1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries_lpar.c 4 * Copyright (C) 2001 Todd Inglett, IBM Corporation 5 * 6 * pSeries LPAR support. 7 */ 8 9 /* Enables debugging of low-level hash table routines - careful! */ 10 #undef DEBUG 11 #define pr_fmt(fmt) "lpar: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/console.h> 16 #include <linux/export.h> 17 #include <linux/jump_label.h> 18 #include <linux/delay.h> 19 #include <linux/stop_machine.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpuhotplug.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <asm/processor.h> 25 #include <asm/mmu.h> 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/machdep.h> 29 #include <asm/mmu_context.h> 30 #include <asm/iommu.h> 31 #include <asm/tlb.h> 32 #include <asm/prom.h> 33 #include <asm/cputable.h> 34 #include <asm/udbg.h> 35 #include <asm/smp.h> 36 #include <asm/trace.h> 37 #include <asm/firmware.h> 38 #include <asm/plpar_wrappers.h> 39 #include <asm/kexec.h> 40 #include <asm/fadump.h> 41 #include <asm/asm-prototypes.h> 42 #include <asm/debugfs.h> 43 44 #include "pseries.h" 45 46 /* Flag bits for H_BULK_REMOVE */ 47 #define HBR_REQUEST 0x4000000000000000UL 48 #define HBR_RESPONSE 0x8000000000000000UL 49 #define HBR_END 0xc000000000000000UL 50 #define HBR_AVPN 0x0200000000000000UL 51 #define HBR_ANDCOND 0x0100000000000000UL 52 53 54 /* in hvCall.S */ 55 EXPORT_SYMBOL(plpar_hcall); 56 EXPORT_SYMBOL(plpar_hcall9); 57 EXPORT_SYMBOL(plpar_hcall_norets); 58 59 /* 60 * H_BLOCK_REMOVE supported block size for this page size in segment who's base 61 * page size is that page size. 62 * 63 * The first index is the segment base page size, the second one is the actual 64 * page size. 65 */ 66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; 67 68 /* 69 * Due to the involved complexity, and that the current hypervisor is only 70 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE 71 * buffer size to 8 size block. 72 */ 73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 74 75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 76 static u8 dtl_mask = DTL_LOG_PREEMPT; 77 #else 78 static u8 dtl_mask; 79 #endif 80 81 void alloc_dtl_buffers(unsigned long *time_limit) 82 { 83 int cpu; 84 struct paca_struct *pp; 85 struct dtl_entry *dtl; 86 87 for_each_possible_cpu(cpu) { 88 pp = paca_ptrs[cpu]; 89 if (pp->dispatch_log) 90 continue; 91 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); 92 if (!dtl) { 93 pr_warn("Failed to allocate dispatch trace log for cpu %d\n", 94 cpu); 95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 96 pr_warn("Stolen time statistics will be unreliable\n"); 97 #endif 98 break; 99 } 100 101 pp->dtl_ridx = 0; 102 pp->dispatch_log = dtl; 103 pp->dispatch_log_end = dtl + N_DISPATCH_LOG; 104 pp->dtl_curr = dtl; 105 106 if (time_limit && time_after(jiffies, *time_limit)) { 107 cond_resched(); 108 *time_limit = jiffies + HZ; 109 } 110 } 111 } 112 113 void register_dtl_buffer(int cpu) 114 { 115 long ret; 116 struct paca_struct *pp; 117 struct dtl_entry *dtl; 118 int hwcpu = get_hard_smp_processor_id(cpu); 119 120 pp = paca_ptrs[cpu]; 121 dtl = pp->dispatch_log; 122 if (dtl && dtl_mask) { 123 pp->dtl_ridx = 0; 124 pp->dtl_curr = dtl; 125 lppaca_of(cpu).dtl_idx = 0; 126 127 /* hypervisor reads buffer length from this field */ 128 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); 129 ret = register_dtl(hwcpu, __pa(dtl)); 130 if (ret) 131 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", 132 cpu, hwcpu, ret); 133 134 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 135 } 136 } 137 138 #ifdef CONFIG_PPC_SPLPAR 139 struct dtl_worker { 140 struct delayed_work work; 141 int cpu; 142 }; 143 144 struct vcpu_dispatch_data { 145 int last_disp_cpu; 146 147 int total_disp; 148 149 int same_cpu_disp; 150 int same_chip_disp; 151 int diff_chip_disp; 152 int far_chip_disp; 153 154 int numa_home_disp; 155 int numa_remote_disp; 156 int numa_far_disp; 157 }; 158 159 /* 160 * This represents the number of cpus in the hypervisor. Since there is no 161 * architected way to discover the number of processors in the host, we 162 * provision for dealing with NR_CPUS. This is currently 2048 by default, and 163 * is sufficient for our purposes. This will need to be tweaked if 164 * CONFIG_NR_CPUS is changed. 165 */ 166 #define NR_CPUS_H NR_CPUS 167 168 DEFINE_RWLOCK(dtl_access_lock); 169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); 170 static DEFINE_PER_CPU(u64, dtl_entry_ridx); 171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); 172 static enum cpuhp_state dtl_worker_state; 173 static DEFINE_MUTEX(dtl_enable_mutex); 174 static int vcpudispatch_stats_on __read_mostly; 175 static int vcpudispatch_stats_freq = 50; 176 static __be32 *vcpu_associativity, *pcpu_associativity; 177 178 179 static void free_dtl_buffers(unsigned long *time_limit) 180 { 181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 182 int cpu; 183 struct paca_struct *pp; 184 185 for_each_possible_cpu(cpu) { 186 pp = paca_ptrs[cpu]; 187 if (!pp->dispatch_log) 188 continue; 189 kmem_cache_free(dtl_cache, pp->dispatch_log); 190 pp->dtl_ridx = 0; 191 pp->dispatch_log = 0; 192 pp->dispatch_log_end = 0; 193 pp->dtl_curr = 0; 194 195 if (time_limit && time_after(jiffies, *time_limit)) { 196 cond_resched(); 197 *time_limit = jiffies + HZ; 198 } 199 } 200 #endif 201 } 202 203 static int init_cpu_associativity(void) 204 { 205 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, 206 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 207 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, 208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); 209 210 if (!vcpu_associativity || !pcpu_associativity) { 211 pr_err("error allocating memory for associativity information\n"); 212 return -ENOMEM; 213 } 214 215 return 0; 216 } 217 218 static void destroy_cpu_associativity(void) 219 { 220 kfree(vcpu_associativity); 221 kfree(pcpu_associativity); 222 vcpu_associativity = pcpu_associativity = 0; 223 } 224 225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) 226 { 227 __be32 *assoc; 228 int rc = 0; 229 230 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; 231 if (!assoc[0]) { 232 rc = hcall_vphn(cpu, flag, &assoc[0]); 233 if (rc) 234 return NULL; 235 } 236 237 return assoc; 238 } 239 240 static __be32 *get_pcpu_associativity(int cpu) 241 { 242 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); 243 } 244 245 static __be32 *get_vcpu_associativity(int cpu) 246 { 247 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); 248 } 249 250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) 251 { 252 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; 253 254 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) 255 return -EINVAL; 256 257 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); 258 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); 259 260 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) 261 return -EIO; 262 263 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); 264 } 265 266 static int cpu_home_node_dispatch_distance(int disp_cpu) 267 { 268 __be32 *disp_cpu_assoc, *vcpu_assoc; 269 int vcpu_id = smp_processor_id(); 270 271 if (disp_cpu >= NR_CPUS_H) { 272 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", 273 disp_cpu, NR_CPUS_H); 274 return -EINVAL; 275 } 276 277 disp_cpu_assoc = get_pcpu_associativity(disp_cpu); 278 vcpu_assoc = get_vcpu_associativity(vcpu_id); 279 280 if (!disp_cpu_assoc || !vcpu_assoc) 281 return -EIO; 282 283 return cpu_distance(disp_cpu_assoc, vcpu_assoc); 284 } 285 286 static void update_vcpu_disp_stat(int disp_cpu) 287 { 288 struct vcpu_dispatch_data *disp; 289 int distance; 290 291 disp = this_cpu_ptr(&vcpu_disp_data); 292 if (disp->last_disp_cpu == -1) { 293 disp->last_disp_cpu = disp_cpu; 294 return; 295 } 296 297 disp->total_disp++; 298 299 if (disp->last_disp_cpu == disp_cpu || 300 (cpu_first_thread_sibling(disp->last_disp_cpu) == 301 cpu_first_thread_sibling(disp_cpu))) 302 disp->same_cpu_disp++; 303 else { 304 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, 305 disp_cpu); 306 if (distance < 0) 307 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 308 smp_processor_id()); 309 else { 310 switch (distance) { 311 case 0: 312 disp->same_chip_disp++; 313 break; 314 case 1: 315 disp->diff_chip_disp++; 316 break; 317 case 2: 318 disp->far_chip_disp++; 319 break; 320 default: 321 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", 322 smp_processor_id(), 323 disp->last_disp_cpu, 324 disp_cpu, 325 distance); 326 } 327 } 328 } 329 330 distance = cpu_home_node_dispatch_distance(disp_cpu); 331 if (distance < 0) 332 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", 333 smp_processor_id()); 334 else { 335 switch (distance) { 336 case 0: 337 disp->numa_home_disp++; 338 break; 339 case 1: 340 disp->numa_remote_disp++; 341 break; 342 case 2: 343 disp->numa_far_disp++; 344 break; 345 default: 346 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", 347 smp_processor_id(), 348 disp_cpu, 349 distance); 350 } 351 } 352 353 disp->last_disp_cpu = disp_cpu; 354 } 355 356 static void process_dtl_buffer(struct work_struct *work) 357 { 358 struct dtl_entry dtle; 359 u64 i = __this_cpu_read(dtl_entry_ridx); 360 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 361 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 362 struct lppaca *vpa = local_paca->lppaca_ptr; 363 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); 364 365 if (!local_paca->dispatch_log) 366 return; 367 368 /* if we have been migrated away, we cancel ourself */ 369 if (d->cpu != smp_processor_id()) { 370 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", 371 smp_processor_id()); 372 return; 373 } 374 375 if (i == be64_to_cpu(vpa->dtl_idx)) 376 goto out; 377 378 while (i < be64_to_cpu(vpa->dtl_idx)) { 379 dtle = *dtl; 380 barrier(); 381 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 382 /* buffer has overflowed */ 383 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", 384 d->cpu, 385 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); 386 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 387 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 388 continue; 389 } 390 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); 391 ++i; 392 ++dtl; 393 if (dtl == dtl_end) 394 dtl = local_paca->dispatch_log; 395 } 396 397 __this_cpu_write(dtl_entry_ridx, i); 398 399 out: 400 schedule_delayed_work_on(d->cpu, to_delayed_work(work), 401 HZ / vcpudispatch_stats_freq); 402 } 403 404 static int dtl_worker_online(unsigned int cpu) 405 { 406 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 407 408 memset(d, 0, sizeof(*d)); 409 INIT_DELAYED_WORK(&d->work, process_dtl_buffer); 410 d->cpu = cpu; 411 412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 413 per_cpu(dtl_entry_ridx, cpu) = 0; 414 register_dtl_buffer(cpu); 415 #else 416 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); 417 #endif 418 419 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); 420 return 0; 421 } 422 423 static int dtl_worker_offline(unsigned int cpu) 424 { 425 struct dtl_worker *d = &per_cpu(dtl_workers, cpu); 426 427 cancel_delayed_work_sync(&d->work); 428 429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 430 unregister_dtl(get_hard_smp_processor_id(cpu)); 431 #endif 432 433 return 0; 434 } 435 436 static void set_global_dtl_mask(u8 mask) 437 { 438 int cpu; 439 440 dtl_mask = mask; 441 for_each_present_cpu(cpu) 442 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 443 } 444 445 static void reset_global_dtl_mask(void) 446 { 447 int cpu; 448 449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 450 dtl_mask = DTL_LOG_PREEMPT; 451 #else 452 dtl_mask = 0; 453 #endif 454 for_each_present_cpu(cpu) 455 lppaca_of(cpu).dtl_enable_mask = dtl_mask; 456 } 457 458 static int dtl_worker_enable(unsigned long *time_limit) 459 { 460 int rc = 0, state; 461 462 if (!write_trylock(&dtl_access_lock)) { 463 rc = -EBUSY; 464 goto out; 465 } 466 467 set_global_dtl_mask(DTL_LOG_ALL); 468 469 /* Setup dtl buffers and register those */ 470 alloc_dtl_buffers(time_limit); 471 472 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", 473 dtl_worker_online, dtl_worker_offline); 474 if (state < 0) { 475 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); 476 free_dtl_buffers(time_limit); 477 reset_global_dtl_mask(); 478 write_unlock(&dtl_access_lock); 479 rc = -EINVAL; 480 goto out; 481 } 482 dtl_worker_state = state; 483 484 out: 485 return rc; 486 } 487 488 static void dtl_worker_disable(unsigned long *time_limit) 489 { 490 cpuhp_remove_state(dtl_worker_state); 491 free_dtl_buffers(time_limit); 492 reset_global_dtl_mask(); 493 write_unlock(&dtl_access_lock); 494 } 495 496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, 497 size_t count, loff_t *ppos) 498 { 499 unsigned long time_limit = jiffies + HZ; 500 struct vcpu_dispatch_data *disp; 501 int rc, cmd, cpu; 502 char buf[16]; 503 504 if (count > 15) 505 return -EINVAL; 506 507 if (copy_from_user(buf, p, count)) 508 return -EFAULT; 509 510 buf[count] = 0; 511 rc = kstrtoint(buf, 0, &cmd); 512 if (rc || cmd < 0 || cmd > 1) { 513 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); 514 return rc ? rc : -EINVAL; 515 } 516 517 mutex_lock(&dtl_enable_mutex); 518 519 if ((cmd == 0 && !vcpudispatch_stats_on) || 520 (cmd == 1 && vcpudispatch_stats_on)) 521 goto out; 522 523 if (cmd) { 524 rc = init_cpu_associativity(); 525 if (rc) 526 goto out; 527 528 for_each_possible_cpu(cpu) { 529 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 530 memset(disp, 0, sizeof(*disp)); 531 disp->last_disp_cpu = -1; 532 } 533 534 rc = dtl_worker_enable(&time_limit); 535 if (rc) { 536 destroy_cpu_associativity(); 537 goto out; 538 } 539 } else { 540 dtl_worker_disable(&time_limit); 541 destroy_cpu_associativity(); 542 } 543 544 vcpudispatch_stats_on = cmd; 545 546 out: 547 mutex_unlock(&dtl_enable_mutex); 548 if (rc) 549 return rc; 550 return count; 551 } 552 553 static int vcpudispatch_stats_display(struct seq_file *p, void *v) 554 { 555 int cpu; 556 struct vcpu_dispatch_data *disp; 557 558 if (!vcpudispatch_stats_on) { 559 seq_puts(p, "off\n"); 560 return 0; 561 } 562 563 for_each_online_cpu(cpu) { 564 disp = per_cpu_ptr(&vcpu_disp_data, cpu); 565 seq_printf(p, "cpu%d", cpu); 566 seq_put_decimal_ull(p, " ", disp->total_disp); 567 seq_put_decimal_ull(p, " ", disp->same_cpu_disp); 568 seq_put_decimal_ull(p, " ", disp->same_chip_disp); 569 seq_put_decimal_ull(p, " ", disp->diff_chip_disp); 570 seq_put_decimal_ull(p, " ", disp->far_chip_disp); 571 seq_put_decimal_ull(p, " ", disp->numa_home_disp); 572 seq_put_decimal_ull(p, " ", disp->numa_remote_disp); 573 seq_put_decimal_ull(p, " ", disp->numa_far_disp); 574 seq_puts(p, "\n"); 575 } 576 577 return 0; 578 } 579 580 static int vcpudispatch_stats_open(struct inode *inode, struct file *file) 581 { 582 return single_open(file, vcpudispatch_stats_display, NULL); 583 } 584 585 static const struct proc_ops vcpudispatch_stats_proc_ops = { 586 .proc_open = vcpudispatch_stats_open, 587 .proc_read = seq_read, 588 .proc_write = vcpudispatch_stats_write, 589 .proc_lseek = seq_lseek, 590 .proc_release = single_release, 591 }; 592 593 static ssize_t vcpudispatch_stats_freq_write(struct file *file, 594 const char __user *p, size_t count, loff_t *ppos) 595 { 596 int rc, freq; 597 char buf[16]; 598 599 if (count > 15) 600 return -EINVAL; 601 602 if (copy_from_user(buf, p, count)) 603 return -EFAULT; 604 605 buf[count] = 0; 606 rc = kstrtoint(buf, 0, &freq); 607 if (rc || freq < 1 || freq > HZ) { 608 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", 609 HZ); 610 return rc ? rc : -EINVAL; 611 } 612 613 vcpudispatch_stats_freq = freq; 614 615 return count; 616 } 617 618 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) 619 { 620 seq_printf(p, "%d\n", vcpudispatch_stats_freq); 621 return 0; 622 } 623 624 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) 625 { 626 return single_open(file, vcpudispatch_stats_freq_display, NULL); 627 } 628 629 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { 630 .proc_open = vcpudispatch_stats_freq_open, 631 .proc_read = seq_read, 632 .proc_write = vcpudispatch_stats_freq_write, 633 .proc_lseek = seq_lseek, 634 .proc_release = single_release, 635 }; 636 637 static int __init vcpudispatch_stats_procfs_init(void) 638 { 639 /* 640 * Avoid smp_processor_id while preemptible. All CPUs should have 641 * the same value for lppaca_shared_proc. 642 */ 643 preempt_disable(); 644 if (!lppaca_shared_proc(get_lppaca())) { 645 preempt_enable(); 646 return 0; 647 } 648 preempt_enable(); 649 650 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, 651 &vcpudispatch_stats_proc_ops)) 652 pr_err("vcpudispatch_stats: error creating procfs file\n"); 653 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, 654 &vcpudispatch_stats_freq_proc_ops)) 655 pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); 656 657 return 0; 658 } 659 660 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); 661 #endif /* CONFIG_PPC_SPLPAR */ 662 663 void vpa_init(int cpu) 664 { 665 int hwcpu = get_hard_smp_processor_id(cpu); 666 unsigned long addr; 667 long ret; 668 669 /* 670 * The spec says it "may be problematic" if CPU x registers the VPA of 671 * CPU y. We should never do that, but wail if we ever do. 672 */ 673 WARN_ON(cpu != smp_processor_id()); 674 675 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 676 lppaca_of(cpu).vmxregs_in_use = 1; 677 678 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 679 lppaca_of(cpu).ebb_regs_in_use = 1; 680 681 addr = __pa(&lppaca_of(cpu)); 682 ret = register_vpa(hwcpu, addr); 683 684 if (ret) { 685 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " 686 "%lx failed with %ld\n", cpu, hwcpu, addr, ret); 687 return; 688 } 689 690 #ifdef CONFIG_PPC_BOOK3S_64 691 /* 692 * PAPR says this feature is SLB-Buffer but firmware never 693 * reports that. All SPLPAR support SLB shadow buffer. 694 */ 695 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { 696 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); 697 ret = register_slb_shadow(hwcpu, addr); 698 if (ret) 699 pr_err("WARNING: SLB shadow buffer registration for " 700 "cpu %d (hw %d) of area %lx failed with %ld\n", 701 cpu, hwcpu, addr, ret); 702 } 703 #endif /* CONFIG_PPC_BOOK3S_64 */ 704 705 /* 706 * Register dispatch trace log, if one has been allocated. 707 */ 708 register_dtl_buffer(cpu); 709 } 710 711 #ifdef CONFIG_PPC_BOOK3S_64 712 713 static long pSeries_lpar_hpte_insert(unsigned long hpte_group, 714 unsigned long vpn, unsigned long pa, 715 unsigned long rflags, unsigned long vflags, 716 int psize, int apsize, int ssize) 717 { 718 unsigned long lpar_rc; 719 unsigned long flags; 720 unsigned long slot; 721 unsigned long hpte_v, hpte_r; 722 723 if (!(vflags & HPTE_V_BOLTED)) 724 pr_devel("hpte_insert(group=%lx, vpn=%016lx, " 725 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", 726 hpte_group, vpn, pa, rflags, vflags, psize); 727 728 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; 729 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; 730 731 if (!(vflags & HPTE_V_BOLTED)) 732 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); 733 734 /* Now fill in the actual HPTE */ 735 /* Set CEC cookie to 0 */ 736 /* Zero page = 0 */ 737 /* I-cache Invalidate = 0 */ 738 /* I-cache synchronize = 0 */ 739 /* Exact = 0 */ 740 flags = 0; 741 742 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) 743 flags |= H_COALESCE_CAND; 744 745 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); 746 if (unlikely(lpar_rc == H_PTEG_FULL)) { 747 pr_devel("Hash table group is full\n"); 748 return -1; 749 } 750 751 /* 752 * Since we try and ioremap PHBs we don't own, the pte insert 753 * will fail. However we must catch the failure in hash_page 754 * or we will loop forever, so return -2 in this case. 755 */ 756 if (unlikely(lpar_rc != H_SUCCESS)) { 757 pr_err("Failed hash pte insert with error %ld\n", lpar_rc); 758 return -2; 759 } 760 if (!(vflags & HPTE_V_BOLTED)) 761 pr_devel(" -> slot: %lu\n", slot & 7); 762 763 /* Because of iSeries, we have to pass down the secondary 764 * bucket bit here as well 765 */ 766 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); 767 } 768 769 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); 770 771 static long pSeries_lpar_hpte_remove(unsigned long hpte_group) 772 { 773 unsigned long slot_offset; 774 unsigned long lpar_rc; 775 int i; 776 unsigned long dummy1, dummy2; 777 778 /* pick a random slot to start at */ 779 slot_offset = mftb() & 0x7; 780 781 for (i = 0; i < HPTES_PER_GROUP; i++) { 782 783 /* don't remove a bolted entry */ 784 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, 785 HPTE_V_BOLTED, &dummy1, &dummy2); 786 if (lpar_rc == H_SUCCESS) 787 return i; 788 789 /* 790 * The test for adjunct partition is performed before the 791 * ANDCOND test. H_RESOURCE may be returned, so we need to 792 * check for that as well. 793 */ 794 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); 795 796 slot_offset++; 797 slot_offset &= 0x7; 798 } 799 800 return -1; 801 } 802 803 static void manual_hpte_clear_all(void) 804 { 805 unsigned long size_bytes = 1UL << ppc64_pft_size; 806 unsigned long hpte_count = size_bytes >> 4; 807 struct { 808 unsigned long pteh; 809 unsigned long ptel; 810 } ptes[4]; 811 long lpar_rc; 812 unsigned long i, j; 813 814 /* Read in batches of 4, 815 * invalidate only valid entries not in the VRMA 816 * hpte_count will be a multiple of 4 817 */ 818 for (i = 0; i < hpte_count; i += 4) { 819 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); 820 if (lpar_rc != H_SUCCESS) { 821 pr_info("Failed to read hash page table at %ld err %ld\n", 822 i, lpar_rc); 823 continue; 824 } 825 for (j = 0; j < 4; j++){ 826 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == 827 HPTE_V_VRMA_MASK) 828 continue; 829 if (ptes[j].pteh & HPTE_V_VALID) 830 plpar_pte_remove_raw(0, i + j, 0, 831 &(ptes[j].pteh), &(ptes[j].ptel)); 832 } 833 } 834 } 835 836 static int hcall_hpte_clear_all(void) 837 { 838 int rc; 839 840 do { 841 rc = plpar_hcall_norets(H_CLEAR_HPT); 842 } while (rc == H_CONTINUE); 843 844 return rc; 845 } 846 847 static void pseries_hpte_clear_all(void) 848 { 849 int rc; 850 851 rc = hcall_hpte_clear_all(); 852 if (rc != H_SUCCESS) 853 manual_hpte_clear_all(); 854 855 #ifdef __LITTLE_ENDIAN__ 856 /* 857 * Reset exceptions to big endian. 858 * 859 * FIXME this is a hack for kexec, we need to reset the exception 860 * endian before starting the new kernel and this is a convenient place 861 * to do it. 862 * 863 * This is also called on boot when a fadump happens. In that case we 864 * must not change the exception endian mode. 865 */ 866 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) 867 pseries_big_endian_exceptions(); 868 #endif 869 } 870 871 /* 872 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and 873 * the low 3 bits of flags happen to line up. So no transform is needed. 874 * We can probably optimize here and assume the high bits of newpp are 875 * already zero. For now I am paranoid. 876 */ 877 static long pSeries_lpar_hpte_updatepp(unsigned long slot, 878 unsigned long newpp, 879 unsigned long vpn, 880 int psize, int apsize, 881 int ssize, unsigned long inv_flags) 882 { 883 unsigned long lpar_rc; 884 unsigned long flags; 885 unsigned long want_v; 886 887 want_v = hpte_encode_avpn(vpn, psize, ssize); 888 889 flags = (newpp & 7) | H_AVPN; 890 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 891 /* Move pp0 into bit 8 (IBM 55) */ 892 flags |= (newpp & HPTE_R_PP0) >> 55; 893 894 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", 895 want_v, slot, flags, psize); 896 897 lpar_rc = plpar_pte_protect(flags, slot, want_v); 898 899 if (lpar_rc == H_NOT_FOUND) { 900 pr_devel("not found !\n"); 901 return -1; 902 } 903 904 pr_devel("ok\n"); 905 906 BUG_ON(lpar_rc != H_SUCCESS); 907 908 return 0; 909 } 910 911 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) 912 { 913 long lpar_rc; 914 unsigned long i, j; 915 struct { 916 unsigned long pteh; 917 unsigned long ptel; 918 } ptes[4]; 919 920 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { 921 922 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); 923 if (lpar_rc != H_SUCCESS) { 924 pr_info("Failed to read hash page table at %ld err %ld\n", 925 hpte_group, lpar_rc); 926 continue; 927 } 928 929 for (j = 0; j < 4; j++) { 930 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && 931 (ptes[j].pteh & HPTE_V_VALID)) 932 return i + j; 933 } 934 } 935 936 return -1; 937 } 938 939 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) 940 { 941 long slot; 942 unsigned long hash; 943 unsigned long want_v; 944 unsigned long hpte_group; 945 946 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); 947 want_v = hpte_encode_avpn(vpn, psize, ssize); 948 949 /* 950 * We try to keep bolted entries always in primary hash 951 * But in some case we can find them in secondary too. 952 */ 953 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 954 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 955 if (slot < 0) { 956 /* Try in secondary */ 957 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 958 slot = __pSeries_lpar_hpte_find(want_v, hpte_group); 959 if (slot < 0) 960 return -1; 961 } 962 return hpte_group + slot; 963 } 964 965 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, 966 unsigned long ea, 967 int psize, int ssize) 968 { 969 unsigned long vpn; 970 unsigned long lpar_rc, slot, vsid, flags; 971 972 vsid = get_kernel_vsid(ea, ssize); 973 vpn = hpt_vpn(ea, vsid, ssize); 974 975 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 976 BUG_ON(slot == -1); 977 978 flags = newpp & 7; 979 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 980 /* Move pp0 into bit 8 (IBM 55) */ 981 flags |= (newpp & HPTE_R_PP0) >> 55; 982 983 lpar_rc = plpar_pte_protect(flags, slot, 0); 984 985 BUG_ON(lpar_rc != H_SUCCESS); 986 } 987 988 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, 989 int psize, int apsize, 990 int ssize, int local) 991 { 992 unsigned long want_v; 993 unsigned long lpar_rc; 994 unsigned long dummy1, dummy2; 995 996 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", 997 slot, vpn, psize, local); 998 999 want_v = hpte_encode_avpn(vpn, psize, ssize); 1000 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); 1001 if (lpar_rc == H_NOT_FOUND) 1002 return; 1003 1004 BUG_ON(lpar_rc != H_SUCCESS); 1005 } 1006 1007 1008 /* 1009 * As defined in the PAPR's section 14.5.4.1.8 1010 * The control mask doesn't include the returned reference and change bit from 1011 * the processed PTE. 1012 */ 1013 #define HBLKR_AVPN 0x0100000000000000UL 1014 #define HBLKR_CTRL_MASK 0xf800000000000000UL 1015 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL 1016 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL 1017 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL 1018 1019 /* 1020 * Returned true if we are supporting this block size for the specified segment 1021 * base page size and actual page size. 1022 * 1023 * Currently, we only support 8 size block. 1024 */ 1025 static inline bool is_supported_hlbkrm(int bpsize, int psize) 1026 { 1027 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); 1028 } 1029 1030 /** 1031 * H_BLOCK_REMOVE caller. 1032 * @idx should point to the latest @param entry set with a PTEX. 1033 * If PTE cannot be processed because another CPUs has already locked that 1034 * group, those entries are put back in @param starting at index 1. 1035 * If entries has to be retried and @retry_busy is set to true, these entries 1036 * are retried until success. If @retry_busy is set to false, the returned 1037 * is the number of entries yet to process. 1038 */ 1039 static unsigned long call_block_remove(unsigned long idx, unsigned long *param, 1040 bool retry_busy) 1041 { 1042 unsigned long i, rc, new_idx; 1043 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1044 1045 if (idx < 2) { 1046 pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); 1047 return 0; 1048 } 1049 again: 1050 new_idx = 0; 1051 if (idx > PLPAR_HCALL9_BUFSIZE) { 1052 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); 1053 idx = PLPAR_HCALL9_BUFSIZE; 1054 } else if (idx < PLPAR_HCALL9_BUFSIZE) 1055 param[idx] = HBR_END; 1056 1057 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, 1058 param[0], /* AVA */ 1059 param[1], param[2], param[3], param[4], /* TS0-7 */ 1060 param[5], param[6], param[7], param[8]); 1061 if (rc == H_SUCCESS) 1062 return 0; 1063 1064 BUG_ON(rc != H_PARTIAL); 1065 1066 /* Check that the unprocessed entries were 'not found' or 'busy' */ 1067 for (i = 0; i < idx-1; i++) { 1068 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; 1069 1070 if (ctrl == HBLKR_CTRL_ERRBUSY) { 1071 param[++new_idx] = param[i+1]; 1072 continue; 1073 } 1074 1075 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS 1076 && ctrl != HBLKR_CTRL_ERRNOTFOUND); 1077 } 1078 1079 /* 1080 * If there were entries found busy, retry these entries if requested, 1081 * of if all the entries have to be retried. 1082 */ 1083 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { 1084 idx = new_idx + 1; 1085 goto again; 1086 } 1087 1088 return new_idx; 1089 } 1090 1091 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1092 /* 1093 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need 1094 * to make sure that we avoid bouncing the hypervisor tlbie lock. 1095 */ 1096 #define PPC64_HUGE_HPTE_BATCH 12 1097 1098 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, 1099 int count, int psize, int ssize) 1100 { 1101 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1102 unsigned long shift, current_vpgb, vpgb; 1103 int i, pix = 0; 1104 1105 shift = mmu_psize_defs[psize].shift; 1106 1107 for (i = 0; i < count; i++) { 1108 /* 1109 * Shifting 3 bits more on the right to get a 1110 * 8 pages aligned virtual addresse. 1111 */ 1112 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); 1113 if (!pix || vpgb != current_vpgb) { 1114 /* 1115 * Need to start a new 8 pages block, flush 1116 * the current one if needed. 1117 */ 1118 if (pix) 1119 (void)call_block_remove(pix, param, true); 1120 current_vpgb = vpgb; 1121 param[0] = hpte_encode_avpn(vpn[i], psize, ssize); 1122 pix = 1; 1123 } 1124 1125 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; 1126 if (pix == PLPAR_HCALL9_BUFSIZE) { 1127 pix = call_block_remove(pix, param, false); 1128 /* 1129 * pix = 0 means that all the entries were 1130 * removed, we can start a new block. 1131 * Otherwise, this means that there are entries 1132 * to retry, and pix points to latest one, so 1133 * we should increment it and try to continue 1134 * the same block. 1135 */ 1136 if (pix) 1137 pix++; 1138 } 1139 } 1140 if (pix) 1141 (void)call_block_remove(pix, param, true); 1142 } 1143 1144 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, 1145 int count, int psize, int ssize) 1146 { 1147 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1148 int i = 0, pix = 0, rc; 1149 1150 for (i = 0; i < count; i++) { 1151 1152 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1153 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, 1154 ssize, 0); 1155 } else { 1156 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; 1157 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); 1158 pix += 2; 1159 if (pix == 8) { 1160 rc = plpar_hcall9(H_BULK_REMOVE, param, 1161 param[0], param[1], param[2], 1162 param[3], param[4], param[5], 1163 param[6], param[7]); 1164 BUG_ON(rc != H_SUCCESS); 1165 pix = 0; 1166 } 1167 } 1168 } 1169 if (pix) { 1170 param[pix] = HBR_END; 1171 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1172 param[2], param[3], param[4], param[5], 1173 param[6], param[7]); 1174 BUG_ON(rc != H_SUCCESS); 1175 } 1176 } 1177 1178 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, 1179 unsigned long *vpn, 1180 int count, int psize, 1181 int ssize) 1182 { 1183 unsigned long flags = 0; 1184 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1185 1186 if (lock_tlbie) 1187 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1188 1189 /* Assuming THP size is 16M */ 1190 if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) 1191 hugepage_block_invalidate(slot, vpn, count, psize, ssize); 1192 else 1193 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); 1194 1195 if (lock_tlbie) 1196 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1197 } 1198 1199 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1200 unsigned long addr, 1201 unsigned char *hpte_slot_array, 1202 int psize, int ssize, int local) 1203 { 1204 int i, index = 0; 1205 unsigned long s_addr = addr; 1206 unsigned int max_hpte_count, valid; 1207 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; 1208 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; 1209 unsigned long shift, hidx, vpn = 0, hash, slot; 1210 1211 shift = mmu_psize_defs[psize].shift; 1212 max_hpte_count = 1U << (PMD_SHIFT - shift); 1213 1214 for (i = 0; i < max_hpte_count; i++) { 1215 valid = hpte_valid(hpte_slot_array, i); 1216 if (!valid) 1217 continue; 1218 hidx = hpte_hash_index(hpte_slot_array, i); 1219 1220 /* get the vpn */ 1221 addr = s_addr + (i * (1ul << shift)); 1222 vpn = hpt_vpn(addr, vsid, ssize); 1223 hash = hpt_hash(vpn, shift, ssize); 1224 if (hidx & _PTEIDX_SECONDARY) 1225 hash = ~hash; 1226 1227 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1228 slot += hidx & _PTEIDX_GROUP_IX; 1229 1230 slot_array[index] = slot; 1231 vpn_array[index] = vpn; 1232 if (index == PPC64_HUGE_HPTE_BATCH - 1) { 1233 /* 1234 * Now do a bluk invalidate 1235 */ 1236 __pSeries_lpar_hugepage_invalidate(slot_array, 1237 vpn_array, 1238 PPC64_HUGE_HPTE_BATCH, 1239 psize, ssize); 1240 index = 0; 1241 } else 1242 index++; 1243 } 1244 if (index) 1245 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, 1246 index, psize, ssize); 1247 } 1248 #else 1249 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, 1250 unsigned long addr, 1251 unsigned char *hpte_slot_array, 1252 int psize, int ssize, int local) 1253 { 1254 WARN(1, "%s called without THP support\n", __func__); 1255 } 1256 #endif 1257 1258 static int pSeries_lpar_hpte_removebolted(unsigned long ea, 1259 int psize, int ssize) 1260 { 1261 unsigned long vpn; 1262 unsigned long slot, vsid; 1263 1264 vsid = get_kernel_vsid(ea, ssize); 1265 vpn = hpt_vpn(ea, vsid, ssize); 1266 1267 slot = pSeries_lpar_hpte_find(vpn, psize, ssize); 1268 if (slot == -1) 1269 return -ENOENT; 1270 1271 /* 1272 * lpar doesn't use the passed actual page size 1273 */ 1274 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); 1275 return 0; 1276 } 1277 1278 1279 static inline unsigned long compute_slot(real_pte_t pte, 1280 unsigned long vpn, 1281 unsigned long index, 1282 unsigned long shift, 1283 int ssize) 1284 { 1285 unsigned long slot, hash, hidx; 1286 1287 hash = hpt_hash(vpn, shift, ssize); 1288 hidx = __rpte_to_hidx(pte, index); 1289 if (hidx & _PTEIDX_SECONDARY) 1290 hash = ~hash; 1291 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1292 slot += hidx & _PTEIDX_GROUP_IX; 1293 return slot; 1294 } 1295 1296 /** 1297 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are 1298 * "all within the same naturally aligned 8 page virtual address block". 1299 */ 1300 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, 1301 unsigned long *param) 1302 { 1303 unsigned long vpn; 1304 unsigned long i, pix = 0; 1305 unsigned long index, shift, slot, current_vpgb, vpgb; 1306 real_pte_t pte; 1307 int psize, ssize; 1308 1309 psize = batch->psize; 1310 ssize = batch->ssize; 1311 1312 for (i = 0; i < number; i++) { 1313 vpn = batch->vpn[i]; 1314 pte = batch->pte[i]; 1315 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1316 /* 1317 * Shifting 3 bits more on the right to get a 1318 * 8 pages aligned virtual addresse. 1319 */ 1320 vpgb = (vpn >> (shift - VPN_SHIFT + 3)); 1321 if (!pix || vpgb != current_vpgb) { 1322 /* 1323 * Need to start a new 8 pages block, flush 1324 * the current one if needed. 1325 */ 1326 if (pix) 1327 (void)call_block_remove(pix, param, 1328 true); 1329 current_vpgb = vpgb; 1330 param[0] = hpte_encode_avpn(vpn, psize, 1331 ssize); 1332 pix = 1; 1333 } 1334 1335 slot = compute_slot(pte, vpn, index, shift, ssize); 1336 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; 1337 1338 if (pix == PLPAR_HCALL9_BUFSIZE) { 1339 pix = call_block_remove(pix, param, false); 1340 /* 1341 * pix = 0 means that all the entries were 1342 * removed, we can start a new block. 1343 * Otherwise, this means that there are entries 1344 * to retry, and pix points to latest one, so 1345 * we should increment it and try to continue 1346 * the same block. 1347 */ 1348 if (pix) 1349 pix++; 1350 } 1351 } pte_iterate_hashed_end(); 1352 } 1353 1354 if (pix) 1355 (void)call_block_remove(pix, param, true); 1356 } 1357 1358 /* 1359 * TLB Block Invalidate Characteristics 1360 * 1361 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE 1362 * is able to process for each couple segment base page size, actual page size. 1363 * 1364 * The ibm,get-system-parameter properties is returning a buffer with the 1365 * following layout: 1366 * 1367 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] 1368 * ----------------- 1369 * TLB Block Invalidate Specifiers: 1370 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] 1371 * [ 1 byte Number of page sizes (N) that are supported for the specified 1372 * TLB invalidate block size ] 1373 * [ 1 byte Encoded segment base page size and actual page size 1374 * MSB=0 means 4k segment base page size and actual page size 1375 * MSB=1 the penc value in mmu_psize_def ] 1376 * ... 1377 * ----------------- 1378 * Next TLB Block Invalidate Specifiers... 1379 * ----------------- 1380 * [ 0 ] 1381 */ 1382 static inline void set_hblkrm_bloc_size(int bpsize, int psize, 1383 unsigned int block_size) 1384 { 1385 if (block_size > hblkrm_size[bpsize][psize]) 1386 hblkrm_size[bpsize][psize] = block_size; 1387 } 1388 1389 /* 1390 * Decode the Encoded segment base page size and actual page size. 1391 * PAPR specifies: 1392 * - bit 7 is the L bit 1393 * - bits 0-5 are the penc value 1394 * If the L bit is 0, this means 4K segment base page size and actual page size 1395 * otherwise the penc value should be read. 1396 */ 1397 #define HBLKRM_L_MASK 0x80 1398 #define HBLKRM_PENC_MASK 0x3f 1399 static inline void __init check_lp_set_hblkrm(unsigned int lp, 1400 unsigned int block_size) 1401 { 1402 unsigned int bpsize, psize; 1403 1404 /* First, check the L bit, if not set, this means 4K */ 1405 if ((lp & HBLKRM_L_MASK) == 0) { 1406 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); 1407 return; 1408 } 1409 1410 lp &= HBLKRM_PENC_MASK; 1411 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { 1412 struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; 1413 1414 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1415 if (def->penc[psize] == lp) { 1416 set_hblkrm_bloc_size(bpsize, psize, block_size); 1417 return; 1418 } 1419 } 1420 } 1421 } 1422 1423 #define SPLPAR_TLB_BIC_TOKEN 50 1424 1425 /* 1426 * The size of the TLB Block Invalidate Characteristics is variable. But at the 1427 * maximum it will be the number of possible page sizes *2 + 10 bytes. 1428 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size 1429 * (128 bytes) for the buffer to get plenty of space. 1430 */ 1431 #define SPLPAR_TLB_BIC_MAXLENGTH 128 1432 1433 void __init pseries_lpar_read_hblkrm_characteristics(void) 1434 { 1435 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; 1436 int call_status, len, idx, bpsize; 1437 1438 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) 1439 return; 1440 1441 spin_lock(&rtas_data_buf_lock); 1442 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); 1443 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 1444 NULL, 1445 SPLPAR_TLB_BIC_TOKEN, 1446 __pa(rtas_data_buf), 1447 RTAS_DATA_BUF_SIZE); 1448 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); 1449 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; 1450 spin_unlock(&rtas_data_buf_lock); 1451 1452 if (call_status != 0) { 1453 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", 1454 __FILE__, __func__, call_status); 1455 return; 1456 } 1457 1458 /* 1459 * The first two (2) bytes of the data in the buffer are the length of 1460 * the returned data, not counting these first two (2) bytes. 1461 */ 1462 len = be16_to_cpu(*((u16 *)local_buffer)) + 2; 1463 if (len > SPLPAR_TLB_BIC_MAXLENGTH) { 1464 pr_warn("%s too large returned buffer %d", __func__, len); 1465 return; 1466 } 1467 1468 idx = 2; 1469 while (idx < len) { 1470 u8 block_shift = local_buffer[idx++]; 1471 u32 block_size; 1472 unsigned int npsize; 1473 1474 if (!block_shift) 1475 break; 1476 1477 block_size = 1 << block_shift; 1478 1479 for (npsize = local_buffer[idx++]; 1480 npsize > 0 && idx < len; npsize--) 1481 check_lp_set_hblkrm((unsigned int) local_buffer[idx++], 1482 block_size); 1483 } 1484 1485 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 1486 for (idx = 0; idx < MMU_PAGE_COUNT; idx++) 1487 if (hblkrm_size[bpsize][idx]) 1488 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", 1489 bpsize, idx, hblkrm_size[bpsize][idx]); 1490 } 1491 1492 /* 1493 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie 1494 * lock. 1495 */ 1496 static void pSeries_lpar_flush_hash_range(unsigned long number, int local) 1497 { 1498 unsigned long vpn; 1499 unsigned long i, pix, rc; 1500 unsigned long flags = 0; 1501 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); 1502 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); 1503 unsigned long param[PLPAR_HCALL9_BUFSIZE]; 1504 unsigned long index, shift, slot; 1505 real_pte_t pte; 1506 int psize, ssize; 1507 1508 if (lock_tlbie) 1509 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); 1510 1511 if (is_supported_hlbkrm(batch->psize, batch->psize)) { 1512 do_block_remove(number, batch, param); 1513 goto out; 1514 } 1515 1516 psize = batch->psize; 1517 ssize = batch->ssize; 1518 pix = 0; 1519 for (i = 0; i < number; i++) { 1520 vpn = batch->vpn[i]; 1521 pte = batch->pte[i]; 1522 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1523 slot = compute_slot(pte, vpn, index, shift, ssize); 1524 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1525 /* 1526 * lpar doesn't use the passed actual page size 1527 */ 1528 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 1529 0, ssize, local); 1530 } else { 1531 param[pix] = HBR_REQUEST | HBR_AVPN | slot; 1532 param[pix+1] = hpte_encode_avpn(vpn, psize, 1533 ssize); 1534 pix += 2; 1535 if (pix == 8) { 1536 rc = plpar_hcall9(H_BULK_REMOVE, param, 1537 param[0], param[1], param[2], 1538 param[3], param[4], param[5], 1539 param[6], param[7]); 1540 BUG_ON(rc != H_SUCCESS); 1541 pix = 0; 1542 } 1543 } 1544 } pte_iterate_hashed_end(); 1545 } 1546 if (pix) { 1547 param[pix] = HBR_END; 1548 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], 1549 param[2], param[3], param[4], param[5], 1550 param[6], param[7]); 1551 BUG_ON(rc != H_SUCCESS); 1552 } 1553 1554 out: 1555 if (lock_tlbie) 1556 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); 1557 } 1558 1559 static int __init disable_bulk_remove(char *str) 1560 { 1561 if (strcmp(str, "off") == 0 && 1562 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { 1563 pr_info("Disabling BULK_REMOVE firmware feature"); 1564 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; 1565 } 1566 return 1; 1567 } 1568 1569 __setup("bulk_remove=", disable_bulk_remove); 1570 1571 #define HPT_RESIZE_TIMEOUT 10000 /* ms */ 1572 1573 struct hpt_resize_state { 1574 unsigned long shift; 1575 int commit_rc; 1576 }; 1577 1578 static int pseries_lpar_resize_hpt_commit(void *data) 1579 { 1580 struct hpt_resize_state *state = data; 1581 1582 state->commit_rc = plpar_resize_hpt_commit(0, state->shift); 1583 if (state->commit_rc != H_SUCCESS) 1584 return -EIO; 1585 1586 /* Hypervisor has transitioned the HTAB, update our globals */ 1587 ppc64_pft_size = state->shift; 1588 htab_size_bytes = 1UL << ppc64_pft_size; 1589 htab_hash_mask = (htab_size_bytes >> 7) - 1; 1590 1591 return 0; 1592 } 1593 1594 /* 1595 * Must be called in process context. The caller must hold the 1596 * cpus_lock. 1597 */ 1598 static int pseries_lpar_resize_hpt(unsigned long shift) 1599 { 1600 struct hpt_resize_state state = { 1601 .shift = shift, 1602 .commit_rc = H_FUNCTION, 1603 }; 1604 unsigned int delay, total_delay = 0; 1605 int rc; 1606 ktime_t t0, t1, t2; 1607 1608 might_sleep(); 1609 1610 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1611 return -ENODEV; 1612 1613 pr_info("Attempting to resize HPT to shift %lu\n", shift); 1614 1615 t0 = ktime_get(); 1616 1617 rc = plpar_resize_hpt_prepare(0, shift); 1618 while (H_IS_LONG_BUSY(rc)) { 1619 delay = get_longbusy_msecs(rc); 1620 total_delay += delay; 1621 if (total_delay > HPT_RESIZE_TIMEOUT) { 1622 /* prepare with shift==0 cancels an in-progress resize */ 1623 rc = plpar_resize_hpt_prepare(0, 0); 1624 if (rc != H_SUCCESS) 1625 pr_warn("Unexpected error %d cancelling timed out HPT resize\n", 1626 rc); 1627 return -ETIMEDOUT; 1628 } 1629 msleep(delay); 1630 rc = plpar_resize_hpt_prepare(0, shift); 1631 }; 1632 1633 switch (rc) { 1634 case H_SUCCESS: 1635 /* Continue on */ 1636 break; 1637 1638 case H_PARAMETER: 1639 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); 1640 return -EINVAL; 1641 case H_RESOURCE: 1642 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); 1643 return -EPERM; 1644 default: 1645 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); 1646 return -EIO; 1647 } 1648 1649 t1 = ktime_get(); 1650 1651 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, 1652 &state, NULL); 1653 1654 t2 = ktime_get(); 1655 1656 if (rc != 0) { 1657 switch (state.commit_rc) { 1658 case H_PTEG_FULL: 1659 return -ENOSPC; 1660 1661 default: 1662 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", 1663 state.commit_rc); 1664 return -EIO; 1665 }; 1666 } 1667 1668 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", 1669 shift, (long long) ktime_ms_delta(t1, t0), 1670 (long long) ktime_ms_delta(t2, t1)); 1671 1672 return 0; 1673 } 1674 1675 static int pseries_lpar_register_process_table(unsigned long base, 1676 unsigned long page_size, unsigned long table_size) 1677 { 1678 long rc; 1679 unsigned long flags = 0; 1680 1681 if (table_size) 1682 flags |= PROC_TABLE_NEW; 1683 if (radix_enabled()) 1684 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE; 1685 else 1686 flags |= PROC_TABLE_HPT_SLB; 1687 for (;;) { 1688 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, 1689 page_size, table_size); 1690 if (!H_IS_LONG_BUSY(rc)) 1691 break; 1692 mdelay(get_longbusy_msecs(rc)); 1693 } 1694 if (rc != H_SUCCESS) { 1695 pr_err("Failed to register process table (rc=%ld)\n", rc); 1696 BUG(); 1697 } 1698 return rc; 1699 } 1700 1701 void __init hpte_init_pseries(void) 1702 { 1703 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; 1704 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; 1705 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; 1706 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; 1707 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; 1708 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; 1709 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; 1710 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; 1711 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; 1712 1713 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) 1714 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; 1715 1716 /* 1717 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall 1718 * to inform the hypervisor that we wish to use the HPT. 1719 */ 1720 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1721 pseries_lpar_register_process_table(0, 0, 0); 1722 } 1723 1724 void radix_init_pseries(void) 1725 { 1726 pr_info("Using radix MMU under hypervisor\n"); 1727 1728 pseries_lpar_register_process_table(__pa(process_tb), 1729 0, PRTB_SIZE_SHIFT - 12); 1730 } 1731 1732 #ifdef CONFIG_PPC_SMLPAR 1733 #define CMO_FREE_HINT_DEFAULT 1 1734 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; 1735 1736 static int __init cmo_free_hint(char *str) 1737 { 1738 char *parm; 1739 parm = strstrip(str); 1740 1741 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { 1742 pr_info("%s: CMO free page hinting is not active.\n", __func__); 1743 cmo_free_hint_flag = 0; 1744 return 1; 1745 } 1746 1747 cmo_free_hint_flag = 1; 1748 pr_info("%s: CMO free page hinting is active.\n", __func__); 1749 1750 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) 1751 return 1; 1752 1753 return 0; 1754 } 1755 1756 __setup("cmo_free_hint=", cmo_free_hint); 1757 1758 static void pSeries_set_page_state(struct page *page, int order, 1759 unsigned long state) 1760 { 1761 int i, j; 1762 unsigned long cmo_page_sz, addr; 1763 1764 cmo_page_sz = cmo_get_page_size(); 1765 addr = __pa((unsigned long)page_address(page)); 1766 1767 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { 1768 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) 1769 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); 1770 } 1771 } 1772 1773 void arch_free_page(struct page *page, int order) 1774 { 1775 if (radix_enabled()) 1776 return; 1777 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) 1778 return; 1779 1780 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); 1781 } 1782 EXPORT_SYMBOL(arch_free_page); 1783 1784 #endif /* CONFIG_PPC_SMLPAR */ 1785 #endif /* CONFIG_PPC_BOOK3S_64 */ 1786 1787 #ifdef CONFIG_TRACEPOINTS 1788 #ifdef CONFIG_JUMP_LABEL 1789 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; 1790 1791 int hcall_tracepoint_regfunc(void) 1792 { 1793 static_key_slow_inc(&hcall_tracepoint_key); 1794 return 0; 1795 } 1796 1797 void hcall_tracepoint_unregfunc(void) 1798 { 1799 static_key_slow_dec(&hcall_tracepoint_key); 1800 } 1801 #else 1802 /* 1803 * We optimise our hcall path by placing hcall_tracepoint_refcount 1804 * directly in the TOC so we can check if the hcall tracepoints are 1805 * enabled via a single load. 1806 */ 1807 1808 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ 1809 extern long hcall_tracepoint_refcount; 1810 1811 int hcall_tracepoint_regfunc(void) 1812 { 1813 hcall_tracepoint_refcount++; 1814 return 0; 1815 } 1816 1817 void hcall_tracepoint_unregfunc(void) 1818 { 1819 hcall_tracepoint_refcount--; 1820 } 1821 #endif 1822 1823 /* 1824 * Since the tracing code might execute hcalls we need to guard against 1825 * recursion. One example of this are spinlocks calling H_YIELD on 1826 * shared processor partitions. 1827 */ 1828 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); 1829 1830 1831 void __trace_hcall_entry(unsigned long opcode, unsigned long *args) 1832 { 1833 unsigned long flags; 1834 unsigned int *depth; 1835 1836 /* 1837 * We cannot call tracepoints inside RCU idle regions which 1838 * means we must not trace H_CEDE. 1839 */ 1840 if (opcode == H_CEDE) 1841 return; 1842 1843 local_irq_save(flags); 1844 1845 depth = this_cpu_ptr(&hcall_trace_depth); 1846 1847 if (*depth) 1848 goto out; 1849 1850 (*depth)++; 1851 preempt_disable(); 1852 trace_hcall_entry(opcode, args); 1853 (*depth)--; 1854 1855 out: 1856 local_irq_restore(flags); 1857 } 1858 1859 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) 1860 { 1861 unsigned long flags; 1862 unsigned int *depth; 1863 1864 if (opcode == H_CEDE) 1865 return; 1866 1867 local_irq_save(flags); 1868 1869 depth = this_cpu_ptr(&hcall_trace_depth); 1870 1871 if (*depth) 1872 goto out; 1873 1874 (*depth)++; 1875 trace_hcall_exit(opcode, retval, retbuf); 1876 preempt_enable(); 1877 (*depth)--; 1878 1879 out: 1880 local_irq_restore(flags); 1881 } 1882 #endif 1883 1884 /** 1885 * h_get_mpp 1886 * H_GET_MPP hcall returns info in 7 parms 1887 */ 1888 int h_get_mpp(struct hvcall_mpp_data *mpp_data) 1889 { 1890 int rc; 1891 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; 1892 1893 rc = plpar_hcall9(H_GET_MPP, retbuf); 1894 1895 mpp_data->entitled_mem = retbuf[0]; 1896 mpp_data->mapped_mem = retbuf[1]; 1897 1898 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; 1899 mpp_data->pool_num = retbuf[2] & 0xffff; 1900 1901 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; 1902 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; 1903 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; 1904 1905 mpp_data->pool_size = retbuf[4]; 1906 mpp_data->loan_request = retbuf[5]; 1907 mpp_data->backing_mem = retbuf[6]; 1908 1909 return rc; 1910 } 1911 EXPORT_SYMBOL(h_get_mpp); 1912 1913 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) 1914 { 1915 int rc; 1916 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; 1917 1918 rc = plpar_hcall9(H_GET_MPP_X, retbuf); 1919 1920 mpp_x_data->coalesced_bytes = retbuf[0]; 1921 mpp_x_data->pool_coalesced_bytes = retbuf[1]; 1922 mpp_x_data->pool_purr_cycles = retbuf[2]; 1923 mpp_x_data->pool_spurr_cycles = retbuf[3]; 1924 1925 return rc; 1926 } 1927 1928 static unsigned long vsid_unscramble(unsigned long vsid, int ssize) 1929 { 1930 unsigned long protovsid; 1931 unsigned long va_bits = VA_BITS; 1932 unsigned long modinv, vsid_modulus; 1933 unsigned long max_mod_inv, tmp_modinv; 1934 1935 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 1936 va_bits = 65; 1937 1938 if (ssize == MMU_SEGSIZE_256M) { 1939 modinv = VSID_MULINV_256M; 1940 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); 1941 } else { 1942 modinv = VSID_MULINV_1T; 1943 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); 1944 } 1945 1946 /* 1947 * vsid outside our range. 1948 */ 1949 if (vsid >= vsid_modulus) 1950 return 0; 1951 1952 /* 1953 * If modinv is the modular multiplicate inverse of (x % vsid_modulus) 1954 * and vsid = (protovsid * x) % vsid_modulus, then we say: 1955 * protovsid = (vsid * modinv) % vsid_modulus 1956 */ 1957 1958 /* Check if (vsid * modinv) overflow (63 bits) */ 1959 max_mod_inv = 0x7fffffffffffffffull / vsid; 1960 if (modinv < max_mod_inv) 1961 return (vsid * modinv) % vsid_modulus; 1962 1963 tmp_modinv = modinv/max_mod_inv; 1964 modinv %= max_mod_inv; 1965 1966 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; 1967 protovsid = (protovsid + vsid * modinv) % vsid_modulus; 1968 1969 return protovsid; 1970 } 1971 1972 static int __init reserve_vrma_context_id(void) 1973 { 1974 unsigned long protovsid; 1975 1976 /* 1977 * Reserve context ids which map to reserved virtual addresses. For now 1978 * we only reserve the context id which maps to the VRMA VSID. We ignore 1979 * the addresses in "ibm,adjunct-virtual-addresses" because we don't 1980 * enable adjunct support via the "ibm,client-architecture-support" 1981 * interface. 1982 */ 1983 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); 1984 hash__reserve_context_id(protovsid >> ESID_BITS_1T); 1985 return 0; 1986 } 1987 machine_device_initcall(pseries, reserve_vrma_context_id); 1988 1989 #ifdef CONFIG_DEBUG_FS 1990 /* debugfs file interface for vpa data */ 1991 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, 1992 loff_t *pos) 1993 { 1994 int cpu = (long)filp->private_data; 1995 struct lppaca *lppaca = &lppaca_of(cpu); 1996 1997 return simple_read_from_buffer(buf, len, pos, lppaca, 1998 sizeof(struct lppaca)); 1999 } 2000 2001 static const struct file_operations vpa_fops = { 2002 .open = simple_open, 2003 .read = vpa_file_read, 2004 .llseek = default_llseek, 2005 }; 2006 2007 static int __init vpa_debugfs_init(void) 2008 { 2009 char name[16]; 2010 long i; 2011 struct dentry *vpa_dir; 2012 2013 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 2014 return 0; 2015 2016 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root); 2017 2018 /* set up the per-cpu vpa file*/ 2019 for_each_possible_cpu(i) { 2020 sprintf(name, "cpu-%ld", i); 2021 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); 2022 } 2023 2024 return 0; 2025 } 2026 machine_arch_initcall(pseries, vpa_debugfs_init); 2027 #endif /* CONFIG_DEBUG_FS */ 2028