1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pgtable.h> 25 #include <asm/processor.h> 26 #include <asm/mmu.h> 27 #include <asm/page.h> 28 #include <asm/machdep.h> 29 #include <asm/mmu_context.h> 30 #include <asm/iommu.h> 31 #include <asm/tlb.h> 32 #include <asm/prom.h> 33 #include <asm/cputable.h> 34 #include <asm/udbg.h> 35 #include <asm/smp.h> 36 #include <asm/trace.h> 37 #include <asm/firmware.h> 38 #include <asm/plpar_wrappers.h> 39 #include <asm/kexec.h> 40 #include <asm/fadump.h> 41 #include <asm/asm-prototypes.h> 42 #include <asm/debugfs.h> 43 #include <asm/dtl.h> 44 45 #include "pseries.h" 46 47 /* Flag bits for H_BULK_REMOVE */ 48 #define HBR_REQUEST 0x4000000000000000UL 49 #define HBR_RESPONSE 0x8000000000000000UL 50 #define HBR_END 0xc000000000000000UL 51 #define HBR_AVPN 0x0200000000000000UL 52 #define HBR_ANDCOND 0x0100000000000000UL 53 54 55 /* in hvCall.S */ 56 EXPORT_SYMBOL(plpar_hcall); 57 EXPORT_SYMBOL(plpar_hcall9); 58 EXPORT_SYMBOL(plpar_hcall_norets); 59 60 /* 61 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 62 * page size is that page size. 63 * 64 * The first index is the segment base page size, the second one is the actual 65 * page size. 66 */ 67 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 68 69 /* 70 * Due to the involved complexity, and that the current hypervisor is only 71 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 72 * buffer size to 8 size block. 73 */ 74 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 75 76 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 77 static u8 dtl_mask = DTL_LOG_PREEMPT; 78 #else 79 static u8 dtl_mask; 80 #endif 81 82 void alloc_dtl_buffers(unsigned long *time_limit) 83 { 84 int cpu; 85 struct paca_struct *pp; 86 struct dtl_entry *dtl; 87 88 for_each_possible_cpu(cpu) { 89 pp = paca_ptrs[cpu]; 90 if (pp->dispatch_log) 91 continue; 92 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 93 if (!dtl) { 94 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 95 cpu); 96 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 97 pr_warn("Stolen time statistics will be unreliable\n"); 98 #endif 99 break; 100 } 101 102 pp->dtl_ridx = 0; 103 pp->dispatch_log = dtl; 104 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 105 pp->dtl_curr = dtl; 106 107 if (time_limit && time_after(jiffies, *time_limit)) { 108 cond_resched(); 109 *time_limit = jiffies + HZ; 110 } 111 } 112 } 113 114 void register_dtl_buffer(int cpu) 115 { 116 long ret; 117 struct paca_struct *pp; 118 struct dtl_entry *dtl; 119 int hwcpu = get_hard_smp_processor_id(cpu); 120 121 pp = paca_ptrs[cpu]; 122 dtl = pp->dispatch_log; 123 if (dtl && dtl_mask) { 124 pp->dtl_ridx = 0; 125 pp->dtl_curr = dtl; 126 lppaca_of(cpu).dtl_idx = 0; 127 128 /* hypervisor reads buffer length from this field */ 129 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 130 ret = register_dtl(hwcpu, __pa(dtl)); 131 if (ret) 132 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 133 cpu, hwcpu, ret); 134 135 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 136 } 137 } 138 139 #ifdef CONFIG_PPC_SPLPAR 140 struct dtl_worker { 141 struct delayed_work work; 142 int cpu; 143 }; 144 145 struct vcpu_dispatch_data { 146 int last_disp_cpu; 147 148 int total_disp; 149 150 int same_cpu_disp; 151 int same_chip_disp; 152 int diff_chip_disp; 153 int far_chip_disp; 154 155 int numa_home_disp; 156 int numa_remote_disp; 157 int numa_far_disp; 158 }; 159 160 /* 161 * This represents the number of cpus in the hypervisor. Since there is no 162 * architected way to discover the number of processors in the host, we 163 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 164 * is sufficient for our purposes. This will need to be tweaked if 165 * CONFIG_NR_CPUS is changed. 166 */ 167 #define NR_CPUS_H NR_CPUS 168 169 DEFINE_RWLOCK(dtl_access_lock); 170 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 171 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 172 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 173 static enum cpuhp_state dtl_worker_state; 174 static DEFINE_MUTEX(dtl_enable_mutex); 175 static int vcpudispatch_stats_on __read_mostly; 176 static int vcpudispatch_stats_freq = 50; 177 static __be32 *vcpu_associativity, *pcpu_associativity; 178 179 180 static void free_dtl_buffers(unsigned long *time_limit) 181 { 182 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 183 int cpu; 184 struct paca_struct *pp; 185 186 for_each_possible_cpu(cpu) { 187 pp = paca_ptrs[cpu]; 188 if (!pp->dispatch_log) 189 continue; 190 kmem_cache_free(dtl_cache, pp->dispatch_log); 191 pp->dtl_ridx = 0; 192 pp->dispatch_log = 0; 193 pp->dispatch_log_end = 0; 194 pp->dtl_curr = 0; 195 196 if (time_limit && time_after(jiffies, *time_limit)) { 197 cond_resched(); 198 *time_limit = jiffies + HZ; 199 } 200 } 201 #endif 202 } 203 204 static int init_cpu_associativity(void) 205 { 206 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 207 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 208 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 209 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 210 211 if (!vcpu_associativity || !pcpu_associativity) { 212 pr_err("error allocating memory for associativity information\n"); 213 return -ENOMEM; 214 } 215 216 return 0; 217 } 218 219 static void destroy_cpu_associativity(void) 220 { 221 kfree(vcpu_associativity); 222 kfree(pcpu_associativity); 223 vcpu_associativity = pcpu_associativity = 0; 224 } 225 226 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 227 { 228 __be32 *assoc; 229 int rc = 0; 230 231 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 232 if (!assoc[0]) { 233 rc = hcall_vphn(cpu, flag, &assoc[0]); 234 if (rc) 235 return NULL; 236 } 237 238 return assoc; 239 } 240 241 static __be32 *get_pcpu_associativity(int cpu) 242 { 243 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 244 } 245 246 static __be32 *get_vcpu_associativity(int cpu) 247 { 248 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 249 } 250 251 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 252 { 253 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 254 255 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 256 return -EINVAL; 257 258 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 259 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 260 261 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 262 return -EIO; 263 264 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 265 } 266 267 static int cpu_home_node_dispatch_distance(int disp_cpu) 268 { 269 __be32 *disp_cpu_assoc, *vcpu_assoc; 270 int vcpu_id = smp_processor_id(); 271 272 if (disp_cpu >= NR_CPUS_H) { 273 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 274 disp_cpu, NR_CPUS_H); 275 return -EINVAL; 276 } 277 278 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 279 vcpu_assoc = get_vcpu_associativity(vcpu_id); 280 281 if (!disp_cpu_assoc || !vcpu_assoc) 282 return -EIO; 283 284 return cpu_distance(disp_cpu_assoc, vcpu_assoc); 285 } 286 287 static void update_vcpu_disp_stat(int disp_cpu) 288 { 289 struct vcpu_dispatch_data *disp; 290 int distance; 291 292 disp = this_cpu_ptr(&vcpu_disp_data); 293 if (disp->last_disp_cpu == -1) { 294 disp->last_disp_cpu = disp_cpu; 295 return; 296 } 297 298 disp->total_disp++; 299 300 if (disp->last_disp_cpu == disp_cpu || 301 (cpu_first_thread_sibling(disp->last_disp_cpu) == 302 cpu_first_thread_sibling(disp_cpu))) 303 disp->same_cpu_disp++; 304 else { 305 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 306 disp_cpu); 307 if (distance < 0) 308 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 309 smp_processor_id()); 310 else { 311 switch (distance) { 312 case 0: 313 disp->same_chip_disp++; 314 break; 315 case 1: 316 disp->diff_chip_disp++; 317 break; 318 case 2: 319 disp->far_chip_disp++; 320 break; 321 default: 322 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 323 smp_processor_id(), 324 disp->last_disp_cpu, 325 disp_cpu, 326 distance); 327 } 328 } 329 } 330 331 distance = cpu_home_node_dispatch_distance(disp_cpu); 332 if (distance < 0) 333 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 334 smp_processor_id()); 335 else { 336 switch (distance) { 337 case 0: 338 disp->numa_home_disp++; 339 break; 340 case 1: 341 disp->numa_remote_disp++; 342 break; 343 case 2: 344 disp->numa_far_disp++; 345 break; 346 default: 347 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 348 smp_processor_id(), 349 disp_cpu, 350 distance); 351 } 352 } 353 354 disp->last_disp_cpu = disp_cpu; 355 } 356 357 static void process_dtl_buffer(struct work_struct *work) 358 { 359 struct dtl_entry dtle; 360 u64 i = __this_cpu_read(dtl_entry_ridx); 361 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 362 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 363 struct lppaca *vpa = local_paca->lppaca_ptr; 364 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 365 366 if (!local_paca->dispatch_log) 367 return; 368 369 /* if we have been migrated away, we cancel ourself */ 370 if (d->cpu != smp_processor_id()) { 371 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 372 smp_processor_id()); 373 return; 374 } 375 376 if (i == be64_to_cpu(vpa->dtl_idx)) 377 goto out; 378 379 while (i < be64_to_cpu(vpa->dtl_idx)) { 380 dtle = *dtl; 381 barrier(); 382 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 383 /* buffer has overflowed */ 384 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 385 d->cpu, 386 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 387 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 388 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 389 continue; 390 } 391 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 392 ++i; 393 ++dtl; 394 if (dtl == dtl_end) 395 dtl = local_paca->dispatch_log; 396 } 397 398 __this_cpu_write(dtl_entry_ridx, i); 399 400 out: 401 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 402 HZ / vcpudispatch_stats_freq); 403 } 404 405 static int dtl_worker_online(unsigned int cpu) 406 { 407 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 408 409 memset(d, 0, sizeof(*d)); 410 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 411 d->cpu = cpu; 412 413 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 414 per_cpu(dtl_entry_ridx, cpu) = 0; 415 register_dtl_buffer(cpu); 416 #else 417 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 418 #endif 419 420 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 421 return 0; 422 } 423 424 static int dtl_worker_offline(unsigned int cpu) 425 { 426 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 427 428 cancel_delayed_work_sync(&d->work); 429 430 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 431 unregister_dtl(get_hard_smp_processor_id(cpu)); 432 #endif 433 434 return 0; 435 } 436 437 static void set_global_dtl_mask(u8 mask) 438 { 439 int cpu; 440 441 dtl_mask = mask; 442 for_each_present_cpu(cpu) 443 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 444 } 445 446 static void reset_global_dtl_mask(void) 447 { 448 int cpu; 449 450 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 451 dtl_mask = DTL_LOG_PREEMPT; 452 #else 453 dtl_mask = 0; 454 #endif 455 for_each_present_cpu(cpu) 456 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 457 } 458 459 static int dtl_worker_enable(unsigned long *time_limit) 460 { 461 int rc = 0, state; 462 463 if (!write_trylock(&dtl_access_lock)) { 464 rc = -EBUSY; 465 goto out; 466 } 467 468 set_global_dtl_mask(DTL_LOG_ALL); 469 470 /* Setup dtl buffers and register those */ 471 alloc_dtl_buffers(time_limit); 472 473 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 474 dtl_worker_online, dtl_worker_offline); 475 if (state < 0) { 476 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 477 free_dtl_buffers(time_limit); 478 reset_global_dtl_mask(); 479 write_unlock(&dtl_access_lock); 480 rc = -EINVAL; 481 goto out; 482 } 483 dtl_worker_state = state; 484 485 out: 486 return rc; 487 } 488 489 static void dtl_worker_disable(unsigned long *time_limit) 490 { 491 cpuhp_remove_state(dtl_worker_state); 492 free_dtl_buffers(time_limit); 493 reset_global_dtl_mask(); 494 write_unlock(&dtl_access_lock); 495 } 496 497 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 498 size_t count, loff_t *ppos) 499 { 500 unsigned long time_limit = jiffies + HZ; 501 struct vcpu_dispatch_data *disp; 502 int rc, cmd, cpu; 503 char buf[16]; 504 505 if (count > 15) 506 return -EINVAL; 507 508 if (copy_from_user(buf, p, count)) 509 return -EFAULT; 510 511 buf[count] = 0; 512 rc = kstrtoint(buf, 0, &cmd); 513 if (rc || cmd < 0 || cmd > 1) { 514 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 515 return rc ? rc : -EINVAL; 516 } 517 518 mutex_lock(&dtl_enable_mutex); 519 520 if ((cmd == 0 && !vcpudispatch_stats_on) || 521 (cmd == 1 && vcpudispatch_stats_on)) 522 goto out; 523 524 if (cmd) { 525 rc = init_cpu_associativity(); 526 if (rc) 527 goto out; 528 529 for_each_possible_cpu(cpu) { 530 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 531 memset(disp, 0, sizeof(*disp)); 532 disp->last_disp_cpu = -1; 533 } 534 535 rc = dtl_worker_enable(&time_limit); 536 if (rc) { 537 destroy_cpu_associativity(); 538 goto out; 539 } 540 } else { 541 dtl_worker_disable(&time_limit); 542 destroy_cpu_associativity(); 543 } 544 545 vcpudispatch_stats_on = cmd; 546 547 out: 548 mutex_unlock(&dtl_enable_mutex); 549 if (rc) 550 return rc; 551 return count; 552 } 553 554 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 555 { 556 int cpu; 557 struct vcpu_dispatch_data *disp; 558 559 if (!vcpudispatch_stats_on) { 560 seq_puts(p, "off\n"); 561 return 0; 562 } 563 564 for_each_online_cpu(cpu) { 565 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 566 seq_printf(p, "cpu%d", cpu); 567 seq_put_decimal_ull(p, " ", disp->total_disp); 568 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 569 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 570 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 571 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 572 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 573 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 574 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 575 seq_puts(p, "\n"); 576 } 577 578 return 0; 579 } 580 581 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 582 { 583 return single_open(file, vcpudispatch_stats_display, NULL); 584 } 585 586 static const struct proc_ops vcpudispatch_stats_proc_ops = { 587 .proc_open = vcpudispatch_stats_open, 588 .proc_read = seq_read, 589 .proc_write = vcpudispatch_stats_write, 590 .proc_lseek = seq_lseek, 591 .proc_release = single_release, 592 }; 593 594 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 595 const char __user *p, size_t count, loff_t *ppos) 596 { 597 int rc, freq; 598 char buf[16]; 599 600 if (count > 15) 601 return -EINVAL; 602 603 if (copy_from_user(buf, p, count)) 604 return -EFAULT; 605 606 buf[count] = 0; 607 rc = kstrtoint(buf, 0, &freq); 608 if (rc || freq < 1 || freq > HZ) { 609 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 610 HZ); 611 return rc ? rc : -EINVAL; 612 } 613 614 vcpudispatch_stats_freq = freq; 615 616 return count; 617 } 618 619 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 620 { 621 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 622 return 0; 623 } 624 625 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 626 { 627 return single_open(file, vcpudispatch_stats_freq_display, NULL); 628 } 629 630 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 631 .proc_open = vcpudispatch_stats_freq_open, 632 .proc_read = seq_read, 633 .proc_write = vcpudispatch_stats_freq_write, 634 .proc_lseek = seq_lseek, 635 .proc_release = single_release, 636 }; 637 638 static int __init vcpudispatch_stats_procfs_init(void) 639 { 640 /* 641 * Avoid smp_processor_id while preemptible. All CPUs should have 642 * the same value for lppaca_shared_proc. 643 */ 644 preempt_disable(); 645 if (!lppaca_shared_proc(get_lppaca())) { 646 preempt_enable(); 647 return 0; 648 } 649 preempt_enable(); 650 651 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 652 &vcpudispatch_stats_proc_ops)) 653 pr_err("vcpudispatch_stats: error creating procfs file\n"); 654 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 655 &vcpudispatch_stats_freq_proc_ops)) 656 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 657 658 return 0; 659 } 660 661 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 662 #endif /* CONFIG_PPC_SPLPAR */ 663 664 void vpa_init(int cpu) 665 { 666 int hwcpu = get_hard_smp_processor_id(cpu); 667 unsigned long addr; 668 long ret; 669 670 /* 671 * The spec says it "may be problematic" if CPU x registers the VPA of 672 * CPU y. We should never do that, but wail if we ever do. 673 */ 674 WARN_ON(cpu != smp_processor_id()); 675 676 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 677 lppaca_of(cpu).vmxregs_in_use = 1; 678 679 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 680 lppaca_of(cpu).ebb_regs_in_use = 1; 681 682 addr = __pa(&lppaca_of(cpu)); 683 ret = register_vpa(hwcpu, addr); 684 685 if (ret) { 686 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 687 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 688 return; 689 } 690 691 #ifdef CONFIG_PPC_BOOK3S_64 692 /* 693 * PAPR says this feature is SLB-Buffer but firmware never 694 * reports that. All SPLPAR support SLB shadow buffer. 695 */ 696 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 697 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 698 ret = register_slb_shadow(hwcpu, addr); 699 if (ret) 700 pr_err("WARNING: SLB shadow buffer registration for " 701 "cpu %d (hw %d) of area %lx failed with %ld\n", 702 cpu, hwcpu, addr, ret); 703 } 704 #endif /* CONFIG_PPC_BOOK3S_64 */ 705 706 /* 707 * Register dispatch trace log, if one has been allocated. 708 */ 709 register_dtl_buffer(cpu); 710 } 711 712 #ifdef CONFIG_PPC_BOOK3S_64 713 714 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 715 unsigned long vpn, unsigned long pa, 716 unsigned long rflags, unsigned long vflags, 717 int psize, int apsize, int ssize) 718 { 719 unsigned long lpar_rc; 720 unsigned long flags; 721 unsigned long slot; 722 unsigned long hpte_v, hpte_r; 723 724 if (!(vflags & HPTE_V_BOLTED)) 725 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 726 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 727 hpte_group, vpn, pa, rflags, vflags, psize); 728 729 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 730 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 731 732 if (!(vflags & HPTE_V_BOLTED)) 733 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 734 735 /* Now fill in the actual HPTE */ 736 /* Set CEC cookie to 0 */ 737 /* Zero page = 0 */ 738 /* I-cache Invalidate = 0 */ 739 /* I-cache synchronize = 0 */ 740 /* Exact = 0 */ 741 flags = 0; 742 743 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 744 flags |= H_COALESCE_CAND; 745 746 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 747 if (unlikely(lpar_rc == H_PTEG_FULL)) { 748 pr_devel("Hash table group is full\n"); 749 return -1; 750 } 751 752 /* 753 * Since we try and ioremap PHBs we don't own, the pte insert 754 * will fail. However we must catch the failure in hash_page 755 * or we will loop forever, so return -2 in this case. 756 */ 757 if (unlikely(lpar_rc != H_SUCCESS)) { 758 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 759 return -2; 760 } 761 if (!(vflags & HPTE_V_BOLTED)) 762 pr_devel(" -> slot: %lu\n", slot & 7); 763 764 /* Because of iSeries, we have to pass down the secondary 765 * bucket bit here as well 766 */ 767 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 768 } 769 770 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 771 772 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 773 { 774 unsigned long slot_offset; 775 unsigned long lpar_rc; 776 int i; 777 unsigned long dummy1, dummy2; 778 779 /* pick a random slot to start at */ 780 slot_offset = mftb() & 0x7; 781 782 for (i = 0; i < HPTES_PER_GROUP; i++) { 783 784 /* don't remove a bolted entry */ 785 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 786 HPTE_V_BOLTED, &dummy1, &dummy2); 787 if (lpar_rc == H_SUCCESS) 788 return i; 789 790 /* 791 * The test for adjunct partition is performed before the 792 * ANDCOND test. H_RESOURCE may be returned, so we need to 793 * check for that as well. 794 */ 795 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 796 797 slot_offset++; 798 slot_offset &= 0x7; 799 } 800 801 return -1; 802 } 803 804 static void manual_hpte_clear_all(void) 805 { 806 unsigned long size_bytes = 1UL << ppc64_pft_size; 807 unsigned long hpte_count = size_bytes >> 4; 808 struct { 809 unsigned long pteh; 810 unsigned long ptel; 811 } ptes[4]; 812 long lpar_rc; 813 unsigned long i, j; 814 815 /* Read in batches of 4, 816 * invalidate only valid entries not in the VRMA 817 * hpte_count will be a multiple of 4 818 */ 819 for (i = 0; i < hpte_count; i += 4) { 820 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 821 if (lpar_rc != H_SUCCESS) { 822 pr_info("Failed to read hash page table at %ld err %ld\n", 823 i, lpar_rc); 824 continue; 825 } 826 for (j = 0; j < 4; j++){ 827 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 828 HPTE_V_VRMA_MASK) 829 continue; 830 if (ptes[j].pteh & HPTE_V_VALID) 831 plpar_pte_remove_raw(0, i + j, 0, 832 &(ptes[j].pteh), &(ptes[j].ptel)); 833 } 834 } 835 } 836 837 static int hcall_hpte_clear_all(void) 838 { 839 int rc; 840 841 do { 842 rc = plpar_hcall_norets(H_CLEAR_HPT); 843 } while (rc == H_CONTINUE); 844 845 return rc; 846 } 847 848 static void pseries_hpte_clear_all(void) 849 { 850 int rc; 851 852 rc = hcall_hpte_clear_all(); 853 if (rc != H_SUCCESS) 854 manual_hpte_clear_all(); 855 856 #ifdef __LITTLE_ENDIAN__ 857 /* 858 * Reset exceptions to big endian. 859 * 860 * FIXME this is a hack for kexec, we need to reset the exception 861 * endian before starting the new kernel and this is a convenient place 862 * to do it. 863 * 864 * This is also called on boot when a fadump happens. In that case we 865 * must not change the exception endian mode. 866 */ 867 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 868 pseries_big_endian_exceptions(); 869 #endif 870 } 871 872 /* 873 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 874 * the low 3 bits of flags happen to line up. So no transform is needed. 875 * We can probably optimize here and assume the high bits of newpp are 876 * already zero. For now I am paranoid. 877 */ 878 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 879 unsigned long newpp, 880 unsigned long vpn, 881 int psize, int apsize, 882 int ssize, unsigned long inv_flags) 883 { 884 unsigned long lpar_rc; 885 unsigned long flags; 886 unsigned long want_v; 887 888 want_v = hpte_encode_avpn(vpn, psize, ssize); 889 890 flags = (newpp & 7) | H_AVPN; 891 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 892 /* Move pp0 into bit 8 (IBM 55) */ 893 flags |= (newpp & HPTE_R_PP0) >> 55; 894 895 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 896 want_v, slot, flags, psize); 897 898 lpar_rc = plpar_pte_protect(flags, slot, want_v); 899 900 if (lpar_rc == H_NOT_FOUND) { 901 pr_devel("not found !\n"); 902 return -1; 903 } 904 905 pr_devel("ok\n"); 906 907 BUG_ON(lpar_rc != H_SUCCESS); 908 909 return 0; 910 } 911 912 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 913 { 914 long lpar_rc; 915 unsigned long i, j; 916 struct { 917 unsigned long pteh; 918 unsigned long ptel; 919 } ptes[4]; 920 921 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 922 923 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 924 if (lpar_rc != H_SUCCESS) { 925 pr_info("Failed to read hash page table at %ld err %ld\n", 926 hpte_group, lpar_rc); 927 continue; 928 } 929 930 for (j = 0; j < 4; j++) { 931 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 932 (ptes[j].pteh & HPTE_V_VALID)) 933 return i + j; 934 } 935 } 936 937 return -1; 938 } 939 940 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 941 { 942 long slot; 943 unsigned long hash; 944 unsigned long want_v; 945 unsigned long hpte_group; 946 947 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 948 want_v = hpte_encode_avpn(vpn, psize, ssize); 949 950 /* 951 * We try to keep bolted entries always in primary hash 952 * But in some case we can find them in secondary too. 953 */ 954 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 955 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 956 if (slot < 0) { 957 /* Try in secondary */ 958 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 959 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 960 if (slot < 0) 961 return -1; 962 } 963 return hpte_group + slot; 964 } 965 966 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 967 unsigned long ea, 968 int psize, int ssize) 969 { 970 unsigned long vpn; 971 unsigned long lpar_rc, slot, vsid, flags; 972 973 vsid = get_kernel_vsid(ea, ssize); 974 vpn = hpt_vpn(ea, vsid, ssize); 975 976 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 977 BUG_ON(slot == -1); 978 979 flags = newpp & 7; 980 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 981 /* Move pp0 into bit 8 (IBM 55) */ 982 flags |= (newpp & HPTE_R_PP0) >> 55; 983 984 lpar_rc = plpar_pte_protect(flags, slot, 0); 985 986 BUG_ON(lpar_rc != H_SUCCESS); 987 } 988 989 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 990 int psize, int apsize, 991 int ssize, int local) 992 { 993 unsigned long want_v; 994 unsigned long lpar_rc; 995 unsigned long dummy1, dummy2; 996 997 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 998 slot, vpn, psize, local); 999 1000 want_v = hpte_encode_avpn(vpn, psize, ssize); 1001 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1002 if (lpar_rc == H_NOT_FOUND) 1003 return; 1004 1005 BUG_ON(lpar_rc != H_SUCCESS); 1006 } 1007 1008 1009 /* 1010 * As defined in the PAPR's section 14.5.4.1.8 1011 * The control mask doesn't include the returned reference and change bit from 1012 * the processed PTE. 1013 */ 1014 #define HBLKR_AVPN 0x0100000000000000UL 1015 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1016 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1017 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1018 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1019 1020 /* 1021 * Returned true if we are supporting this block size for the specified segment 1022 * base page size and actual page size. 1023 * 1024 * Currently, we only support 8 size block. 1025 */ 1026 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1027 { 1028 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1029 } 1030 1031 /** 1032 * H_BLOCK_REMOVE caller. 1033 * @idx should point to the latest @param entry set with a PTEX. 1034 * If PTE cannot be processed because another CPUs has already locked that 1035 * group, those entries are put back in @param starting at index 1. 1036 * If entries has to be retried and @retry_busy is set to true, these entries 1037 * are retried until success. If @retry_busy is set to false, the returned 1038 * is the number of entries yet to process. 1039 */ 1040 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1041 bool retry_busy) 1042 { 1043 unsigned long i, rc, new_idx; 1044 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1045 1046 if (idx < 2) { 1047 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1048 return 0; 1049 } 1050 again: 1051 new_idx = 0; 1052 if (idx > PLPAR_HCALL9_BUFSIZE) { 1053 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1054 idx = PLPAR_HCALL9_BUFSIZE; 1055 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1056 param[idx] = HBR_END; 1057 1058 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1059 param[0], /* AVA */ 1060 param[1], param[2], param[3], param[4], /* TS0-7 */ 1061 param[5], param[6], param[7], param[8]); 1062 if (rc == H_SUCCESS) 1063 return 0; 1064 1065 BUG_ON(rc != H_PARTIAL); 1066 1067 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1068 for (i = 0; i < idx-1; i++) { 1069 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1070 1071 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1072 param[++new_idx] = param[i+1]; 1073 continue; 1074 } 1075 1076 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1077 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1078 } 1079 1080 /* 1081 * If there were entries found busy, retry these entries if requested, 1082 * of if all the entries have to be retried. 1083 */ 1084 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1085 idx = new_idx + 1; 1086 goto again; 1087 } 1088 1089 return new_idx; 1090 } 1091 1092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1093 /* 1094 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1095 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1096 */ 1097 #define PPC64_HUGE_HPTE_BATCH 12 1098 1099 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1100 int count, int psize, int ssize) 1101 { 1102 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1103 unsigned long shift, current_vpgb, vpgb; 1104 int i, pix = 0; 1105 1106 shift = mmu_psize_defs[psize].shift; 1107 1108 for (i = 0; i < count; i++) { 1109 /* 1110 * Shifting 3 bits more on the right to get a 1111 * 8 pages aligned virtual addresse. 1112 */ 1113 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1114 if (!pix || vpgb != current_vpgb) { 1115 /* 1116 * Need to start a new 8 pages block, flush 1117 * the current one if needed. 1118 */ 1119 if (pix) 1120 (void)call_block_remove(pix, param, true); 1121 current_vpgb = vpgb; 1122 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1123 pix = 1; 1124 } 1125 1126 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1127 if (pix == PLPAR_HCALL9_BUFSIZE) { 1128 pix = call_block_remove(pix, param, false); 1129 /* 1130 * pix = 0 means that all the entries were 1131 * removed, we can start a new block. 1132 * Otherwise, this means that there are entries 1133 * to retry, and pix points to latest one, so 1134 * we should increment it and try to continue 1135 * the same block. 1136 */ 1137 if (pix) 1138 pix++; 1139 } 1140 } 1141 if (pix) 1142 (void)call_block_remove(pix, param, true); 1143 } 1144 1145 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1146 int count, int psize, int ssize) 1147 { 1148 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1149 int i = 0, pix = 0, rc; 1150 1151 for (i = 0; i < count; i++) { 1152 1153 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1154 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1155 ssize, 0); 1156 } else { 1157 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1158 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1159 pix += 2; 1160 if (pix == 8) { 1161 rc = plpar_hcall9(H_BULK_REMOVE, param, 1162 param[0], param[1], param[2], 1163 param[3], param[4], param[5], 1164 param[6], param[7]); 1165 BUG_ON(rc != H_SUCCESS); 1166 pix = 0; 1167 } 1168 } 1169 } 1170 if (pix) { 1171 param[pix] = HBR_END; 1172 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1173 param[2], param[3], param[4], param[5], 1174 param[6], param[7]); 1175 BUG_ON(rc != H_SUCCESS); 1176 } 1177 } 1178 1179 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1180 unsigned long *vpn, 1181 int count, int psize, 1182 int ssize) 1183 { 1184 unsigned long flags = 0; 1185 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1186 1187 if (lock_tlbie) 1188 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1189 1190 /* Assuming THP size is 16M */ 1191 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1192 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1193 else 1194 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1195 1196 if (lock_tlbie) 1197 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1198 } 1199 1200 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1201 unsigned long addr, 1202 unsigned char *hpte_slot_array, 1203 int psize, int ssize, int local) 1204 { 1205 int i, index = 0; 1206 unsigned long s_addr = addr; 1207 unsigned int max_hpte_count, valid; 1208 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1209 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1210 unsigned long shift, hidx, vpn = 0, hash, slot; 1211 1212 shift = mmu_psize_defs[psize].shift; 1213 max_hpte_count = 1U << (PMD_SHIFT - shift); 1214 1215 for (i = 0; i < max_hpte_count; i++) { 1216 valid = hpte_valid(hpte_slot_array, i); 1217 if (!valid) 1218 continue; 1219 hidx = hpte_hash_index(hpte_slot_array, i); 1220 1221 /* get the vpn */ 1222 addr = s_addr + (i * (1ul << shift)); 1223 vpn = hpt_vpn(addr, vsid, ssize); 1224 hash = hpt_hash(vpn, shift, ssize); 1225 if (hidx & _PTEIDX_SECONDARY) 1226 hash = ~hash; 1227 1228 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1229 slot += hidx & _PTEIDX_GROUP_IX; 1230 1231 slot_array[index] = slot; 1232 vpn_array[index] = vpn; 1233 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1234 /* 1235 * Now do a bluk invalidate 1236 */ 1237 __pSeries_lpar_hugepage_invalidate(slot_array, 1238 vpn_array, 1239 PPC64_HUGE_HPTE_BATCH, 1240 psize, ssize); 1241 index = 0; 1242 } else 1243 index++; 1244 } 1245 if (index) 1246 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1247 index, psize, ssize); 1248 } 1249 #else 1250 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1251 unsigned long addr, 1252 unsigned char *hpte_slot_array, 1253 int psize, int ssize, int local) 1254 { 1255 WARN(1, "%s called without THP support\n", __func__); 1256 } 1257 #endif 1258 1259 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1260 int psize, int ssize) 1261 { 1262 unsigned long vpn; 1263 unsigned long slot, vsid; 1264 1265 vsid = get_kernel_vsid(ea, ssize); 1266 vpn = hpt_vpn(ea, vsid, ssize); 1267 1268 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1269 if (slot == -1) 1270 return -ENOENT; 1271 1272 /* 1273 * lpar doesn't use the passed actual page size 1274 */ 1275 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1276 return 0; 1277 } 1278 1279 1280 static inline unsigned long compute_slot(real_pte_t pte, 1281 unsigned long vpn, 1282 unsigned long index, 1283 unsigned long shift, 1284 int ssize) 1285 { 1286 unsigned long slot, hash, hidx; 1287 1288 hash = hpt_hash(vpn, shift, ssize); 1289 hidx = __rpte_to_hidx(pte, index); 1290 if (hidx & _PTEIDX_SECONDARY) 1291 hash = ~hash; 1292 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1293 slot += hidx & _PTEIDX_GROUP_IX; 1294 return slot; 1295 } 1296 1297 /** 1298 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1299 * "all within the same naturally aligned 8 page virtual address block". 1300 */ 1301 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1302 unsigned long *param) 1303 { 1304 unsigned long vpn; 1305 unsigned long i, pix = 0; 1306 unsigned long index, shift, slot, current_vpgb, vpgb; 1307 real_pte_t pte; 1308 int psize, ssize; 1309 1310 psize = batch->psize; 1311 ssize = batch->ssize; 1312 1313 for (i = 0; i < number; i++) { 1314 vpn = batch->vpn[i]; 1315 pte = batch->pte[i]; 1316 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1317 /* 1318 * Shifting 3 bits more on the right to get a 1319 * 8 pages aligned virtual addresse. 1320 */ 1321 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1322 if (!pix || vpgb != current_vpgb) { 1323 /* 1324 * Need to start a new 8 pages block, flush 1325 * the current one if needed. 1326 */ 1327 if (pix) 1328 (void)call_block_remove(pix, param, 1329 true); 1330 current_vpgb = vpgb; 1331 param[0] = hpte_encode_avpn(vpn, psize, 1332 ssize); 1333 pix = 1; 1334 } 1335 1336 slot = compute_slot(pte, vpn, index, shift, ssize); 1337 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1338 1339 if (pix == PLPAR_HCALL9_BUFSIZE) { 1340 pix = call_block_remove(pix, param, false); 1341 /* 1342 * pix = 0 means that all the entries were 1343 * removed, we can start a new block. 1344 * Otherwise, this means that there are entries 1345 * to retry, and pix points to latest one, so 1346 * we should increment it and try to continue 1347 * the same block. 1348 */ 1349 if (pix) 1350 pix++; 1351 } 1352 } pte_iterate_hashed_end(); 1353 } 1354 1355 if (pix) 1356 (void)call_block_remove(pix, param, true); 1357 } 1358 1359 /* 1360 * TLB Block Invalidate Characteristics 1361 * 1362 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1363 * is able to process for each couple segment base page size, actual page size. 1364 * 1365 * The ibm,get-system-parameter properties is returning a buffer with the 1366 * following layout: 1367 * 1368 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1369 * ----------------- 1370 * TLB Block Invalidate Specifiers: 1371 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1372 * [ 1 byte Number of page sizes (N) that are supported for the specified 1373 * TLB invalidate block size ] 1374 * [ 1 byte Encoded segment base page size and actual page size 1375 * MSB=0 means 4k segment base page size and actual page size 1376 * MSB=1 the penc value in mmu_psize_def ] 1377 * ... 1378 * ----------------- 1379 * Next TLB Block Invalidate Specifiers... 1380 * ----------------- 1381 * [ 0 ] 1382 */ 1383 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1384 unsigned int block_size) 1385 { 1386 if (block_size > hblkrm_size[bpsize][psize]) 1387 hblkrm_size[bpsize][psize] = block_size; 1388 } 1389 1390 /* 1391 * Decode the Encoded segment base page size and actual page size. 1392 * PAPR specifies: 1393 * - bit 7 is the L bit 1394 * - bits 0-5 are the penc value 1395 * If the L bit is 0, this means 4K segment base page size and actual page size 1396 * otherwise the penc value should be read. 1397 */ 1398 #define HBLKRM_L_MASK 0x80 1399 #define HBLKRM_PENC_MASK 0x3f 1400 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1401 unsigned int block_size) 1402 { 1403 unsigned int bpsize, psize; 1404 1405 /* First, check the L bit, if not set, this means 4K */ 1406 if ((lp & HBLKRM_L_MASK) == 0) { 1407 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1408 return; 1409 } 1410 1411 lp &= HBLKRM_PENC_MASK; 1412 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1413 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1414 1415 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1416 if (def->penc[psize] == lp) { 1417 set_hblkrm_bloc_size(bpsize, psize, block_size); 1418 return; 1419 } 1420 } 1421 } 1422 } 1423 1424 #define SPLPAR_TLB_BIC_TOKEN 50 1425 1426 /* 1427 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1428 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1429 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1430 * (128 bytes) for the buffer to get plenty of space. 1431 */ 1432 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1433 1434 void __init pseries_lpar_read_hblkrm_characteristics(void) 1435 { 1436 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1437 int call_status, len, idx, bpsize; 1438 1439 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1440 return; 1441 1442 spin_lock(&rtas_data_buf_lock); 1443 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1444 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1445 NULL, 1446 SPLPAR_TLB_BIC_TOKEN, 1447 __pa(rtas_data_buf), 1448 RTAS_DATA_BUF_SIZE); 1449 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1450 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1451 spin_unlock(&rtas_data_buf_lock); 1452 1453 if (call_status != 0) { 1454 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1455 __FILE__, __func__, call_status); 1456 return; 1457 } 1458 1459 /* 1460 * The first two (2) bytes of the data in the buffer are the length of 1461 * the returned data, not counting these first two (2) bytes. 1462 */ 1463 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1464 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1465 pr_warn("%s too large returned buffer %d", __func__, len); 1466 return; 1467 } 1468 1469 idx = 2; 1470 while (idx < len) { 1471 u8 block_shift = local_buffer[idx++]; 1472 u32 block_size; 1473 unsigned int npsize; 1474 1475 if (!block_shift) 1476 break; 1477 1478 block_size = 1 << block_shift; 1479 1480 for (npsize = local_buffer[idx++]; 1481 npsize > 0 && idx < len; npsize--) 1482 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1483 block_size); 1484 } 1485 1486 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1487 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1488 if (hblkrm_size[bpsize][idx]) 1489 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1490 bpsize, idx, hblkrm_size[bpsize][idx]); 1491 } 1492 1493 /* 1494 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1495 * lock. 1496 */ 1497 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1498 { 1499 unsigned long vpn; 1500 unsigned long i, pix, rc; 1501 unsigned long flags = 0; 1502 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1503 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1504 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1505 unsigned long index, shift, slot; 1506 real_pte_t pte; 1507 int psize, ssize; 1508 1509 if (lock_tlbie) 1510 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1511 1512 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1513 do_block_remove(number, batch, param); 1514 goto out; 1515 } 1516 1517 psize = batch->psize; 1518 ssize = batch->ssize; 1519 pix = 0; 1520 for (i = 0; i < number; i++) { 1521 vpn = batch->vpn[i]; 1522 pte = batch->pte[i]; 1523 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1524 slot = compute_slot(pte, vpn, index, shift, ssize); 1525 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1526 /* 1527 * lpar doesn't use the passed actual page size 1528 */ 1529 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1530 0, ssize, local); 1531 } else { 1532 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1533 param[pix+1] = hpte_encode_avpn(vpn, psize, 1534 ssize); 1535 pix += 2; 1536 if (pix == 8) { 1537 rc = plpar_hcall9(H_BULK_REMOVE, param, 1538 param[0], param[1], param[2], 1539 param[3], param[4], param[5], 1540 param[6], param[7]); 1541 BUG_ON(rc != H_SUCCESS); 1542 pix = 0; 1543 } 1544 } 1545 } pte_iterate_hashed_end(); 1546 } 1547 if (pix) { 1548 param[pix] = HBR_END; 1549 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1550 param[2], param[3], param[4], param[5], 1551 param[6], param[7]); 1552 BUG_ON(rc != H_SUCCESS); 1553 } 1554 1555 out: 1556 if (lock_tlbie) 1557 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1558 } 1559 1560 static int __init disable_bulk_remove(char *str) 1561 { 1562 if (strcmp(str, "off") == 0 && 1563 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1564 pr_info("Disabling BULK_REMOVE firmware feature"); 1565 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1566 } 1567 return 1; 1568 } 1569 1570 __setup("bulk_remove=", disable_bulk_remove); 1571 1572 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1573 1574 struct hpt_resize_state { 1575 unsigned long shift; 1576 int commit_rc; 1577 }; 1578 1579 static int pseries_lpar_resize_hpt_commit(void *data) 1580 { 1581 struct hpt_resize_state *state = data; 1582 1583 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1584 if (state->commit_rc != H_SUCCESS) 1585 return -EIO; 1586 1587 /* Hypervisor has transitioned the HTAB, update our globals */ 1588 ppc64_pft_size = state->shift; 1589 htab_size_bytes = 1UL << ppc64_pft_size; 1590 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1591 1592 return 0; 1593 } 1594 1595 /* 1596 * Must be called in process context. The caller must hold the 1597 * cpus_lock. 1598 */ 1599 static int pseries_lpar_resize_hpt(unsigned long shift) 1600 { 1601 struct hpt_resize_state state = { 1602 .shift = shift, 1603 .commit_rc = H_FUNCTION, 1604 }; 1605 unsigned int delay, total_delay = 0; 1606 int rc; 1607 ktime_t t0, t1, t2; 1608 1609 might_sleep(); 1610 1611 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1612 return -ENODEV; 1613 1614 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1615 1616 t0 = ktime_get(); 1617 1618 rc = plpar_resize_hpt_prepare(0, shift); 1619 while (H_IS_LONG_BUSY(rc)) { 1620 delay = get_longbusy_msecs(rc); 1621 total_delay += delay; 1622 if (total_delay > HPT_RESIZE_TIMEOUT) { 1623 /* prepare with shift==0 cancels an in-progress resize */ 1624 rc = plpar_resize_hpt_prepare(0, 0); 1625 if (rc != H_SUCCESS) 1626 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1627 rc); 1628 return -ETIMEDOUT; 1629 } 1630 msleep(delay); 1631 rc = plpar_resize_hpt_prepare(0, shift); 1632 }; 1633 1634 switch (rc) { 1635 case H_SUCCESS: 1636 /* Continue on */ 1637 break; 1638 1639 case H_PARAMETER: 1640 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1641 return -EINVAL; 1642 case H_RESOURCE: 1643 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1644 return -EPERM; 1645 default: 1646 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1647 return -EIO; 1648 } 1649 1650 t1 = ktime_get(); 1651 1652 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1653 &state, NULL); 1654 1655 t2 = ktime_get(); 1656 1657 if (rc != 0) { 1658 switch (state.commit_rc) { 1659 case H_PTEG_FULL: 1660 return -ENOSPC; 1661 1662 default: 1663 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1664 state.commit_rc); 1665 return -EIO; 1666 }; 1667 } 1668 1669 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1670 shift, (long long) ktime_ms_delta(t1, t0), 1671 (long long) ktime_ms_delta(t2, t1)); 1672 1673 return 0; 1674 } 1675 1676 static int pseries_lpar_register_process_table(unsigned long base, 1677 unsigned long page_size, unsigned long table_size) 1678 { 1679 long rc; 1680 unsigned long flags = 0; 1681 1682 if (table_size) 1683 flags |= PROC_TABLE_NEW; 1684 if (radix_enabled()) { 1685 flags |= PROC_TABLE_RADIX; 1686 if (mmu_has_feature(MMU_FTR_GTSE)) 1687 flags |= PROC_TABLE_GTSE; 1688 } else 1689 flags |= PROC_TABLE_HPT_SLB; 1690 for (;;) { 1691 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 1692 page_size, table_size); 1693 if (!H_IS_LONG_BUSY(rc)) 1694 break; 1695 mdelay(get_longbusy_msecs(rc)); 1696 } 1697 if (rc != H_SUCCESS) { 1698 pr_err("Failed to register process table (rc=%ld)\n", rc); 1699 BUG(); 1700 } 1701 return rc; 1702 } 1703 1704 void __init hpte_init_pseries(void) 1705 { 1706 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1707 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1708 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1709 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1710 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1711 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1712 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1713 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1714 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1715 1716 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1717 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1718 1719 /* 1720 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1721 * to inform the hypervisor that we wish to use the HPT. 1722 */ 1723 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1724 pseries_lpar_register_process_table(0, 0, 0); 1725 } 1726 1727 void radix_init_pseries(void) 1728 { 1729 pr_info("Using radix MMU under hypervisor\n"); 1730 1731 pseries_lpar_register_process_table(__pa(process_tb), 1732 0, PRTB_SIZE_SHIFT - 12); 1733 } 1734 1735 #ifdef CONFIG_PPC_SMLPAR 1736 #define CMO_FREE_HINT_DEFAULT 1 1737 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1738 1739 static int __init cmo_free_hint(char *str) 1740 { 1741 char *parm; 1742 parm = strstrip(str); 1743 1744 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1745 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1746 cmo_free_hint_flag = 0; 1747 return 1; 1748 } 1749 1750 cmo_free_hint_flag = 1; 1751 pr_info("%s: CMO free page hinting is active.\n", __func__); 1752 1753 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1754 return 1; 1755 1756 return 0; 1757 } 1758 1759 __setup("cmo_free_hint=", cmo_free_hint); 1760 1761 static void pSeries_set_page_state(struct page *page, int order, 1762 unsigned long state) 1763 { 1764 int i, j; 1765 unsigned long cmo_page_sz, addr; 1766 1767 cmo_page_sz = cmo_get_page_size(); 1768 addr = __pa((unsigned long)page_address(page)); 1769 1770 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1771 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1772 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1773 } 1774 } 1775 1776 void arch_free_page(struct page *page, int order) 1777 { 1778 if (radix_enabled()) 1779 return; 1780 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1781 return; 1782 1783 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1784 } 1785 EXPORT_SYMBOL(arch_free_page); 1786 1787 #endif /* CONFIG_PPC_SMLPAR */ 1788 #endif /* CONFIG_PPC_BOOK3S_64 */ 1789 1790 #ifdef CONFIG_TRACEPOINTS 1791 #ifdef CONFIG_JUMP_LABEL 1792 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1793 1794 int hcall_tracepoint_regfunc(void) 1795 { 1796 static_key_slow_inc(&hcall_tracepoint_key); 1797 return 0; 1798 } 1799 1800 void hcall_tracepoint_unregfunc(void) 1801 { 1802 static_key_slow_dec(&hcall_tracepoint_key); 1803 } 1804 #else 1805 /* 1806 * We optimise our hcall path by placing hcall_tracepoint_refcount 1807 * directly in the TOC so we can check if the hcall tracepoints are 1808 * enabled via a single load. 1809 */ 1810 1811 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1812 extern long hcall_tracepoint_refcount; 1813 1814 int hcall_tracepoint_regfunc(void) 1815 { 1816 hcall_tracepoint_refcount++; 1817 return 0; 1818 } 1819 1820 void hcall_tracepoint_unregfunc(void) 1821 { 1822 hcall_tracepoint_refcount--; 1823 } 1824 #endif 1825 1826 /* 1827 * Since the tracing code might execute hcalls we need to guard against 1828 * recursion. One example of this are spinlocks calling H_YIELD on 1829 * shared processor partitions. 1830 */ 1831 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1832 1833 1834 void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1835 { 1836 unsigned long flags; 1837 unsigned int *depth; 1838 1839 /* 1840 * We cannot call tracepoints inside RCU idle regions which 1841 * means we must not trace H_CEDE. 1842 */ 1843 if (opcode == H_CEDE) 1844 return; 1845 1846 local_irq_save(flags); 1847 1848 depth = this_cpu_ptr(&hcall_trace_depth); 1849 1850 if (*depth) 1851 goto out; 1852 1853 (*depth)++; 1854 preempt_disable(); 1855 trace_hcall_entry(opcode, args); 1856 (*depth)--; 1857 1858 out: 1859 local_irq_restore(flags); 1860 } 1861 1862 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1863 { 1864 unsigned long flags; 1865 unsigned int *depth; 1866 1867 if (opcode == H_CEDE) 1868 return; 1869 1870 local_irq_save(flags); 1871 1872 depth = this_cpu_ptr(&hcall_trace_depth); 1873 1874 if (*depth) 1875 goto out; 1876 1877 (*depth)++; 1878 trace_hcall_exit(opcode, retval, retbuf); 1879 preempt_enable(); 1880 (*depth)--; 1881 1882 out: 1883 local_irq_restore(flags); 1884 } 1885 #endif 1886 1887 /** 1888 * h_get_mpp 1889 * H_GET_MPP hcall returns info in 7 parms 1890 */ 1891 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1892 { 1893 int rc; 1894 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1895 1896 rc = plpar_hcall9(H_GET_MPP, retbuf); 1897 1898 mpp_data->entitled_mem = retbuf[0]; 1899 mpp_data->mapped_mem = retbuf[1]; 1900 1901 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1902 mpp_data->pool_num = retbuf[2] & 0xffff; 1903 1904 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1905 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1906 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1907 1908 mpp_data->pool_size = retbuf[4]; 1909 mpp_data->loan_request = retbuf[5]; 1910 mpp_data->backing_mem = retbuf[6]; 1911 1912 return rc; 1913 } 1914 EXPORT_SYMBOL(h_get_mpp); 1915 1916 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1917 { 1918 int rc; 1919 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1920 1921 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1922 1923 mpp_x_data->coalesced_bytes = retbuf[0]; 1924 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1925 mpp_x_data->pool_purr_cycles = retbuf[2]; 1926 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1927 1928 return rc; 1929 } 1930 1931 static unsigned long vsid_unscramble(unsigned long vsid, int ssize) 1932 { 1933 unsigned long protovsid; 1934 unsigned long va_bits = VA_BITS; 1935 unsigned long modinv, vsid_modulus; 1936 unsigned long max_mod_inv, tmp_modinv; 1937 1938 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1939 va_bits = 65; 1940 1941 if (ssize == MMU_SEGSIZE_256M) { 1942 modinv = VSID_MULINV_256M; 1943 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1944 } else { 1945 modinv = VSID_MULINV_1T; 1946 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1947 } 1948 1949 /* 1950 * vsid outside our range. 1951 */ 1952 if (vsid >= vsid_modulus) 1953 return 0; 1954 1955 /* 1956 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1957 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1958 * protovsid = (vsid * modinv) % vsid_modulus 1959 */ 1960 1961 /* Check if (vsid * modinv) overflow (63 bits) */ 1962 max_mod_inv = 0x7fffffffffffffffull / vsid; 1963 if (modinv < max_mod_inv) 1964 return (vsid * modinv) % vsid_modulus; 1965 1966 tmp_modinv = modinv/max_mod_inv; 1967 modinv %= max_mod_inv; 1968 1969 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1970 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1971 1972 return protovsid; 1973 } 1974 1975 static int __init reserve_vrma_context_id(void) 1976 { 1977 unsigned long protovsid; 1978 1979 /* 1980 * Reserve context ids which map to reserved virtual addresses. For now 1981 * we only reserve the context id which maps to the VRMA VSID. We ignore 1982 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1983 * enable adjunct support via the "ibm,client-architecture-support" 1984 * interface. 1985 */ 1986 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1987 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1988 return 0; 1989 } 1990 machine_device_initcall(pseries, reserve_vrma_context_id); 1991 1992 #ifdef CONFIG_DEBUG_FS 1993 /* debugfs file interface for vpa data */ 1994 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1995 loff_t *pos) 1996 { 1997 int cpu = (long)filp->private_data; 1998 struct lppaca *lppaca = &lppaca_of(cpu); 1999 2000 return simple_read_from_buffer(buf, len, pos, lppaca, 2001 sizeof(struct lppaca)); 2002 } 2003 2004 static const struct file_operations vpa_fops = { 2005 .open = simple_open, 2006 .read = vpa_file_read, 2007 .llseek = default_llseek, 2008 }; 2009 2010 static int __init vpa_debugfs_init(void) 2011 { 2012 char name[16]; 2013 long i; 2014 struct dentry *vpa_dir; 2015 2016 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2017 return 0; 2018 2019 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root); 2020 2021 /* set up the per-cpu vpa file*/ 2022 for_each_possible_cpu(i) { 2023 sprintf(name, "cpu-%ld", i); 2024 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2025 } 2026 2027 return 0; 2028 } 2029 machine_arch_initcall(pseries, vpa_debugfs_init); 2030 #endif /* CONFIG_DEBUG_FS */ 2031