1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <linux/debugfs.h> 26 27 #include <asm/processor.h> 28 #include <asm/mmu.h> 29 #include <asm/page.h> 30 #include <asm/setup.h> 31 #include <asm/mmu_context.h> 32 #include <asm/iommu.h> 33 #include <asm/tlb.h> 34 #include <asm/cputable.h> 35 #include <asm/papr-sysparm.h> 36 #include <asm/udbg.h> 37 #include <asm/smp.h> 38 #include <asm/trace.h> 39 #include <asm/firmware.h> 40 #include <asm/plpar_wrappers.h> 41 #include <asm/kexec.h> 42 #include <asm/fadump.h> 43 #include <asm/dtl.h> 44 45 #include "pseries.h" 46 47 /* Flag bits for H_BULK_REMOVE */ 48 #define HBR_REQUEST 0x4000000000000000UL 49 #define HBR_RESPONSE 0x8000000000000000UL 50 #define HBR_END 0xc000000000000000UL 51 #define HBR_AVPN 0x0200000000000000UL 52 #define HBR_ANDCOND 0x0100000000000000UL 53 54 55 /* in hvCall.S */ 56 EXPORT_SYMBOL(plpar_hcall); 57 EXPORT_SYMBOL(plpar_hcall9); 58 EXPORT_SYMBOL(plpar_hcall_norets); 59 60 #ifdef CONFIG_PPC_64S_HASH_MMU 61 /* 62 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 63 * page size is that page size. 64 * 65 * The first index is the segment base page size, the second one is the actual 66 * page size. 67 */ 68 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 69 #endif 70 71 /* 72 * Due to the involved complexity, and that the current hypervisor is only 73 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 74 * buffer size to 8 size block. 75 */ 76 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 77 78 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 79 static u8 dtl_mask = DTL_LOG_PREEMPT; 80 #else 81 static u8 dtl_mask; 82 #endif 83 84 void alloc_dtl_buffers(unsigned long *time_limit) 85 { 86 int cpu; 87 struct paca_struct *pp; 88 struct dtl_entry *dtl; 89 90 for_each_possible_cpu(cpu) { 91 pp = paca_ptrs[cpu]; 92 if (pp->dispatch_log) 93 continue; 94 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 95 if (!dtl) { 96 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 97 cpu); 98 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 99 pr_warn("Stolen time statistics will be unreliable\n"); 100 #endif 101 break; 102 } 103 104 pp->dtl_ridx = 0; 105 pp->dispatch_log = dtl; 106 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 107 pp->dtl_curr = dtl; 108 109 if (time_limit && time_after(jiffies, *time_limit)) { 110 cond_resched(); 111 *time_limit = jiffies + HZ; 112 } 113 } 114 } 115 116 void register_dtl_buffer(int cpu) 117 { 118 long ret; 119 struct paca_struct *pp; 120 struct dtl_entry *dtl; 121 int hwcpu = get_hard_smp_processor_id(cpu); 122 123 pp = paca_ptrs[cpu]; 124 dtl = pp->dispatch_log; 125 if (dtl && dtl_mask) { 126 pp->dtl_ridx = 0; 127 pp->dtl_curr = dtl; 128 lppaca_of(cpu).dtl_idx = 0; 129 130 /* hypervisor reads buffer length from this field */ 131 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 132 ret = register_dtl(hwcpu, __pa(dtl)); 133 if (ret) 134 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 135 cpu, hwcpu, ret); 136 137 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 138 } 139 } 140 141 #ifdef CONFIG_PPC_SPLPAR 142 struct dtl_worker { 143 struct delayed_work work; 144 int cpu; 145 }; 146 147 struct vcpu_dispatch_data { 148 int last_disp_cpu; 149 150 int total_disp; 151 152 int same_cpu_disp; 153 int same_chip_disp; 154 int diff_chip_disp; 155 int far_chip_disp; 156 157 int numa_home_disp; 158 int numa_remote_disp; 159 int numa_far_disp; 160 }; 161 162 /* 163 * This represents the number of cpus in the hypervisor. Since there is no 164 * architected way to discover the number of processors in the host, we 165 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 166 * is sufficient for our purposes. This will need to be tweaked if 167 * CONFIG_NR_CPUS is changed. 168 */ 169 #define NR_CPUS_H NR_CPUS 170 171 DEFINE_RWLOCK(dtl_access_lock); 172 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 173 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 174 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 175 static enum cpuhp_state dtl_worker_state; 176 static DEFINE_MUTEX(dtl_enable_mutex); 177 static int vcpudispatch_stats_on __read_mostly; 178 static int vcpudispatch_stats_freq = 50; 179 static __be32 *vcpu_associativity, *pcpu_associativity; 180 181 182 static void free_dtl_buffers(unsigned long *time_limit) 183 { 184 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 185 int cpu; 186 struct paca_struct *pp; 187 188 for_each_possible_cpu(cpu) { 189 pp = paca_ptrs[cpu]; 190 if (!pp->dispatch_log) 191 continue; 192 kmem_cache_free(dtl_cache, pp->dispatch_log); 193 pp->dtl_ridx = 0; 194 pp->dispatch_log = 0; 195 pp->dispatch_log_end = 0; 196 pp->dtl_curr = 0; 197 198 if (time_limit && time_after(jiffies, *time_limit)) { 199 cond_resched(); 200 *time_limit = jiffies + HZ; 201 } 202 } 203 #endif 204 } 205 206 static int init_cpu_associativity(void) 207 { 208 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 209 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 210 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 211 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 212 213 if (!vcpu_associativity || !pcpu_associativity) { 214 pr_err("error allocating memory for associativity information\n"); 215 return -ENOMEM; 216 } 217 218 return 0; 219 } 220 221 static void destroy_cpu_associativity(void) 222 { 223 kfree(vcpu_associativity); 224 kfree(pcpu_associativity); 225 vcpu_associativity = pcpu_associativity = 0; 226 } 227 228 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 229 { 230 __be32 *assoc; 231 int rc = 0; 232 233 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 234 if (!assoc[0]) { 235 rc = hcall_vphn(cpu, flag, &assoc[0]); 236 if (rc) 237 return NULL; 238 } 239 240 return assoc; 241 } 242 243 static __be32 *get_pcpu_associativity(int cpu) 244 { 245 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 246 } 247 248 static __be32 *get_vcpu_associativity(int cpu) 249 { 250 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 251 } 252 253 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 254 { 255 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 256 257 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 258 return -EINVAL; 259 260 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 261 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 262 263 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 264 return -EIO; 265 266 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 267 } 268 269 static int cpu_home_node_dispatch_distance(int disp_cpu) 270 { 271 __be32 *disp_cpu_assoc, *vcpu_assoc; 272 int vcpu_id = smp_processor_id(); 273 274 if (disp_cpu >= NR_CPUS_H) { 275 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 276 disp_cpu, NR_CPUS_H); 277 return -EINVAL; 278 } 279 280 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 281 vcpu_assoc = get_vcpu_associativity(vcpu_id); 282 283 if (!disp_cpu_assoc || !vcpu_assoc) 284 return -EIO; 285 286 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); 287 } 288 289 static void update_vcpu_disp_stat(int disp_cpu) 290 { 291 struct vcpu_dispatch_data *disp; 292 int distance; 293 294 disp = this_cpu_ptr(&vcpu_disp_data); 295 if (disp->last_disp_cpu == -1) { 296 disp->last_disp_cpu = disp_cpu; 297 return; 298 } 299 300 disp->total_disp++; 301 302 if (disp->last_disp_cpu == disp_cpu || 303 (cpu_first_thread_sibling(disp->last_disp_cpu) == 304 cpu_first_thread_sibling(disp_cpu))) 305 disp->same_cpu_disp++; 306 else { 307 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 308 disp_cpu); 309 if (distance < 0) 310 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 311 smp_processor_id()); 312 else { 313 switch (distance) { 314 case 0: 315 disp->same_chip_disp++; 316 break; 317 case 1: 318 disp->diff_chip_disp++; 319 break; 320 case 2: 321 disp->far_chip_disp++; 322 break; 323 default: 324 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 325 smp_processor_id(), 326 disp->last_disp_cpu, 327 disp_cpu, 328 distance); 329 } 330 } 331 } 332 333 distance = cpu_home_node_dispatch_distance(disp_cpu); 334 if (distance < 0) 335 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 336 smp_processor_id()); 337 else { 338 switch (distance) { 339 case 0: 340 disp->numa_home_disp++; 341 break; 342 case 1: 343 disp->numa_remote_disp++; 344 break; 345 case 2: 346 disp->numa_far_disp++; 347 break; 348 default: 349 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 350 smp_processor_id(), 351 disp_cpu, 352 distance); 353 } 354 } 355 356 disp->last_disp_cpu = disp_cpu; 357 } 358 359 static void process_dtl_buffer(struct work_struct *work) 360 { 361 struct dtl_entry dtle; 362 u64 i = __this_cpu_read(dtl_entry_ridx); 363 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 364 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 365 struct lppaca *vpa = local_paca->lppaca_ptr; 366 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 367 368 if (!local_paca->dispatch_log) 369 return; 370 371 /* if we have been migrated away, we cancel ourself */ 372 if (d->cpu != smp_processor_id()) { 373 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 374 smp_processor_id()); 375 return; 376 } 377 378 if (i == be64_to_cpu(vpa->dtl_idx)) 379 goto out; 380 381 while (i < be64_to_cpu(vpa->dtl_idx)) { 382 dtle = *dtl; 383 barrier(); 384 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 385 /* buffer has overflowed */ 386 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 387 d->cpu, 388 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 389 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 390 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 391 continue; 392 } 393 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 394 ++i; 395 ++dtl; 396 if (dtl == dtl_end) 397 dtl = local_paca->dispatch_log; 398 } 399 400 __this_cpu_write(dtl_entry_ridx, i); 401 402 out: 403 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 404 HZ / vcpudispatch_stats_freq); 405 } 406 407 static int dtl_worker_online(unsigned int cpu) 408 { 409 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 410 411 memset(d, 0, sizeof(*d)); 412 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 413 d->cpu = cpu; 414 415 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 416 per_cpu(dtl_entry_ridx, cpu) = 0; 417 register_dtl_buffer(cpu); 418 #else 419 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 420 #endif 421 422 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 423 return 0; 424 } 425 426 static int dtl_worker_offline(unsigned int cpu) 427 { 428 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 429 430 cancel_delayed_work_sync(&d->work); 431 432 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 433 unregister_dtl(get_hard_smp_processor_id(cpu)); 434 #endif 435 436 return 0; 437 } 438 439 static void set_global_dtl_mask(u8 mask) 440 { 441 int cpu; 442 443 dtl_mask = mask; 444 for_each_present_cpu(cpu) 445 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 446 } 447 448 static void reset_global_dtl_mask(void) 449 { 450 int cpu; 451 452 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 453 dtl_mask = DTL_LOG_PREEMPT; 454 #else 455 dtl_mask = 0; 456 #endif 457 for_each_present_cpu(cpu) 458 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 459 } 460 461 static int dtl_worker_enable(unsigned long *time_limit) 462 { 463 int rc = 0, state; 464 465 if (!write_trylock(&dtl_access_lock)) { 466 rc = -EBUSY; 467 goto out; 468 } 469 470 set_global_dtl_mask(DTL_LOG_ALL); 471 472 /* Setup dtl buffers and register those */ 473 alloc_dtl_buffers(time_limit); 474 475 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 476 dtl_worker_online, dtl_worker_offline); 477 if (state < 0) { 478 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 479 free_dtl_buffers(time_limit); 480 reset_global_dtl_mask(); 481 write_unlock(&dtl_access_lock); 482 rc = -EINVAL; 483 goto out; 484 } 485 dtl_worker_state = state; 486 487 out: 488 return rc; 489 } 490 491 static void dtl_worker_disable(unsigned long *time_limit) 492 { 493 cpuhp_remove_state(dtl_worker_state); 494 free_dtl_buffers(time_limit); 495 reset_global_dtl_mask(); 496 write_unlock(&dtl_access_lock); 497 } 498 499 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 500 size_t count, loff_t *ppos) 501 { 502 unsigned long time_limit = jiffies + HZ; 503 struct vcpu_dispatch_data *disp; 504 int rc, cmd, cpu; 505 char buf[16]; 506 507 if (count > 15) 508 return -EINVAL; 509 510 if (copy_from_user(buf, p, count)) 511 return -EFAULT; 512 513 buf[count] = 0; 514 rc = kstrtoint(buf, 0, &cmd); 515 if (rc || cmd < 0 || cmd > 1) { 516 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 517 return rc ? rc : -EINVAL; 518 } 519 520 mutex_lock(&dtl_enable_mutex); 521 522 if ((cmd == 0 && !vcpudispatch_stats_on) || 523 (cmd == 1 && vcpudispatch_stats_on)) 524 goto out; 525 526 if (cmd) { 527 rc = init_cpu_associativity(); 528 if (rc) 529 goto out; 530 531 for_each_possible_cpu(cpu) { 532 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 533 memset(disp, 0, sizeof(*disp)); 534 disp->last_disp_cpu = -1; 535 } 536 537 rc = dtl_worker_enable(&time_limit); 538 if (rc) { 539 destroy_cpu_associativity(); 540 goto out; 541 } 542 } else { 543 dtl_worker_disable(&time_limit); 544 destroy_cpu_associativity(); 545 } 546 547 vcpudispatch_stats_on = cmd; 548 549 out: 550 mutex_unlock(&dtl_enable_mutex); 551 if (rc) 552 return rc; 553 return count; 554 } 555 556 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 557 { 558 int cpu; 559 struct vcpu_dispatch_data *disp; 560 561 if (!vcpudispatch_stats_on) { 562 seq_puts(p, "off\n"); 563 return 0; 564 } 565 566 for_each_online_cpu(cpu) { 567 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 568 seq_printf(p, "cpu%d", cpu); 569 seq_put_decimal_ull(p, " ", disp->total_disp); 570 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 571 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 572 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 573 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 574 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 575 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 576 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 577 seq_puts(p, "\n"); 578 } 579 580 return 0; 581 } 582 583 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 584 { 585 return single_open(file, vcpudispatch_stats_display, NULL); 586 } 587 588 static const struct proc_ops vcpudispatch_stats_proc_ops = { 589 .proc_open = vcpudispatch_stats_open, 590 .proc_read = seq_read, 591 .proc_write = vcpudispatch_stats_write, 592 .proc_lseek = seq_lseek, 593 .proc_release = single_release, 594 }; 595 596 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 597 const char __user *p, size_t count, loff_t *ppos) 598 { 599 int rc, freq; 600 char buf[16]; 601 602 if (count > 15) 603 return -EINVAL; 604 605 if (copy_from_user(buf, p, count)) 606 return -EFAULT; 607 608 buf[count] = 0; 609 rc = kstrtoint(buf, 0, &freq); 610 if (rc || freq < 1 || freq > HZ) { 611 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 612 HZ); 613 return rc ? rc : -EINVAL; 614 } 615 616 vcpudispatch_stats_freq = freq; 617 618 return count; 619 } 620 621 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 622 { 623 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 624 return 0; 625 } 626 627 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 628 { 629 return single_open(file, vcpudispatch_stats_freq_display, NULL); 630 } 631 632 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 633 .proc_open = vcpudispatch_stats_freq_open, 634 .proc_read = seq_read, 635 .proc_write = vcpudispatch_stats_freq_write, 636 .proc_lseek = seq_lseek, 637 .proc_release = single_release, 638 }; 639 640 static int __init vcpudispatch_stats_procfs_init(void) 641 { 642 /* 643 * Avoid smp_processor_id while preemptible. All CPUs should have 644 * the same value for lppaca_shared_proc. 645 */ 646 preempt_disable(); 647 if (!lppaca_shared_proc(get_lppaca())) { 648 preempt_enable(); 649 return 0; 650 } 651 preempt_enable(); 652 653 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 654 &vcpudispatch_stats_proc_ops)) 655 pr_err("vcpudispatch_stats: error creating procfs file\n"); 656 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 657 &vcpudispatch_stats_freq_proc_ops)) 658 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 659 660 return 0; 661 } 662 663 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 664 665 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 666 u64 pseries_paravirt_steal_clock(int cpu) 667 { 668 struct lppaca *lppaca = &lppaca_of(cpu); 669 670 return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) + 671 be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)); 672 } 673 #endif 674 675 #endif /* CONFIG_PPC_SPLPAR */ 676 677 void vpa_init(int cpu) 678 { 679 int hwcpu = get_hard_smp_processor_id(cpu); 680 unsigned long addr; 681 long ret; 682 683 /* 684 * The spec says it "may be problematic" if CPU x registers the VPA of 685 * CPU y. We should never do that, but wail if we ever do. 686 */ 687 WARN_ON(cpu != smp_processor_id()); 688 689 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 690 lppaca_of(cpu).vmxregs_in_use = 1; 691 692 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 693 lppaca_of(cpu).ebb_regs_in_use = 1; 694 695 addr = __pa(&lppaca_of(cpu)); 696 ret = register_vpa(hwcpu, addr); 697 698 if (ret) { 699 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 700 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 701 return; 702 } 703 704 #ifdef CONFIG_PPC_64S_HASH_MMU 705 /* 706 * PAPR says this feature is SLB-Buffer but firmware never 707 * reports that. All SPLPAR support SLB shadow buffer. 708 */ 709 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 710 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 711 ret = register_slb_shadow(hwcpu, addr); 712 if (ret) 713 pr_err("WARNING: SLB shadow buffer registration for " 714 "cpu %d (hw %d) of area %lx failed with %ld\n", 715 cpu, hwcpu, addr, ret); 716 } 717 #endif /* CONFIG_PPC_64S_HASH_MMU */ 718 719 /* 720 * Register dispatch trace log, if one has been allocated. 721 */ 722 register_dtl_buffer(cpu); 723 } 724 725 #ifdef CONFIG_PPC_BOOK3S_64 726 727 static int __init pseries_lpar_register_process_table(unsigned long base, 728 unsigned long page_size, unsigned long table_size) 729 { 730 long rc; 731 unsigned long flags = 0; 732 733 if (table_size) 734 flags |= PROC_TABLE_NEW; 735 if (radix_enabled()) { 736 flags |= PROC_TABLE_RADIX; 737 if (mmu_has_feature(MMU_FTR_GTSE)) 738 flags |= PROC_TABLE_GTSE; 739 } else 740 flags |= PROC_TABLE_HPT_SLB; 741 for (;;) { 742 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 743 page_size, table_size); 744 if (!H_IS_LONG_BUSY(rc)) 745 break; 746 mdelay(get_longbusy_msecs(rc)); 747 } 748 if (rc != H_SUCCESS) { 749 pr_err("Failed to register process table (rc=%ld)\n", rc); 750 BUG(); 751 } 752 return rc; 753 } 754 755 #ifdef CONFIG_PPC_64S_HASH_MMU 756 757 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 758 unsigned long vpn, unsigned long pa, 759 unsigned long rflags, unsigned long vflags, 760 int psize, int apsize, int ssize) 761 { 762 unsigned long lpar_rc; 763 unsigned long flags; 764 unsigned long slot; 765 unsigned long hpte_v, hpte_r; 766 767 if (!(vflags & HPTE_V_BOLTED)) 768 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 769 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 770 hpte_group, vpn, pa, rflags, vflags, psize); 771 772 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 773 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 774 775 if (!(vflags & HPTE_V_BOLTED)) 776 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 777 778 /* Now fill in the actual HPTE */ 779 /* Set CEC cookie to 0 */ 780 /* Zero page = 0 */ 781 /* I-cache Invalidate = 0 */ 782 /* I-cache synchronize = 0 */ 783 /* Exact = 0 */ 784 flags = 0; 785 786 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 787 flags |= H_COALESCE_CAND; 788 789 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 790 if (unlikely(lpar_rc == H_PTEG_FULL)) { 791 pr_devel("Hash table group is full\n"); 792 return -1; 793 } 794 795 /* 796 * Since we try and ioremap PHBs we don't own, the pte insert 797 * will fail. However we must catch the failure in hash_page 798 * or we will loop forever, so return -2 in this case. 799 */ 800 if (unlikely(lpar_rc != H_SUCCESS)) { 801 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 802 return -2; 803 } 804 if (!(vflags & HPTE_V_BOLTED)) 805 pr_devel(" -> slot: %lu\n", slot & 7); 806 807 /* Because of iSeries, we have to pass down the secondary 808 * bucket bit here as well 809 */ 810 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 811 } 812 813 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 814 815 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 816 { 817 unsigned long slot_offset; 818 unsigned long lpar_rc; 819 int i; 820 unsigned long dummy1, dummy2; 821 822 /* pick a random slot to start at */ 823 slot_offset = mftb() & 0x7; 824 825 for (i = 0; i < HPTES_PER_GROUP; i++) { 826 827 /* don't remove a bolted entry */ 828 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 829 HPTE_V_BOLTED, &dummy1, &dummy2); 830 if (lpar_rc == H_SUCCESS) 831 return i; 832 833 /* 834 * The test for adjunct partition is performed before the 835 * ANDCOND test. H_RESOURCE may be returned, so we need to 836 * check for that as well. 837 */ 838 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 839 840 slot_offset++; 841 slot_offset &= 0x7; 842 } 843 844 return -1; 845 } 846 847 /* Called during kexec sequence with MMU off */ 848 static notrace void manual_hpte_clear_all(void) 849 { 850 unsigned long size_bytes = 1UL << ppc64_pft_size; 851 unsigned long hpte_count = size_bytes >> 4; 852 struct { 853 unsigned long pteh; 854 unsigned long ptel; 855 } ptes[4]; 856 long lpar_rc; 857 unsigned long i, j; 858 859 /* Read in batches of 4, 860 * invalidate only valid entries not in the VRMA 861 * hpte_count will be a multiple of 4 862 */ 863 for (i = 0; i < hpte_count; i += 4) { 864 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 865 if (lpar_rc != H_SUCCESS) { 866 pr_info("Failed to read hash page table at %ld err %ld\n", 867 i, lpar_rc); 868 continue; 869 } 870 for (j = 0; j < 4; j++){ 871 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 872 HPTE_V_VRMA_MASK) 873 continue; 874 if (ptes[j].pteh & HPTE_V_VALID) 875 plpar_pte_remove_raw(0, i + j, 0, 876 &(ptes[j].pteh), &(ptes[j].ptel)); 877 } 878 } 879 } 880 881 /* Called during kexec sequence with MMU off */ 882 static notrace int hcall_hpte_clear_all(void) 883 { 884 int rc; 885 886 do { 887 rc = plpar_hcall_norets(H_CLEAR_HPT); 888 } while (rc == H_CONTINUE); 889 890 return rc; 891 } 892 893 /* Called during kexec sequence with MMU off */ 894 static notrace void pseries_hpte_clear_all(void) 895 { 896 int rc; 897 898 rc = hcall_hpte_clear_all(); 899 if (rc != H_SUCCESS) 900 manual_hpte_clear_all(); 901 902 #ifdef __LITTLE_ENDIAN__ 903 /* 904 * Reset exceptions to big endian. 905 * 906 * FIXME this is a hack for kexec, we need to reset the exception 907 * endian before starting the new kernel and this is a convenient place 908 * to do it. 909 * 910 * This is also called on boot when a fadump happens. In that case we 911 * must not change the exception endian mode. 912 */ 913 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 914 pseries_big_endian_exceptions(); 915 #endif 916 } 917 918 /* 919 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 920 * the low 3 bits of flags happen to line up. So no transform is needed. 921 * We can probably optimize here and assume the high bits of newpp are 922 * already zero. For now I am paranoid. 923 */ 924 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 925 unsigned long newpp, 926 unsigned long vpn, 927 int psize, int apsize, 928 int ssize, unsigned long inv_flags) 929 { 930 unsigned long lpar_rc; 931 unsigned long flags; 932 unsigned long want_v; 933 934 want_v = hpte_encode_avpn(vpn, psize, ssize); 935 936 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; 937 flags |= (newpp & HPTE_R_KEY_HI) >> 48; 938 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 939 /* Move pp0 into bit 8 (IBM 55) */ 940 flags |= (newpp & HPTE_R_PP0) >> 55; 941 942 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 943 want_v, slot, flags, psize); 944 945 lpar_rc = plpar_pte_protect(flags, slot, want_v); 946 947 if (lpar_rc == H_NOT_FOUND) { 948 pr_devel("not found !\n"); 949 return -1; 950 } 951 952 pr_devel("ok\n"); 953 954 BUG_ON(lpar_rc != H_SUCCESS); 955 956 return 0; 957 } 958 959 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 960 { 961 long lpar_rc; 962 unsigned long i, j; 963 struct { 964 unsigned long pteh; 965 unsigned long ptel; 966 } ptes[4]; 967 968 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 969 970 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 971 if (lpar_rc != H_SUCCESS) { 972 pr_info("Failed to read hash page table at %ld err %ld\n", 973 hpte_group, lpar_rc); 974 continue; 975 } 976 977 for (j = 0; j < 4; j++) { 978 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 979 (ptes[j].pteh & HPTE_V_VALID)) 980 return i + j; 981 } 982 } 983 984 return -1; 985 } 986 987 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 988 { 989 long slot; 990 unsigned long hash; 991 unsigned long want_v; 992 unsigned long hpte_group; 993 994 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 995 want_v = hpte_encode_avpn(vpn, psize, ssize); 996 997 /* 998 * We try to keep bolted entries always in primary hash 999 * But in some case we can find them in secondary too. 1000 */ 1001 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1002 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1003 if (slot < 0) { 1004 /* Try in secondary */ 1005 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 1006 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 1007 if (slot < 0) 1008 return -1; 1009 } 1010 return hpte_group + slot; 1011 } 1012 1013 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 1014 unsigned long ea, 1015 int psize, int ssize) 1016 { 1017 unsigned long vpn; 1018 unsigned long lpar_rc, slot, vsid, flags; 1019 1020 vsid = get_kernel_vsid(ea, ssize); 1021 vpn = hpt_vpn(ea, vsid, ssize); 1022 1023 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1024 BUG_ON(slot == -1); 1025 1026 flags = newpp & (HPTE_R_PP | HPTE_R_N); 1027 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 1028 /* Move pp0 into bit 8 (IBM 55) */ 1029 flags |= (newpp & HPTE_R_PP0) >> 55; 1030 1031 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); 1032 1033 lpar_rc = plpar_pte_protect(flags, slot, 0); 1034 1035 BUG_ON(lpar_rc != H_SUCCESS); 1036 } 1037 1038 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 1039 int psize, int apsize, 1040 int ssize, int local) 1041 { 1042 unsigned long want_v; 1043 unsigned long lpar_rc; 1044 unsigned long dummy1, dummy2; 1045 1046 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 1047 slot, vpn, psize, local); 1048 1049 want_v = hpte_encode_avpn(vpn, psize, ssize); 1050 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1051 if (lpar_rc == H_NOT_FOUND) 1052 return; 1053 1054 BUG_ON(lpar_rc != H_SUCCESS); 1055 } 1056 1057 1058 /* 1059 * As defined in the PAPR's section 14.5.4.1.8 1060 * The control mask doesn't include the returned reference and change bit from 1061 * the processed PTE. 1062 */ 1063 #define HBLKR_AVPN 0x0100000000000000UL 1064 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1065 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1066 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1067 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1068 1069 /* 1070 * Returned true if we are supporting this block size for the specified segment 1071 * base page size and actual page size. 1072 * 1073 * Currently, we only support 8 size block. 1074 */ 1075 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1076 { 1077 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1078 } 1079 1080 /** 1081 * H_BLOCK_REMOVE caller. 1082 * @idx should point to the latest @param entry set with a PTEX. 1083 * If PTE cannot be processed because another CPUs has already locked that 1084 * group, those entries are put back in @param starting at index 1. 1085 * If entries has to be retried and @retry_busy is set to true, these entries 1086 * are retried until success. If @retry_busy is set to false, the returned 1087 * is the number of entries yet to process. 1088 */ 1089 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1090 bool retry_busy) 1091 { 1092 unsigned long i, rc, new_idx; 1093 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1094 1095 if (idx < 2) { 1096 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1097 return 0; 1098 } 1099 again: 1100 new_idx = 0; 1101 if (idx > PLPAR_HCALL9_BUFSIZE) { 1102 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1103 idx = PLPAR_HCALL9_BUFSIZE; 1104 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1105 param[idx] = HBR_END; 1106 1107 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1108 param[0], /* AVA */ 1109 param[1], param[2], param[3], param[4], /* TS0-7 */ 1110 param[5], param[6], param[7], param[8]); 1111 if (rc == H_SUCCESS) 1112 return 0; 1113 1114 BUG_ON(rc != H_PARTIAL); 1115 1116 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1117 for (i = 0; i < idx-1; i++) { 1118 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1119 1120 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1121 param[++new_idx] = param[i+1]; 1122 continue; 1123 } 1124 1125 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1126 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1127 } 1128 1129 /* 1130 * If there were entries found busy, retry these entries if requested, 1131 * of if all the entries have to be retried. 1132 */ 1133 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1134 idx = new_idx + 1; 1135 goto again; 1136 } 1137 1138 return new_idx; 1139 } 1140 1141 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1142 /* 1143 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1144 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1145 */ 1146 #define PPC64_HUGE_HPTE_BATCH 12 1147 1148 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1149 int count, int psize, int ssize) 1150 { 1151 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1152 unsigned long shift, current_vpgb, vpgb; 1153 int i, pix = 0; 1154 1155 shift = mmu_psize_defs[psize].shift; 1156 1157 for (i = 0; i < count; i++) { 1158 /* 1159 * Shifting 3 bits more on the right to get a 1160 * 8 pages aligned virtual addresse. 1161 */ 1162 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1163 if (!pix || vpgb != current_vpgb) { 1164 /* 1165 * Need to start a new 8 pages block, flush 1166 * the current one if needed. 1167 */ 1168 if (pix) 1169 (void)call_block_remove(pix, param, true); 1170 current_vpgb = vpgb; 1171 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1172 pix = 1; 1173 } 1174 1175 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1176 if (pix == PLPAR_HCALL9_BUFSIZE) { 1177 pix = call_block_remove(pix, param, false); 1178 /* 1179 * pix = 0 means that all the entries were 1180 * removed, we can start a new block. 1181 * Otherwise, this means that there are entries 1182 * to retry, and pix points to latest one, so 1183 * we should increment it and try to continue 1184 * the same block. 1185 */ 1186 if (pix) 1187 pix++; 1188 } 1189 } 1190 if (pix) 1191 (void)call_block_remove(pix, param, true); 1192 } 1193 1194 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1195 int count, int psize, int ssize) 1196 { 1197 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1198 int i = 0, pix = 0, rc; 1199 1200 for (i = 0; i < count; i++) { 1201 1202 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1203 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1204 ssize, 0); 1205 } else { 1206 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1207 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1208 pix += 2; 1209 if (pix == 8) { 1210 rc = plpar_hcall9(H_BULK_REMOVE, param, 1211 param[0], param[1], param[2], 1212 param[3], param[4], param[5], 1213 param[6], param[7]); 1214 BUG_ON(rc != H_SUCCESS); 1215 pix = 0; 1216 } 1217 } 1218 } 1219 if (pix) { 1220 param[pix] = HBR_END; 1221 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1222 param[2], param[3], param[4], param[5], 1223 param[6], param[7]); 1224 BUG_ON(rc != H_SUCCESS); 1225 } 1226 } 1227 1228 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1229 unsigned long *vpn, 1230 int count, int psize, 1231 int ssize) 1232 { 1233 unsigned long flags = 0; 1234 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1235 1236 if (lock_tlbie) 1237 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1238 1239 /* Assuming THP size is 16M */ 1240 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1241 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1242 else 1243 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1244 1245 if (lock_tlbie) 1246 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1247 } 1248 1249 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1250 unsigned long addr, 1251 unsigned char *hpte_slot_array, 1252 int psize, int ssize, int local) 1253 { 1254 int i, index = 0; 1255 unsigned long s_addr = addr; 1256 unsigned int max_hpte_count, valid; 1257 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1258 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1259 unsigned long shift, hidx, vpn = 0, hash, slot; 1260 1261 shift = mmu_psize_defs[psize].shift; 1262 max_hpte_count = 1U << (PMD_SHIFT - shift); 1263 1264 for (i = 0; i < max_hpte_count; i++) { 1265 valid = hpte_valid(hpte_slot_array, i); 1266 if (!valid) 1267 continue; 1268 hidx = hpte_hash_index(hpte_slot_array, i); 1269 1270 /* get the vpn */ 1271 addr = s_addr + (i * (1ul << shift)); 1272 vpn = hpt_vpn(addr, vsid, ssize); 1273 hash = hpt_hash(vpn, shift, ssize); 1274 if (hidx & _PTEIDX_SECONDARY) 1275 hash = ~hash; 1276 1277 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1278 slot += hidx & _PTEIDX_GROUP_IX; 1279 1280 slot_array[index] = slot; 1281 vpn_array[index] = vpn; 1282 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1283 /* 1284 * Now do a bluk invalidate 1285 */ 1286 __pSeries_lpar_hugepage_invalidate(slot_array, 1287 vpn_array, 1288 PPC64_HUGE_HPTE_BATCH, 1289 psize, ssize); 1290 index = 0; 1291 } else 1292 index++; 1293 } 1294 if (index) 1295 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1296 index, psize, ssize); 1297 } 1298 #else 1299 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1300 unsigned long addr, 1301 unsigned char *hpte_slot_array, 1302 int psize, int ssize, int local) 1303 { 1304 WARN(1, "%s called without THP support\n", __func__); 1305 } 1306 #endif 1307 1308 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1309 int psize, int ssize) 1310 { 1311 unsigned long vpn; 1312 unsigned long slot, vsid; 1313 1314 vsid = get_kernel_vsid(ea, ssize); 1315 vpn = hpt_vpn(ea, vsid, ssize); 1316 1317 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1318 if (slot == -1) 1319 return -ENOENT; 1320 1321 /* 1322 * lpar doesn't use the passed actual page size 1323 */ 1324 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1325 return 0; 1326 } 1327 1328 1329 static inline unsigned long compute_slot(real_pte_t pte, 1330 unsigned long vpn, 1331 unsigned long index, 1332 unsigned long shift, 1333 int ssize) 1334 { 1335 unsigned long slot, hash, hidx; 1336 1337 hash = hpt_hash(vpn, shift, ssize); 1338 hidx = __rpte_to_hidx(pte, index); 1339 if (hidx & _PTEIDX_SECONDARY) 1340 hash = ~hash; 1341 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1342 slot += hidx & _PTEIDX_GROUP_IX; 1343 return slot; 1344 } 1345 1346 /** 1347 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1348 * "all within the same naturally aligned 8 page virtual address block". 1349 */ 1350 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1351 unsigned long *param) 1352 { 1353 unsigned long vpn; 1354 unsigned long i, pix = 0; 1355 unsigned long index, shift, slot, current_vpgb, vpgb; 1356 real_pte_t pte; 1357 int psize, ssize; 1358 1359 psize = batch->psize; 1360 ssize = batch->ssize; 1361 1362 for (i = 0; i < number; i++) { 1363 vpn = batch->vpn[i]; 1364 pte = batch->pte[i]; 1365 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1366 /* 1367 * Shifting 3 bits more on the right to get a 1368 * 8 pages aligned virtual addresse. 1369 */ 1370 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1371 if (!pix || vpgb != current_vpgb) { 1372 /* 1373 * Need to start a new 8 pages block, flush 1374 * the current one if needed. 1375 */ 1376 if (pix) 1377 (void)call_block_remove(pix, param, 1378 true); 1379 current_vpgb = vpgb; 1380 param[0] = hpte_encode_avpn(vpn, psize, 1381 ssize); 1382 pix = 1; 1383 } 1384 1385 slot = compute_slot(pte, vpn, index, shift, ssize); 1386 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1387 1388 if (pix == PLPAR_HCALL9_BUFSIZE) { 1389 pix = call_block_remove(pix, param, false); 1390 /* 1391 * pix = 0 means that all the entries were 1392 * removed, we can start a new block. 1393 * Otherwise, this means that there are entries 1394 * to retry, and pix points to latest one, so 1395 * we should increment it and try to continue 1396 * the same block. 1397 */ 1398 if (pix) 1399 pix++; 1400 } 1401 } pte_iterate_hashed_end(); 1402 } 1403 1404 if (pix) 1405 (void)call_block_remove(pix, param, true); 1406 } 1407 1408 /* 1409 * TLB Block Invalidate Characteristics 1410 * 1411 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1412 * is able to process for each couple segment base page size, actual page size. 1413 * 1414 * The ibm,get-system-parameter properties is returning a buffer with the 1415 * following layout: 1416 * 1417 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1418 * ----------------- 1419 * TLB Block Invalidate Specifiers: 1420 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1421 * [ 1 byte Number of page sizes (N) that are supported for the specified 1422 * TLB invalidate block size ] 1423 * [ 1 byte Encoded segment base page size and actual page size 1424 * MSB=0 means 4k segment base page size and actual page size 1425 * MSB=1 the penc value in mmu_psize_def ] 1426 * ... 1427 * ----------------- 1428 * Next TLB Block Invalidate Specifiers... 1429 * ----------------- 1430 * [ 0 ] 1431 */ 1432 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1433 unsigned int block_size) 1434 { 1435 if (block_size > hblkrm_size[bpsize][psize]) 1436 hblkrm_size[bpsize][psize] = block_size; 1437 } 1438 1439 /* 1440 * Decode the Encoded segment base page size and actual page size. 1441 * PAPR specifies: 1442 * - bit 7 is the L bit 1443 * - bits 0-5 are the penc value 1444 * If the L bit is 0, this means 4K segment base page size and actual page size 1445 * otherwise the penc value should be read. 1446 */ 1447 #define HBLKRM_L_MASK 0x80 1448 #define HBLKRM_PENC_MASK 0x3f 1449 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1450 unsigned int block_size) 1451 { 1452 unsigned int bpsize, psize; 1453 1454 /* First, check the L bit, if not set, this means 4K */ 1455 if ((lp & HBLKRM_L_MASK) == 0) { 1456 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1457 return; 1458 } 1459 1460 lp &= HBLKRM_PENC_MASK; 1461 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1462 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1463 1464 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1465 if (def->penc[psize] == lp) { 1466 set_hblkrm_bloc_size(bpsize, psize, block_size); 1467 return; 1468 } 1469 } 1470 } 1471 } 1472 1473 /* 1474 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1475 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1476 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1477 * (128 bytes) for the buffer to get plenty of space. 1478 */ 1479 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1480 1481 void __init pseries_lpar_read_hblkrm_characteristics(void) 1482 { 1483 static struct papr_sysparm_buf buf __initdata; 1484 int len, idx, bpsize; 1485 1486 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1487 return; 1488 1489 if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf)) 1490 return; 1491 1492 len = be16_to_cpu(buf.len); 1493 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1494 pr_warn("%s too large returned buffer %d", __func__, len); 1495 return; 1496 } 1497 1498 idx = 0; 1499 while (idx < len) { 1500 u8 block_shift = buf.val[idx++]; 1501 u32 block_size; 1502 unsigned int npsize; 1503 1504 if (!block_shift) 1505 break; 1506 1507 block_size = 1 << block_shift; 1508 1509 for (npsize = buf.val[idx++]; 1510 npsize > 0 && idx < len; npsize--) 1511 check_lp_set_hblkrm((unsigned int)buf.val[idx++], 1512 block_size); 1513 } 1514 1515 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1516 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1517 if (hblkrm_size[bpsize][idx]) 1518 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1519 bpsize, idx, hblkrm_size[bpsize][idx]); 1520 } 1521 1522 /* 1523 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1524 * lock. 1525 */ 1526 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1527 { 1528 unsigned long vpn; 1529 unsigned long i, pix, rc; 1530 unsigned long flags = 0; 1531 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1532 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1533 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1534 unsigned long index, shift, slot; 1535 real_pte_t pte; 1536 int psize, ssize; 1537 1538 if (lock_tlbie) 1539 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1540 1541 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1542 do_block_remove(number, batch, param); 1543 goto out; 1544 } 1545 1546 psize = batch->psize; 1547 ssize = batch->ssize; 1548 pix = 0; 1549 for (i = 0; i < number; i++) { 1550 vpn = batch->vpn[i]; 1551 pte = batch->pte[i]; 1552 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1553 slot = compute_slot(pte, vpn, index, shift, ssize); 1554 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1555 /* 1556 * lpar doesn't use the passed actual page size 1557 */ 1558 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1559 0, ssize, local); 1560 } else { 1561 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1562 param[pix+1] = hpte_encode_avpn(vpn, psize, 1563 ssize); 1564 pix += 2; 1565 if (pix == 8) { 1566 rc = plpar_hcall9(H_BULK_REMOVE, param, 1567 param[0], param[1], param[2], 1568 param[3], param[4], param[5], 1569 param[6], param[7]); 1570 BUG_ON(rc != H_SUCCESS); 1571 pix = 0; 1572 } 1573 } 1574 } pte_iterate_hashed_end(); 1575 } 1576 if (pix) { 1577 param[pix] = HBR_END; 1578 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1579 param[2], param[3], param[4], param[5], 1580 param[6], param[7]); 1581 BUG_ON(rc != H_SUCCESS); 1582 } 1583 1584 out: 1585 if (lock_tlbie) 1586 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1587 } 1588 1589 static int __init disable_bulk_remove(char *str) 1590 { 1591 if (strcmp(str, "off") == 0 && 1592 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1593 pr_info("Disabling BULK_REMOVE firmware feature"); 1594 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1595 } 1596 return 1; 1597 } 1598 1599 __setup("bulk_remove=", disable_bulk_remove); 1600 1601 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1602 1603 struct hpt_resize_state { 1604 unsigned long shift; 1605 int commit_rc; 1606 }; 1607 1608 static int pseries_lpar_resize_hpt_commit(void *data) 1609 { 1610 struct hpt_resize_state *state = data; 1611 1612 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1613 if (state->commit_rc != H_SUCCESS) 1614 return -EIO; 1615 1616 /* Hypervisor has transitioned the HTAB, update our globals */ 1617 ppc64_pft_size = state->shift; 1618 htab_size_bytes = 1UL << ppc64_pft_size; 1619 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1620 1621 return 0; 1622 } 1623 1624 /* 1625 * Must be called in process context. The caller must hold the 1626 * cpus_lock. 1627 */ 1628 static int pseries_lpar_resize_hpt(unsigned long shift) 1629 { 1630 struct hpt_resize_state state = { 1631 .shift = shift, 1632 .commit_rc = H_FUNCTION, 1633 }; 1634 unsigned int delay, total_delay = 0; 1635 int rc; 1636 ktime_t t0, t1, t2; 1637 1638 might_sleep(); 1639 1640 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1641 return -ENODEV; 1642 1643 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1644 1645 t0 = ktime_get(); 1646 1647 rc = plpar_resize_hpt_prepare(0, shift); 1648 while (H_IS_LONG_BUSY(rc)) { 1649 delay = get_longbusy_msecs(rc); 1650 total_delay += delay; 1651 if (total_delay > HPT_RESIZE_TIMEOUT) { 1652 /* prepare with shift==0 cancels an in-progress resize */ 1653 rc = plpar_resize_hpt_prepare(0, 0); 1654 if (rc != H_SUCCESS) 1655 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1656 rc); 1657 return -ETIMEDOUT; 1658 } 1659 msleep(delay); 1660 rc = plpar_resize_hpt_prepare(0, shift); 1661 } 1662 1663 switch (rc) { 1664 case H_SUCCESS: 1665 /* Continue on */ 1666 break; 1667 1668 case H_PARAMETER: 1669 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1670 return -EINVAL; 1671 case H_RESOURCE: 1672 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1673 return -EPERM; 1674 default: 1675 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1676 return -EIO; 1677 } 1678 1679 t1 = ktime_get(); 1680 1681 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1682 &state, NULL); 1683 1684 t2 = ktime_get(); 1685 1686 if (rc != 0) { 1687 switch (state.commit_rc) { 1688 case H_PTEG_FULL: 1689 return -ENOSPC; 1690 1691 default: 1692 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1693 state.commit_rc); 1694 return -EIO; 1695 }; 1696 } 1697 1698 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1699 shift, (long long) ktime_ms_delta(t1, t0), 1700 (long long) ktime_ms_delta(t2, t1)); 1701 1702 return 0; 1703 } 1704 1705 void __init hpte_init_pseries(void) 1706 { 1707 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1708 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1709 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1710 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1711 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1712 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1713 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1714 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1715 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1716 1717 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1718 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1719 1720 /* 1721 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1722 * to inform the hypervisor that we wish to use the HPT. 1723 */ 1724 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1725 pseries_lpar_register_process_table(0, 0, 0); 1726 } 1727 #endif /* CONFIG_PPC_64S_HASH_MMU */ 1728 1729 #ifdef CONFIG_PPC_RADIX_MMU 1730 void __init radix_init_pseries(void) 1731 { 1732 pr_info("Using radix MMU under hypervisor\n"); 1733 1734 pseries_lpar_register_process_table(__pa(process_tb), 1735 0, PRTB_SIZE_SHIFT - 12); 1736 } 1737 #endif 1738 1739 #ifdef CONFIG_PPC_SMLPAR 1740 #define CMO_FREE_HINT_DEFAULT 1 1741 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1742 1743 static int __init cmo_free_hint(char *str) 1744 { 1745 char *parm; 1746 parm = strstrip(str); 1747 1748 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1749 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1750 cmo_free_hint_flag = 0; 1751 return 1; 1752 } 1753 1754 cmo_free_hint_flag = 1; 1755 pr_info("%s: CMO free page hinting is active.\n", __func__); 1756 1757 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1758 return 1; 1759 1760 return 0; 1761 } 1762 1763 __setup("cmo_free_hint=", cmo_free_hint); 1764 1765 static void pSeries_set_page_state(struct page *page, int order, 1766 unsigned long state) 1767 { 1768 int i, j; 1769 unsigned long cmo_page_sz, addr; 1770 1771 cmo_page_sz = cmo_get_page_size(); 1772 addr = __pa((unsigned long)page_address(page)); 1773 1774 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1775 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1776 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1777 } 1778 } 1779 1780 void arch_free_page(struct page *page, int order) 1781 { 1782 if (radix_enabled()) 1783 return; 1784 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1785 return; 1786 1787 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1788 } 1789 EXPORT_SYMBOL(arch_free_page); 1790 1791 #endif /* CONFIG_PPC_SMLPAR */ 1792 #endif /* CONFIG_PPC_BOOK3S_64 */ 1793 1794 #ifdef CONFIG_TRACEPOINTS 1795 #ifdef CONFIG_JUMP_LABEL 1796 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1797 1798 int hcall_tracepoint_regfunc(void) 1799 { 1800 static_key_slow_inc(&hcall_tracepoint_key); 1801 return 0; 1802 } 1803 1804 void hcall_tracepoint_unregfunc(void) 1805 { 1806 static_key_slow_dec(&hcall_tracepoint_key); 1807 } 1808 #else 1809 /* 1810 * We optimise our hcall path by placing hcall_tracepoint_refcount 1811 * directly in the TOC so we can check if the hcall tracepoints are 1812 * enabled via a single load. 1813 */ 1814 1815 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1816 extern long hcall_tracepoint_refcount; 1817 1818 int hcall_tracepoint_regfunc(void) 1819 { 1820 hcall_tracepoint_refcount++; 1821 return 0; 1822 } 1823 1824 void hcall_tracepoint_unregfunc(void) 1825 { 1826 hcall_tracepoint_refcount--; 1827 } 1828 #endif 1829 1830 /* 1831 * Keep track of hcall tracing depth and prevent recursion. Warn if any is 1832 * detected because it may indicate a problem. This will not catch all 1833 * problems with tracing code making hcalls, because the tracing might have 1834 * been invoked from a non-hcall, so the first hcall could recurse into it 1835 * without warning here, but this better than nothing. 1836 * 1837 * Hcalls with specific problems being traced should use the _notrace 1838 * plpar_hcall variants. 1839 */ 1840 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1841 1842 1843 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1844 { 1845 unsigned long flags; 1846 unsigned int *depth; 1847 1848 local_irq_save(flags); 1849 1850 depth = this_cpu_ptr(&hcall_trace_depth); 1851 1852 if (WARN_ON_ONCE(*depth)) 1853 goto out; 1854 1855 (*depth)++; 1856 preempt_disable(); 1857 trace_hcall_entry(opcode, args); 1858 (*depth)--; 1859 1860 out: 1861 local_irq_restore(flags); 1862 } 1863 1864 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1865 { 1866 unsigned long flags; 1867 unsigned int *depth; 1868 1869 local_irq_save(flags); 1870 1871 depth = this_cpu_ptr(&hcall_trace_depth); 1872 1873 if (*depth) /* Don't warn again on the way out */ 1874 goto out; 1875 1876 (*depth)++; 1877 trace_hcall_exit(opcode, retval, retbuf); 1878 preempt_enable(); 1879 (*depth)--; 1880 1881 out: 1882 local_irq_restore(flags); 1883 } 1884 #endif 1885 1886 /** 1887 * h_get_mpp 1888 * H_GET_MPP hcall returns info in 7 parms 1889 */ 1890 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1891 { 1892 int rc; 1893 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1894 1895 rc = plpar_hcall9(H_GET_MPP, retbuf); 1896 1897 mpp_data->entitled_mem = retbuf[0]; 1898 mpp_data->mapped_mem = retbuf[1]; 1899 1900 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1901 mpp_data->pool_num = retbuf[2] & 0xffff; 1902 1903 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1904 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1905 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1906 1907 mpp_data->pool_size = retbuf[4]; 1908 mpp_data->loan_request = retbuf[5]; 1909 mpp_data->backing_mem = retbuf[6]; 1910 1911 return rc; 1912 } 1913 EXPORT_SYMBOL(h_get_mpp); 1914 1915 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1916 { 1917 int rc; 1918 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1919 1920 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1921 1922 mpp_x_data->coalesced_bytes = retbuf[0]; 1923 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1924 mpp_x_data->pool_purr_cycles = retbuf[2]; 1925 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1926 1927 return rc; 1928 } 1929 1930 #ifdef CONFIG_PPC_64S_HASH_MMU 1931 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) 1932 { 1933 unsigned long protovsid; 1934 unsigned long va_bits = VA_BITS; 1935 unsigned long modinv, vsid_modulus; 1936 unsigned long max_mod_inv, tmp_modinv; 1937 1938 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1939 va_bits = 65; 1940 1941 if (ssize == MMU_SEGSIZE_256M) { 1942 modinv = VSID_MULINV_256M; 1943 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1944 } else { 1945 modinv = VSID_MULINV_1T; 1946 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1947 } 1948 1949 /* 1950 * vsid outside our range. 1951 */ 1952 if (vsid >= vsid_modulus) 1953 return 0; 1954 1955 /* 1956 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1957 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1958 * protovsid = (vsid * modinv) % vsid_modulus 1959 */ 1960 1961 /* Check if (vsid * modinv) overflow (63 bits) */ 1962 max_mod_inv = 0x7fffffffffffffffull / vsid; 1963 if (modinv < max_mod_inv) 1964 return (vsid * modinv) % vsid_modulus; 1965 1966 tmp_modinv = modinv/max_mod_inv; 1967 modinv %= max_mod_inv; 1968 1969 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1970 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1971 1972 return protovsid; 1973 } 1974 1975 static int __init reserve_vrma_context_id(void) 1976 { 1977 unsigned long protovsid; 1978 1979 /* 1980 * Reserve context ids which map to reserved virtual addresses. For now 1981 * we only reserve the context id which maps to the VRMA VSID. We ignore 1982 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1983 * enable adjunct support via the "ibm,client-architecture-support" 1984 * interface. 1985 */ 1986 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1987 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1988 return 0; 1989 } 1990 machine_device_initcall(pseries, reserve_vrma_context_id); 1991 #endif 1992 1993 #ifdef CONFIG_DEBUG_FS 1994 /* debugfs file interface for vpa data */ 1995 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1996 loff_t *pos) 1997 { 1998 int cpu = (long)filp->private_data; 1999 struct lppaca *lppaca = &lppaca_of(cpu); 2000 2001 return simple_read_from_buffer(buf, len, pos, lppaca, 2002 sizeof(struct lppaca)); 2003 } 2004 2005 static const struct file_operations vpa_fops = { 2006 .open = simple_open, 2007 .read = vpa_file_read, 2008 .llseek = default_llseek, 2009 }; 2010 2011 static int __init vpa_debugfs_init(void) 2012 { 2013 char name[16]; 2014 long i; 2015 struct dentry *vpa_dir; 2016 2017 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2018 return 0; 2019 2020 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); 2021 2022 /* set up the per-cpu vpa file*/ 2023 for_each_possible_cpu(i) { 2024 sprintf(name, "cpu-%ld", i); 2025 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2026 } 2027 2028 return 0; 2029 } 2030 machine_arch_initcall(pseries, vpa_debugfs_init); 2031 #endif /* CONFIG_DEBUG_FS */ 2032