, 329 distance); 330 } 331 } 332 } 333 334 distance = cpu_home_node_dispatch_distance(disp_cpu); 335 if (distance < 0) 336 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 337 smp_processor_id()); 338 else { 339 switch (distance) { 340 case 0: 341 disp->numa_home_disp++; 342 break; 343 case 1: 344 disp->numa_remote_disp++; 345 break; 346 case 2: 347 disp->numa_far_disp++; 348 break; 349 default: 350 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 351 smp_processor_id(), 352 disp_cpu, 353 distance); 354 } 355 } 356 357 disp->last_disp_cpu = disp_cpu; 358 } 359 360 static void process_dtl_buffer(struct work_struct *work) 361 { 362 struct dtl_entry dtle; 363 u64 i = __this_cpu_read(dtl_entry_ridx); 364 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 365 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 366 struct lppaca *vpa = local_paca->lppaca_ptr; 367 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 368 369 if (!local_paca->dispatch_log) 370 return; 371 372 /* if we have been migrated away, we cancel ourself */ 373 if (d->cpu != smp_processor_id()) { 374 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 375 smp_processor_id()); 376 return; 377 } 378 379 if (i == be64_to_cpu(vpa->dtl_idx)) 380 goto out; 381 382 while (i < be64_to_cpu(vpa->dtl_idx)) { 383 dtle = *dtl; 384 barrier(); 385 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 386 /* buffer has overflowed */ 387 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 388 d->cpu, 389 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 390 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 391 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 392 continue; 393 } 394 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 395 ++i; 396 ++dtl; 397 if (dtl == dtl_end) 398 dtl = local_paca->dispatch_log; 399 } 400 401 __this_cpu_write(dtl_entry_ridx, i); 402 403 out: 404 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 405 HZ / vcpudispatch_stats_freq); 406 } 407 408 static int dtl_worker_online(unsigned int cpu) 409 { 410 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 411 412 memset(d, 0, sizeof(*d)); 413 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 414 d->cpu = cpu; 415 416 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 417 per_cpu(dtl_entry_ridx, cpu) = 0; 418 register_dtl_buffer(cpu); 419 #else 420 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 421 #endif 422 423 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 424 return 0; 425 } 426 427 static int dtl_worker_offline(unsigned int cpu) 428 { 429 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 430 431 cancel_delayed_work_sync(&d->work); 432 433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 434 unregister_dtl(get_hard_smp_processor_id(cpu)); 435 #endif 436 437 return 0; 438 } 439 440 static void set_global_dtl_mask(u8 mask) 441 { 442 int cpu; 443 444 dtl_mask = mask; 445 for_each_present_cpu(cpu) 446 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 447 } 448 449 static void reset_global_dtl_mask(void) 450 { 451 int cpu; 452 453 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 454 dtl_mask = DTL_LOG_PREEMPT; 455 #else 456 dtl_mask = 0; 457 #endif 458 for_each_present_cpu(cpu) 459 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 460 } 461 462 static int dtl_worker_enable(unsigned long *time_limit) 463 { 464 int rc = 0, state; 465 466 if (!write_trylock(&dtl_access_lock)) { 467 rc = -EBUSY; 468 goto out; 469 } 470 471 set_global_dtl_mask(DTL_LOG_ALL); 472 473 /* Setup dtl buffers and register those */ 474 alloc_dtl_buffers(time_limit); 475 476 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 477 dtl_worker_online, dtl_worker_offline); 478 if (state < 0) { 479 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 480 free_dtl_buffers(time_limit); 481 reset_global_dtl_mask(); 482 write_unlock(&dtl_access_lock); 483 rc = -EINVAL; 484 goto out; 485 } 486 dtl_worker_state = state; 487 488 out: 489 return rc; 490 } 491 492 static void dtl_worker_disable(unsigned long *time_limit) 493 { 494 cpuhp_remove_state(dtl_worker_state); 495 free_dtl_buffers(time_limit); 496 reset_global_dtl_mask(); 497 write_unlock(&dtl_access_lock); 498 } 499 500 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 501 size_t count, loff_t *ppos) 502 { 503 unsigned long time_limit = jiffies + HZ; 504 struct vcpu_dispatch_data *disp; 505 int rc, cmd, cpu; 506 char buf[16]; 507 508 if (count > 15) 509 return -EINVAL; 510 511 if (copy_from_user(buf, p, count)) 512 return -EFAULT; 513 514 buf[count] = 0; 515 rc = kstrtoint(buf, 0, &cmd); 516 if (rc || cmd < 0 || cmd > 1) { 517 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 518 return rc ? rc : -EINVAL; 519 } 520 521 mutex_lock(&dtl_enable_mutex); 522 523 if ((cmd == 0 && !vcpudispatch_stats_on) || 524 (cmd == 1 && vcpudispatch_stats_on)) 525 goto out; 526 527 if (cmd) { 528 rc = init_cpu_associativity(); 529 if (rc) { 530 destroy_cpu_associativity(); 531 goto out; 532 } 533 534 for_each_possible_cpu(cpu) { 535 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 536 memset(disp, 0, sizeof(*disp)); 537 disp->last_disp_cpu = -1; 538 } 539 540 rc = dtl_worker_enable(&time_limit); 541 if (rc) { 542 destroy_cpu_associativity(); 543 goto out; 544 } 545 } else { 546 dtl_worker_disable(&time_limit); 547 destroy_cpu_associativity(); 548 } 549 550 vcpudispatch_stats_on = cmd; 551 552 out: 553 mutex_unlock(&dtl_enable_mutex); 554 if (rc) 555 return rc; 556 return count; 557 } 558 559 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 560 { 561 int cpu; 562 struct vcpu_dispatch_data *disp; 563 564 if (!vcpudispatch_stats_on) { 565 seq_puts(p, "off\n"); 566 return 0; 567 } 568 569 for_each_online_cpu(cpu) { 570 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 571 seq_printf(p, "cpu%d", cpu); 572 seq_put_decimal_ull(p, " ", disp->total_disp); 573 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 574 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 575 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 576 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 577 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 578 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 579 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 580 seq_puts(p, "\n"); 581 } 582 583 return 0; 584 } 585 586 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 587 { 588 return single_open(file, vcpudispatch_stats_display, NULL); 589 } 590 591 static const struct proc_ops vcpudispatch_stats_proc_ops = { 592 .proc_open = vcpudispatch_stats_open, 593 .proc_read = seq_read, 594 .proc_write = vcpudispatch_stats_write, 595 .proc_lseek = seq_lseek, 596 .proc_release = single_release, 597 }; 598 599 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 600 const char __user *p, size_t count, loff_t *ppos) 601 { 602 int rc, freq; 603 char buf[16]; 604 605 if (count > 15) 606 return -EINVAL; 607 608 if (copy_from_user(buf, p, count)) 609 return -EFAULT; 610 611 buf[count] = 0; 612 rc = kstrtoint(buf, 0, &freq); 613 if (rc || freq < 1 || freq > HZ) { 614 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 615 HZ); 616 return rc ? rc : -EINVAL; 617 } 618 619 vcpudispatch_stats_freq = freq; 620 621 return count; 622 } 623 624 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 625 { 626 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 627 return 0; 628 } 629 630 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 631 { 632 return single_open(file, vcpudispatch_stats_freq_display, NULL); 633 } 634 635 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 636 .proc_open = vcpudispatch_stats_freq_open, 637 .proc_read = seq_read, 638 .proc_write = vcpudispatch_stats_freq_write, 639 .proc_lseek = seq_lseek, 640 .proc_release = single_release, 641 }; 642 643 static int __init vcpudispatch_stats_procfs_init(void) 644 { 645 if (!lppaca_shared_proc()) 646 return 0; 647 648 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 649 &vcpudispatch_stats_proc_ops)) 650 pr_err("vcpudispatch_stats: error creating procfs file\n"); 651 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 652 &vcpudispatch_stats_freq_proc_ops)) 653 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 654 655 return 0; 656 } 657 658 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 659 660 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 661 u64 pseries_paravirt_steal_clock(int cpu) 662 { 663 struct lppaca *lppaca = &lppaca_of(cpu); 664 665 return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) + 666 be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)); 667 } 668 #endif 669 670 #endif /* CONFIG_PPC_SPLPAR */ 671 672 void vpa_init(int cpu) 673 { 674 int hwcpu = get_hard_smp_processor_id(cpu); 675 unsigned long addr; 676 long ret; 677 678 /* 679 * The spec says it "may be problematic" if CPU x registers the VPA of 680 * CPU y. We should never do that, but wail if we ever do. 681 */ 682 WARN_ON(cpu != smp_processor_id()); 683 684 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 685 lppaca_of(cpu).vmxregs_in_use = 1; 686 687 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 688 lppaca_of(cpu).ebb_regs_in_use = 1; 689 690 addr = __pa(&lppaca_of(cpu)); 691 ret = register_vpa(hwcpu, addr); 692 693 if (ret) { 694 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 695 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 696 return; 697 } 698 699 #ifdef CONFIG_PPC_64S_HASH_MMU 700 /* 701 * PAPR says this feature is SLB-Buffer but firmware never 702 * reports that. All SPLPAR support SLB shadow buffer. 703 */ 704 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 705 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 706 ret = register_slb_shadow(hwcpu, addr); 707 if (ret) 708 pr_err("WARNING: SLB shadow buffer registration for " 709 "cpu %d (hw %d) of area %lx failed with %ld\n", 710 cpu, hwcpu, addr, ret); 711 } 712 #endif /* CONFIG_PPC_64S_HASH_MMU */ 713 714 /* 715 * Register dispatch trace log, if one has been allocated. 716 */ 717 register_dtl_buffer(cpu); 718 } 719 720 #ifdef CONFIG_PPC_BOOK3S_64 721 722 static int __init pseries_lpar_register_process_table(unsigned long base, 723 unsigned long page_size, unsigned long table_size) 724 { 725 long rc; 726 unsigned long flags = 0; 727 728 if (table_size) 729 flags |= PROC_TABLE_NEW; 730 if (radix_enabled()) { 731 flags |= PROC_TABLE_RADIX; 732 if (mmu_has_feature(MMU_FTR_GTSE)) 733 flags |= PROC_TABLE_GTSE; 734 } else 735 flags |= PROC_TABLE_HPT_SLB; 736 for (;;) { 737 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 738 page_size, table_size); 739 if (!H_IS_LONG_BUSY(rc)) 740 break; 741 mdelay(get_longbusy_msecs(rc)); 742 } 743 if (rc != H_SUCCESS) { 744 pr_err("Failed to register process table (rc=%ld)\n", rc); 745 BUG(); 746 } 747 return rc; 748 } 749 750 #ifdef CONFIG_PPC_64S_HASH_MMU 751 752 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 753 unsigned long vpn, unsigned long pa, 754 unsigned long rflags, unsigned long vflags, 755 int psize, int apsize, int ssize) 756 { 757 unsigned long lpar_rc; 758 unsigned long flags; 759 unsigned long slot; 760 unsigned long hpte_v, hpte_r; 761 762 if (!(vflags & HPTE_V_BOLTED)) 763 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 764 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 765 hpte_group, vpn, pa, rflags, vflags, psize); 766 767 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 768 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 769 770 if (!(vflags & HPTE_V_BOLTED)) 771 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 772 773 /* Now fill in the actual HPTE */ 774 /* Set CEC cookie to 0 */ 775 /* Zero page = 0 */ 776 /* I-cache Invalidate = 0 */ 777 /* I-cache synchronize = 0 */ 778 /* Exact = 0 */ 779 flags = 0; 780 781 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 782 flags |= H_COALESCE_CAND; 783 784 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 785 if (unlikely(lpar_rc == H_PTEG_FULL)) { 786 pr_devel("Hash table group is full\n"); 787 return -1; 788 } 789 790 /* 791 * Since we try and ioremap PHBs we don't own, the pte insert 792 * will fail. However we must catch the failure in hash_page 793 * or we will loop forever, so return -2 in this case. 794 */ 795 if (unlikely(lpar_rc != H_SUCCESS)) { 796 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 797 return -2; 798 } 799 if (!(vflags & HPTE_V_BOLTED)) 800 pr_devel(" -> slot: %lu\n", slot & 7); 801 802 /* Because of iSeries, we have to pass down the secondary 803 * bucket bit here as well 804 */ 805 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 806 } 807 808 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 809 810 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 811 { 812 unsigned long slot_offset; 813 unsigned long lpar_rc; 814 int i; 815 unsigned long dummy1, dummy2; 816 817 /* pick a random slot to start at */ 818 slot_offset = mftb() & 0x7; 819 820 for (i = 0; i < HPTES_PER_GROUP; i++) { 821 822 /* don't remove a bolted entry */ 823 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 824 HPTE_V_BOLTED, &dummy1, &dummy2); 825 if (lpar_rc == H_SUCCESS) 826 return i; 827 828 /* 829 * The test for adjunct partition is performed before the 830 * ANDCOND test. H_RESOURCE may be returned, so we need to 831 * check for that as well. 832 */ 833 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 834 835 slot_offset++; 836 slot_offset &= 0x7; 837 } 838 839 return -1; 840 } 841 842 /* Called during kexec sequence with MMU off */ 843 static notrace void manual_hpte_clear_all(void) 844 { 845 unsigned long size_bytes = 1UL << ppc64_pft_size; 846 unsigned long hpte_count = size_bytes >> 4; 847 struct { 848 unsigned long pteh; 849 unsigned long ptel; 850 } ptes[4]; 851 long lpar_rc; 852 unsigned long i, j; 853 854 /* Read in batches of 4, 855 * invalidate only valid entries not in the VRMA 856 * hpte_count will be a multiple of 4 857 */ 858 for (i = 0; i < hpte_count; i += 4) { 859 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 860 if (lpar_rc != H_SUCCESS) { 861 pr_info("Failed to read hash page table at %ld err %ld\n", 862 i, lpar_rc); 863 continue; 864 } 865 for (j = 0; j < 4; j++){ 866 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 867 HPTE_V_VRMA_MASK) 868 continue; 869 if (ptes[j].pteh & HPTE_V_VALID) 870 plpar_pte_remove_raw(0, i + j, 0, 871 &(ptes[j].pteh), &(ptes[j].ptel)); 872 } 873 } 874 } 875 876 /* Called during kexec sequence with MMU off */ 877 static notrace int hcall_hpte_clear_all(void) 878 { 879 int rc; 880 881 do { 882 rc = plpar_hcall_norets(H_CLEAR_HPT); 883 } while (rc == H_CONTINUE); 884 885 return rc; 886 } 887 888 /* Called during kexec sequence with MMU off */ 889 static notrace void pseries_hpte_clear_all(void) 890 { 891 int rc; 892 893 rc = hcall_hpte_clear_all(); 894 if (rc != H_SUCCESS) 895 manual_hpte_clear_all(); 896 897 #ifdef __LITTLE_ENDIAN__ 898 /* 899 * Reset exceptions to big endian. 900 * 901 * FIXME this is a hack for kexec, we need to reset the exception 902 * endian before starting the new kernel and this is a convenient place 903 * to do it. 904 * 905 * This is also called on boot when a fadump happens. In that case we 906 * must not change the exception endian mode. 907 */ 908 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 909 pseries_big_endian_exceptions(); 910 #endif 911 } 912 913 /* 914 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 915 * the low 3 bits of flags happen to line up. So no transform is needed. 916 * We can probably optimize here and assume the high bits of newpp are 917 * already zero. For now I am paranoid. 918 */ 919 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 920 unsigned long newpp, 921 unsigned long vpn, 922 int psize, int apsize, 923 int ssize, unsigned long inv_flags) 924 { 925 unsigned long lpar_rc; 926 unsigned long flags; 927 unsigned long want_v; 928 929 want_v = hpte_encode_avpn(vpn, psize, ssize); 930 931 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 932 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 933 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 934 /* Move pp0 into bit 8 (IBM 55) */ 935 flags |= (newpp & HPTE_R_PP0) >> 55; 936 937 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 938 want_v, slot, flags, psize); 939 940 lpar_rc = plpar_pte_protect(flags, slot, want_v); 941 942 if (lpar_rc == H_NOT_FOUND) { 943 pr_devel("not found !\n"); 944 return -1; 945 } 946 947 pr_devel("ok\n"); 948 949 BUG_ON(lpar_rc != H_SUCCESS); 950 951 return 0; 952 } 953 954 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 955 { 956 long lpar_rc; 957 unsigned long i, j; 958 struct { 959 unsigned long pteh; 960 unsigned long ptel; 961 } ptes[4]; 962 963 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 964 965 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 966 if (lpar_rc != H_SUCCESS) { 967 pr_info("Failed to read hash page table at %ld err %ld\n", 968 hpte_group, lpar_rc); 969 continue; 970 } 971 972 for (j = 0; j < 4; j++) { 973 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 974 (ptes[j].pteh & HPTE_V_VALID)) 975 return i + j; 976 } 977 } 978 979 return -1; 980 } 981 982 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 983 { 984 long slot; 985 unsigned long hash; 986 unsigned long want_v; 987 unsigned long hpte_group; 988 989 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 990 want_v = hpte_encode_avpn(vpn, psize, ssize); 991 992 /* 993 * We try to keep bolted entries always in primary hash 994 * But in some case we can find them in secondary too. 995 */ 996 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 997 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 998 if (slot < 0) { 999 /* Try in secondary */ 1000 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 1001 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1002 if (slot < 0) 1003 return -1; 1004 } 1005 return hpte_group + slot; 1006 } 1007 1008 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1009 unsigned long ea, 1010 int psize, int ssize) 1011 { 1012 unsigned long vpn; 1013 unsigned long lpar_rc, slot, vsid, flags; 1014 1015 vsid = get_kernel_vsid(ea, ssize); 1016 vpn = hpt_vpn(ea, vsid, ssize); 1017 1018 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1019 BUG_ON(slot == -1); 1020 1021 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1022 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1023 /* Move pp0 into bit 8 (IBM 55) */ 1024 flags |= (newpp & HPTE_R_PP0) >> 55; 1025 1026 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1027 1028 lpar_rc = plpar_pte_protect(flags, slot, 0); 1029 1030 BUG_ON(lpar_rc != H_SUCCESS); 1031 } 1032 1033 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1034 int psize, int apsize, 1035 int ssize, int local) 1036 { 1037 unsigned long want_v; 1038 unsigned long lpar_rc; 1039 unsigned long dummy1, dummy2; 1040 1041 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1042 slot, vpn, psize, local); 1043 1044 want_v = hpte_encode_avpn(vpn, psize, ssize); 1045 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1046 if (lpar_rc == H_NOT_FOUND) 1047 return; 1048 1049 BUG_ON(lpar_rc != H_SUCCESS); 1050 } 1051 1052 1053 /* 1054 * As defined in the PAPR's section 14.5.4.1.8 1055 * The control mask doesn't include the returned reference and change bit from 1056 * the processed PTE. 1057 */ 1058 #define HBLKR_AVPN 0x0100000000000000UL 1059 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1060 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1061 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1062 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1063 1064 /* 1065 * Returned true if we are supporting this block size for the specified segment 1066 * base page size and actual page size. 1067 * 1068 * Currently, we only support 8 size block. 1069 */ 1070 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1071 { 1072 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1073 } 1074 1075 /** 1076 * H_BLOCK_REMOVE caller. 1077 * @idx should point to the latest @param entry set with a PTEX. 1078 * If PTE cannot be processed because another CPUs has already locked that 1079 * group, those entries are put back in @param starting at index 1. 1080 * If entries has to be retried and @retry_busy is set to true, these entries 1081 * are retried until success. If @retry_busy is set to false, the returned 1082 * is the number of entries yet to process. 1083 */ 1084 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1085 bool retry_busy) 1086 { 1087 unsigned long i, rc, new_idx; 1088 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1089 1090 if (idx < 2) { 1091 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1092 return 0; 1093 } 1094 again: 1095 new_idx = 0; 1096 if (idx > PLPAR_HCALL9_BUFSIZE) { 1097 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1098 idx = PLPAR_HCALL9_BUFSIZE; 1099 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1100 param[idx] = HBR_END; 1101 1102 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1103 param[0], /* AVA */ 1104 param[1], param[2], param[3], param[4], /* TS0-7 */ 1105 param[5], param[6], param[7], param[8]); 1106 if (rc == H_SUCCESS) 1107 return 0; 1108 1109 BUG_ON(rc != H_PARTIAL); 1110 1111 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1112 for (i = 0; i < idx-1; i++) { 1113 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1114 1115 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1116 param[++new_idx] = param[i+1]; 1117 continue; 1118 } 1119 1120 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1121 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1122 } 1123 1124 /* 1125 * If there were entries found busy, retry these entries if requested, 1126 * of if all the entries have to be retried. 1127 */ 1128 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1129 idx = new_idx + 1; 1130 goto again; 1131 } 1132 1133 return new_idx; 1134 } 1135 1136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1137 /* 1138 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1139 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1140 */ 1141 #define PPC64_HUGE_HPTE_BATCH 12 1142 1143 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1144 int count, int psize, int ssize) 1145 { 1146 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1147 unsigned long shift, current_vpgb, vpgb; 1148 int i, pix = 0; 1149 1150 shift = mmu_psize_defs[psize].shift; 1151 1152 for (i = 0; i < count; i++) { 1153 /* 1154 * Shifting 3 bits more on the right to get a 1155 * 8 pages aligned virtual addresse. 1156 */ 1157 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1158 if (!pix || vpgb != current_vpgb) { 1159 /* 1160 * Need to start a new 8 pages block, flush 1161 * the current one if needed. 1162 */ 1163 if (pix) 1164 (void)call_block_remove(pix, param, true); 1165 current_vpgb = vpgb; 1166 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1167 pix = 1; 1168 } 1169 1170 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1171 if (pix == PLPAR_HCALL9_BUFSIZE) { 1172 pix = call_block_remove(pix, param, false); 1173 /* 1174 * pix = 0 means that all the entries were 1175 * removed, we can start a new block. 1176 * Otherwise, this means that there are entries 1177 * to retry, and pix points to latest one, so 1178 * we should increment it and try to continue 1179 * the same block. 1180 */ 1181 if (pix) 1182 pix++; 1183 } 1184 } 1185 if (pix) 1186 (void)call_block_remove(pix, param, true); 1187 } 1188 1189 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1190 int count, int psize, int ssize) 1191 { 1192 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1193 int i = 0, pix = 0, rc; 1194 1195 for (i = 0; i < count; i++) { 1196 1197 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1198 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1199 ssize, 0); 1200 } else { 1201 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1202 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1203 pix += 2; 1204 if (pix == 8) { 1205 rc = plpar_hcall9(H_BULK_REMOVE, param, 1206 param[0], param[1], param[2], 1207 param[3], param[4], param[5], 1208 param[6], param[7]); 1209 BUG_ON(rc != H_SUCCESS); 1210 pix = 0; 1211 } 1212 } 1213 } 1214 if (pix) { 1215 param[pix] = HBR_END; 1216 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1217 param[2], param[3], param[4], param[5], 1218 param[6], param[7]); 1219 BUG_ON(rc != H_SUCCESS); 1220 } 1221 } 1222 1223 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1224 unsigned long *vpn, 1225 int count, int psize, 1226 int ssize) 1227 { 1228 unsigned long flags = 0; 1229 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1230 1231 if (lock_tlbie) 1232 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1233 1234 /* Assuming THP size is 16M */ 1235 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1236 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1237 else 1238 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1239 1240 if (lock_tlbie) 1241 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1242 } 1243 1244 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1245 unsigned long addr, 1246 unsigned char *hpte_slot_array, 1247 int psize, int ssize, int local) 1248 { 1249 int i, index = 0; 1250 unsigned long s_addr = addr; 1251 unsigned int max_hpte_count, valid; 1252 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1253 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1254 unsigned long shift, hidx, vpn = 0, hash, slot; 1255 1256 shift = mmu_psize_defs[psize].shift; 1257 max_hpte_count = 1U << (PMD_SHIFT - shift); 1258 1259 for (i = 0; i < max_hpte_count; i++) { 1260 valid = hpte_valid(hpte_slot_array, i); 1261 if (!valid) 1262 continue; 1263 hidx = hpte_hash_index(hpte_slot_array, i); 1264 1265 /* get the vpn */ 1266 addr = s_addr + (i * (1ul << shift)); 1267 vpn = hpt_vpn(addr, vsid, ssize); 1268 hash = hpt_hash(vpn, shift, ssize); 1269 if (hidx & _PTEIDX_SECONDARY) 1270 hash = ~hash; 1271 1272 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1273 slot += hidx & _PTEIDX_GROUP_IX; 1274 1275 slot_array[index] = slot; 1276 vpn_array[index] = vpn; 1277 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1278 /* 1279 * Now do a bluk invalidate 1280 */ 1281 __pSeries_lpar_hugepage_invalidate(slot_array, 1282 vpn_array, 1283 PPC64_HUGE_HPTE_BATCH, 1284 psize, ssize); 1285 index = 0; 1286 } else 1287 index++; 1288 } 1289 if (index) 1290 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1291 index, psize, ssize); 1292 } 1293 #else 1294 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1295 unsigned long addr, 1296 unsigned char *hpte_slot_array, 1297 int psize, int ssize, int local) 1298 { 1299 WARN(1, "%s called without THP support\n", __func__); 1300 } 1301 #endif 1302 1303 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1304 int psize, int ssize) 1305 { 1306 unsigned long vpn; 1307 unsigned long slot, vsid; 1308 1309 vsid = get_kernel_vsid(ea, ssize); 1310 vpn = hpt_vpn(ea, vsid, ssize); 1311 1312 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1313 if (slot == -1) 1314 return -ENOENT; 1315 1316 /* 1317 * lpar doesn't use the passed actual page size 1318 */ 1319 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1320 return 0; 1321 } 1322 1323 1324 static inline unsigned long compute_slot(real_pte_t pte, 1325 unsigned long vpn, 1326 unsigned long index, 1327 unsigned long shift, 1328 int ssize) 1329 { 1330 unsigned long slot, hash, hidx; 1331 1332 hash = hpt_hash(vpn, shift, ssize); 1333 hidx = __rpte_to_hidx(pte, index); 1334 if (hidx & _PTEIDX_SECONDARY) 1335 hash = ~hash; 1336 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1337 slot += hidx & _PTEIDX_GROUP_IX; 1338 return slot; 1339 } 1340 1341 /** 1342 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1343 * "all within the same naturally aligned 8 page virtual address block". 1344 */ 1345 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1346 unsigned long *param) 1347 { 1348 unsigned long vpn; 1349 unsigned long i, pix = 0; 1350 unsigned long index, shift, slot, current_vpgb, vpgb; 1351 real_pte_t pte; 1352 int psize, ssize; 1353 1354 psize = batch->psize; 1355 ssize = batch->ssize; 1356 1357 for (i = 0; i < number; i++) { 1358 vpn = batch->vpn[i]; 1359 pte = batch->pte[i]; 1360 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1361 /* 1362 * Shifting 3 bits more on the right to get a 1363 * 8 pages aligned virtual addresse. 1364 */ 1365 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1366 if (!pix || vpgb != current_vpgb) { 1367 /* 1368 * Need to start a new 8 pages block, flush 1369 * the current one if needed. 1370 */ 1371 if (pix) 1372 (void)call_block_remove(pix, param, 1373 true); 1374 current_vpgb = vpgb; 1375 param[0] = hpte_encode_avpn(vpn, psize, 1376 ssize); 1377 pix = 1; 1378 } 1379 1380 slot = compute_slot(pte, vpn, index, shift, ssize); 1381 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1382 1383 if (pix == PLPAR_HCALL9_BUFSIZE) { 1384 pix = call_block_remove(pix, param, false); 1385 /* 1386 * pix = 0 means that all the entries were 1387 * removed, we can start a new block. 1388 * Otherwise, this means that there are entries 1389 * to retry, and pix points to latest one, so 1390 * we should increment it and try to continue 1391 * the same block. 1392 */ 1393 if (pix) 1394 pix++; 1395 } 1396 } pte_iterate_hashed_end(); 1397 } 1398 1399 if (pix) 1400 (void)call_block_remove(pix, param, true); 1401 } 1402 1403 /* 1404 * TLB Block Invalidate Characteristics 1405 * 1406 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1407 * is able to process for each couple segment base page size, actual page size. 1408 * 1409 * The ibm,get-system-parameter properties is returning a buffer with the 1410 * following layout: 1411 * 1412 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1413 * ----------------- 1414 * TLB Block Invalidate Specifiers: 1415 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1416 * [ 1 byte Number of page sizes (N) that are supported for the specified 1417 * TLB invalidate block size ] 1418 * [ 1 byte Encoded segment base page size and actual page size 1419 * MSB=0 means 4k segment base page size and actual page size 1420 * MSB=1 the penc value in mmu_psize_def ] 1421 * ... 1422 * ----------------- 1423 * Next TLB Block Invalidate Specifiers... 1424 * ----------------- 1425 * [ 0 ] 1426 */ 1427 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1428 unsigned int block_size) 1429 { 1430 if (block_size > hblkrm_size[bpsize][psize]) 1431 hblkrm_size[bpsize][psize] = block_size; 1432 } 1433 1434 /* 1435 * Decode the Encoded segment base page size and actual page size. 1436 * PAPR specifies: 1437 * - bit 7 is the L bit 1438 * - bits 0-5 are the penc value 1439 * If the L bit is 0, this means 4K segment base page size and actual page size 1440 * otherwise the penc value should be read. 1441 */ 1442 #define HBLKRM_L_MASK 0x80 1443 #define HBLKRM_PENC_MASK 0x3f 1444 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1445 unsigned int block_size) 1446 { 1447 unsigned int bpsize, psize; 1448 1449 /* First, check the L bit, if not set, this means 4K */ 1450 if ((lp & HBLKRM_L_MASK) == 0) { 1451 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1452 return; 1453 } 1454 1455 lp &= HBLKRM_PENC_MASK; 1456 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1457 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1458 1459 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1460 if (def->penc[psize] == lp) { 1461 set_hblkrm_bloc_size(bpsize, psize, block_size); 1462 return; 1463 } 1464 } 1465 } 1466 } 1467 1468 /* 1469 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1470 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1471 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1472 * (128 bytes) for the buffer to get plenty of space. 1473 */ 1474 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1475 1476 void __init pseries_lpar_read_hblkrm_characteristics(void) 1477 { 1478 static struct papr_sysparm_buf buf __initdata; 1479 int len, idx, bpsize; 1480 1481 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1482 return; 1483 1484 if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf)) 1485 return; 1486 1487 len = be16_to_cpu(buf.len); 1488 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1489 pr_warn("%s too large returned buffer %d", __func__, len); 1490 return; 1491 } 1492 1493 idx = 0; 1494 while (idx < len) { 1495 u8 block_shift = buf.val[idx++]; 1496 u32 block_size; 1497 unsigned int npsize; 1498 1499 if (!block_shift) 1500 break; 1501 1502 block_size = 1 << block_shift; 1503 1504 for (npsize = buf.val[idx++]; 1505 npsize > 0 && idx < len; npsize--) 1506 check_lp_set_hblkrm((unsigned int)buf.val[idx++], 1507 block_size); 1508 } 1509 1510 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1511 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1512 if (hblkrm_size[bpsize][idx]) 1513 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1514 bpsize, idx, hblkrm_size[bpsize][idx]); 1515 } 1516 1517 /* 1518 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1519 * lock. 1520 */ 1521 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1522 { 1523 unsigned long vpn; 1524 unsigned long i, pix, rc; 1525 unsigned long flags = 0; 1526 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1527 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1528 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1529 unsigned long index, shift, slot; 1530 real_pte_t pte; 1531 int psize, ssize; 1532 1533 if (lock_tlbie) 1534 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1535 1536 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1537 do_block_remove(number, batch, param); 1538 goto out; 1539 } 1540 1541 psize = batch->psize; 1542 ssize = batch->ssize; 1543 pix = 0; 1544 for (i = 0; i < number; i++) { 1545 vpn = batch->vpn[i]; 1546 pte = batch->pte[i]; 1547 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1548 slot = compute_slot(pte, vpn, index, shift, ssize); 1549 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1550 /* 1551 * lpar doesn't use the passed actual page size 1552 */ 1553 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1554 0, ssize, local); 1555 } else { 1556 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1557 param[pix+1] = hpte_encode_avpn(vpn, psize, 1558 ssize); 1559 pix += 2; 1560 if (pix == 8) { 1561 rc = plpar_hcall9(H_BULK_REMOVE, param, 1562 param[0], param[1], param[2], 1563 param[3], param[4], param[5], 1564 param[6], param[7]); 1565 BUG_ON(rc != H_SUCCESS); 1566 pix = 0; 1567 } 1568 } 1569 } pte_iterate_hashed_end(); 1570 } 1571 if (pix) { 1572 param[pix] = HBR_END; 1573 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1574 param[2], param[3], param[4], param[5], 1575 param[6], param[7]); 1576 BUG_ON(rc != H_SUCCESS); 1577 } 1578 1579 out: 1580 if (lock_tlbie) 1581 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1582 } 1583 1584 static int __init disable_bulk_remove(char *str) 1585 { 1586 if (strcmp(str, "off") == 0 && 1587 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1588 pr_info("Disabling BULK_REMOVE firmware feature"); 1589 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1590 } 1591 return 1; 1592 } 1593 1594 __setup("bulk_remove=", disable_bulk_remove); 1595 1596 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1597 1598 struct hpt_resize_state { 1599 unsigned long shift; 1600 int commit_rc; 1601 }; 1602 1603 static int pseries_lpar_resize_hpt_commit(void *data) 1604 { 1605 struct hpt_resize_state *state = data; 1606 1607 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1608 if (state->commit_rc != H_SUCCESS) 1609 return -EIO; 1610 1611 /* Hypervisor has transitioned the HTAB, update our globals */ 1612 ppc64_pft_size = state->shift; 1613 htab_size_bytes = 1UL << ppc64_pft_size; 1614 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1615 1616 return 0; 1617 } 1618 1619 /* 1620 * Must be called in process context. The caller must hold the 1621 * cpus_lock. 1622 */ 1623 static int pseries_lpar_resize_hpt(unsigned long shift) 1624 { 1625 struct hpt_resize_state state = { 1626 .shift = shift, 1627 .commit_rc = H_FUNCTION, 1628 }; 1629 unsigned int delay, total_delay = 0; 1630 int rc; 1631 ktime_t t0, t1, t2; 1632 1633 might_sleep(); 1634 1635 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1636 return -ENODEV; 1637 1638 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1639 1640 t0 = ktime_get(); 1641 1642 rc = plpar_resize_hpt_prepare(0, shift); 1643 while (H_IS_LONG_BUSY(rc)) { 1644 delay = get_longbusy_msecs(rc); 1645 total_delay += delay; 1646 if (total_delay > HPT_RESIZE_TIMEOUT) { 1647 /* prepare with shift==0 cancels an in-progress resize */ 1648 rc = plpar_resize_hpt_prepare(0, 0); 1649 if (rc != H_SUCCESS) 1650 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1651 rc); 1652 return -ETIMEDOUT; 1653 } 1654 msleep(delay); 1655 rc = plpar_resize_hpt_prepare(0, shift); 1656 } 1657 1658 switch (rc) { 1659 case H_SUCCESS: 1660 /* Continue on */ 1661 break; 1662 1663 case H_PARAMETER: 1664 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1665 return -EINVAL; 1666 case H_RESOURCE: 1667 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1668 return -EPERM; 1669 default: 1670 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1671 return -EIO; 1672 } 1673 1674 t1 = ktime_get(); 1675 1676 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1677 &state, NULL); 1678 1679 t2 = ktime_get(); 1680 1681 if (rc != 0) { 1682 switch (state.commit_rc) { 1683 case H_PTEG_FULL: 1684 return -ENOSPC; 1685 1686 default: 1687 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1688 state.commit_rc); 1689 return -EIO; 1690 }; 1691 } 1692 1693 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1694 shift, (long long) ktime_ms_delta(t1, t0), 1695 (long long) ktime_ms_delta(t2, t1)); 1696 1697 return 0; 1698 } 1699 1700 void __init hpte_init_pseries(void) 1701 { 1702 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1703 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1704 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1705 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1706 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1707 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1708 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1709 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1710 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1711 1712 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1713 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1714 1715 /* 1716 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1717 * to inform the hypervisor that we wish to use the HPT. 1718 */ 1719 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1720 pseries_lpar_register_process_table(0, 0, 0); 1721 } 1722 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1723 1724 #ifdef CONFIG_PPC_RADIX_MMU 1725 void __init radix_init_pseries(void) 1726 { 1727 pr_info("Using radix MMU under hypervisor\n"); 1728 1729 pseries_lpar_register_process_table(__pa(process_tb), 1730 0, PRTB_SIZE_SHIFT - 12); 1731 } 1732 #endif 1733 1734 #ifdef CONFIG_PPC_SMLPAR 1735 #define CMO_FREE_HINT_DEFAULT 1 1736 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1737 1738 static int __init cmo_free_hint(char *str) 1739 { 1740 char *parm; 1741 parm = strstrip(str); 1742 1743 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1744 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1745 cmo_free_hint_flag = 0; 1746 return 1; 1747 } 1748 1749 cmo_free_hint_flag = 1; 1750 pr_info("%s: CMO free page hinting is active.\n", __func__); 1751 1752 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1753 return 1; 1754 1755 return 0; 1756 } 1757 1758 __setup("cmo_free_hint=", cmo_free_hint); 1759 1760 static void pSeries_set_page_state(struct page *page, int order, 1761 unsigned long state) 1762 { 1763 int i, j; 1764 unsigned long cmo_page_sz, addr; 1765 1766 cmo_page_sz = cmo_get_page_size(); 1767 addr = __pa((unsigned long)page_address(page)); 1768 1769 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1770 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1771 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1772 } 1773 } 1774 1775 void arch_free_page(struct page *page, int order) 1776 { 1777 if (radix_enabled()) 1778 return; 1779 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1780 return; 1781 1782 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1783 } 1784 EXPORT_SYMBOL(arch_free_page); 1785 1786 #endif /* CONFIG_PPC_SMLPAR */ 1787 #endif /* CONFIG_PPC_BOOK3S_64 */ 1788 1789 #ifdef CONFIG_TRACEPOINTS 1790 #ifdef CONFIG_JUMP_LABEL 1791 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1792 1793 int hcall_tracepoint_regfunc(void) 1794 { 1795 static_key_slow_inc(&hcall_tracepoint_key); 1796 return 0; 1797 } 1798 1799 void hcall_tracepoint_unregfunc(void) 1800 { 1801 static_key_slow_dec(&hcall_tracepoint_key); 1802 } 1803 #else 1804 /* 1805 * We optimise our hcall path by placing hcall_tracepoint_refcount 1806 * directly in the TOC so we can check if the hcall tracepoints are 1807 * enabled via a single load. 1808 */ 1809 1810 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1811 extern long hcall_tracepoint_refcount; 1812 1813 int hcall_tracepoint_regfunc(void) 1814 { 1815 hcall_tracepoint_refcount++; 1816 return 0; 1817 } 1818 1819 void hcall_tracepoint_unregfunc(void) 1820 { 1821 hcall_tracepoint_refcount--; 1822 } 1823 #endif 1824 1825 /* 1826 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1827 * detected because it may indicate a problem. This will not catch all 1828 * problems with tracing code making hcalls, because the tracing might have 1829 * been invoked from a non-hcall, so the first hcall could recurse into it 1830 * without warning here, but this better than nothing. 1831 * 1832 * Hcalls with specific problems being traced should use the _notrace 1833 * plpar_hcall variants. 1834 */ 1835 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1836 1837 1838 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1839 { 1840 unsigned long flags; 1841 unsigned int *depth; 1842 1843 local_irq_save(flags); 1844 1845 depth = this_cpu_ptr(&hcall_trace_depth); 1846 1847 if (WARN_ON_ONCE(*depth)) 1848 goto out; 1849 1850 (*depth)++; 1851 preempt_disable(); 1852 trace_hcall_entry(opcode, args); 1853 (*depth)--; 1854 1855 out: 1856 local_irq_restore(flags); 1857 } 1858 1859 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1860 { 1861 unsigned long flags; 1862 unsigned int *depth; 1863 1864 local_irq_save(flags); 1865 1866 depth = this_cpu_ptr(&hcall_trace_depth); 1867 1868 if (*depth) /* Don't warn again on the way out */ 1869 goto out; 1870 1871 (*depth)++; 1872 trace_hcall_exit(opcode, retval, retbuf); 1873 preempt_enable(); 1874 (*depth)--; 1875 1876 out: 1877 local_irq_restore(flags); 1878 } 1879 #endif 1880 1881 /** 1882 * h_get_mpp 1883 * H_GET_MPP hcall returns info in 7 parms 1884 */ 1885 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1886 { 1887 int rc; 1888 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1889 1890 rc = plpar_hcall9(H_GET_MPP, retbuf); 1891 1892 mpp_data->entitled_mem = retbuf[0]; 1893 mpp_data->mapped_mem = retbuf[1]; 1894 1895 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1896 mpp_data->pool_num = retbuf[2] & 0xffff; 1897 1898 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1899 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1900 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1901 1902 mpp_data->pool_size = retbuf[4]; 1903 mpp_data->loan_request = retbuf[5]; 1904 mpp_data->backing_mem = retbuf[6]; 1905 1906 return rc; 1907 } 1908 EXPORT_SYMBOL(h_get_mpp); 1909 1910 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1911 { 1912 int rc; 1913 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1914 1915 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1916 1917 mpp_x_data->coalesced_bytes = retbuf[0]; 1918 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1919 mpp_x_data->pool_purr_cycles = retbuf[2]; 1920 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1921 1922 return rc; 1923 } 1924 1925 #ifdef CONFIG_PPC_64S_HASH_MMU 1926 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1927 { 1928 unsigned long protovsid; 1929 unsigned long va_bits = VA_BITS; 1930 unsigned long modinv, vsid_modulus; 1931 unsigned long max_mod_inv, tmp_modinv; 1932 1933 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1934 va_bits = 65; 1935 1936 if (ssize == MMU_SEGSIZE_256M) { 1937 modinv = VSID_MULINV_256M; 1938 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1939 } else { 1940 modinv = VSID_MULINV_1T; 1941 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1942 } 1943 1944 /* 1945 * vsid outside our range. 1946 */ 1947 if (vsid >= vsid_modulus) 1948 return 0; 1949 1950 /* 1951 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1952 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1953 * protovsid = (vsid * modinv) % vsid_modulus 1954 */ 1955 1956 /* Check if (vsid * modinv) overflow (63 bits) */ 1957 max_mod_inv = 0x7fffffffffffffffull / vsid; 1958 if (modinv < max_mod_inv) 1959 return (vsid * modinv) % vsid_modulus; 1960 1961 tmp_modinv = modinv/max_mod_inv; 1962 modinv %= max_mod_inv; 1963 1964 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1965 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1966 1967 return protovsid; 1968 } 1969 1970 static int __init reserve_vrma_context_id(void) 1971 { 1972 unsigned long protovsid; 1973 1974 /* 1975 * Reserve context ids which map to reserved virtual addresses. For now 1976 * we only reserve the context id which maps to the VRMA VSID. We ignore 1977 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1978 * enable adjunct support via the "ibm,client-architecture-support" 1979 * interface. 1980 */ 1981 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1982 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1983 return 0; 1984 } 1985 machine_device_initcall(pseries, reserve_vrma_context_id); 1986 #endif 1987 1988 #ifdef CONFIG_DEBUG_FS 1989 /* debugfs file interface for vpa data */ 1990 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1991 loff_t *pos) 1992 { 1993 int cpu = (long)filp->private_data; 1994 struct lppaca *lppaca = &lppaca_of(cpu); 1995 1996 return simple_read_from_buffer(buf, len, pos, lppaca, 1997 sizeof(struct lppaca)); 1998 } 1999 2000 static const struct file_operations vpa_fops = { 2001 .open = simple_open, 2002 .read = vpa_file_read, 2003 .llseek = default_llseek, 2004 }; 2005 2006 static int __init vpa_debugfs_init(void) 2007 { 2008 char name[16]; 2009 long i; 2010 struct dentry *vpa_dir; 2011 2012 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2013 return 0; 2014 2015 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2016 2017 /* set up the per-cpu vpa file*/ 2018 for_each_possible_cpu(i) { 2019 sprintf(name, "cpu-%ld", i); 2020 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2021 } 2022 2023 return 0; 2024 } 2025 machine_arch_initcall(pseries, vpa_debugfs_init); 2026 #endif /* CONFIG_DEBUG_FS */ 2027