1 /* 2 * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation 3 * 4 * Rewrite, cleanup: 5 * 6 * Copyright (C) 2004 Olof Johansson <olof@lixom.net>, IBM Corporation 7 * Copyright (C) 2006 Olof Johansson <olof@lixom.net> 8 * 9 * Dynamic DMA mapping support, pSeries-specific parts, both SMP and LPAR. 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 */ 26 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/memblock.h> 32 #include <linux/spinlock.h> 33 #include <linux/string.h> 34 #include <linux/pci.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/crash_dump.h> 37 #include <linux/memory.h> 38 #include <linux/of.h> 39 #include <linux/iommu.h> 40 #include <linux/rculist.h> 41 #include <asm/io.h> 42 #include <asm/prom.h> 43 #include <asm/rtas.h> 44 #include <asm/iommu.h> 45 #include <asm/pci-bridge.h> 46 #include <asm/machdep.h> 47 #include <asm/firmware.h> 48 #include <asm/tce.h> 49 #include <asm/ppc-pci.h> 50 #include <asm/udbg.h> 51 #include <asm/mmzone.h> 52 #include <asm/plpar_wrappers.h> 53 54 #include "pseries.h" 55 56 static struct iommu_table_group *iommu_pseries_alloc_group(int node) 57 { 58 struct iommu_table_group *table_group; 59 struct iommu_table *tbl; 60 61 table_group = kzalloc_node(sizeof(struct iommu_table_group), GFP_KERNEL, 62 node); 63 if (!table_group) 64 return NULL; 65 66 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, node); 67 if (!tbl) 68 goto free_group; 69 70 INIT_LIST_HEAD_RCU(&tbl->it_group_list); 71 kref_init(&tbl->it_kref); 72 73 table_group->tables[0] = tbl; 74 75 return table_group; 76 77 free_group: 78 kfree(table_group); 79 return NULL; 80 } 81 82 static void iommu_pseries_free_group(struct iommu_table_group *table_group, 83 const char *node_name) 84 { 85 struct iommu_table *tbl; 86 87 if (!table_group) 88 return; 89 90 tbl = table_group->tables[0]; 91 #ifdef CONFIG_IOMMU_API 92 if (table_group->group) { 93 iommu_group_put(table_group->group); 94 BUG_ON(table_group->group); 95 } 96 #endif 97 iommu_tce_table_put(tbl); 98 99 kfree(table_group); 100 } 101 102 static int tce_build_pSeries(struct iommu_table *tbl, long index, 103 long npages, unsigned long uaddr, 104 enum dma_data_direction direction, 105 unsigned long attrs) 106 { 107 u64 proto_tce; 108 __be64 *tcep; 109 u64 rpn; 110 111 proto_tce = TCE_PCI_READ; // Read allowed 112 113 if (direction != DMA_TO_DEVICE) 114 proto_tce |= TCE_PCI_WRITE; 115 116 tcep = ((__be64 *)tbl->it_base) + index; 117 118 while (npages--) { 119 /* can't move this out since we might cross MEMBLOCK boundary */ 120 rpn = __pa(uaddr) >> TCE_SHIFT; 121 *tcep = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT); 122 123 uaddr += TCE_PAGE_SIZE; 124 tcep++; 125 } 126 return 0; 127 } 128 129 130 static void tce_free_pSeries(struct iommu_table *tbl, long index, long npages) 131 { 132 __be64 *tcep; 133 134 tcep = ((__be64 *)tbl->it_base) + index; 135 136 while (npages--) 137 *(tcep++) = 0; 138 } 139 140 static unsigned long tce_get_pseries(struct iommu_table *tbl, long index) 141 { 142 __be64 *tcep; 143 144 tcep = ((__be64 *)tbl->it_base) + index; 145 146 return be64_to_cpu(*tcep); 147 } 148 149 static void tce_free_pSeriesLP(struct iommu_table*, long, long); 150 static void tce_freemulti_pSeriesLP(struct iommu_table*, long, long); 151 152 static int tce_build_pSeriesLP(struct iommu_table *tbl, long tcenum, 153 long npages, unsigned long uaddr, 154 enum dma_data_direction direction, 155 unsigned long attrs) 156 { 157 u64 rc = 0; 158 u64 proto_tce, tce; 159 u64 rpn; 160 int ret = 0; 161 long tcenum_start = tcenum, npages_start = npages; 162 163 rpn = __pa(uaddr) >> TCE_SHIFT; 164 proto_tce = TCE_PCI_READ; 165 if (direction != DMA_TO_DEVICE) 166 proto_tce |= TCE_PCI_WRITE; 167 168 while (npages--) { 169 tce = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT; 170 rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, tce); 171 172 if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { 173 ret = (int)rc; 174 tce_free_pSeriesLP(tbl, tcenum_start, 175 (npages_start - (npages + 1))); 176 break; 177 } 178 179 if (rc && printk_ratelimit()) { 180 printk("tce_build_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); 181 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 182 printk("\ttcenum = 0x%llx\n", (u64)tcenum); 183 printk("\ttce val = 0x%llx\n", tce ); 184 dump_stack(); 185 } 186 187 tcenum++; 188 rpn++; 189 } 190 return ret; 191 } 192 193 static DEFINE_PER_CPU(__be64 *, tce_page); 194 195 static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, 196 long npages, unsigned long uaddr, 197 enum dma_data_direction direction, 198 unsigned long attrs) 199 { 200 u64 rc = 0; 201 u64 proto_tce; 202 __be64 *tcep; 203 u64 rpn; 204 long l, limit; 205 long tcenum_start = tcenum, npages_start = npages; 206 int ret = 0; 207 unsigned long flags; 208 209 if ((npages == 1) || !firmware_has_feature(FW_FEATURE_MULTITCE)) { 210 return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, 211 direction, attrs); 212 } 213 214 local_irq_save(flags); /* to protect tcep and the page behind it */ 215 216 tcep = __this_cpu_read(tce_page); 217 218 /* This is safe to do since interrupts are off when we're called 219 * from iommu_alloc{,_sg}() 220 */ 221 if (!tcep) { 222 tcep = (__be64 *)__get_free_page(GFP_ATOMIC); 223 /* If allocation fails, fall back to the loop implementation */ 224 if (!tcep) { 225 local_irq_restore(flags); 226 return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, 227 direction, attrs); 228 } 229 __this_cpu_write(tce_page, tcep); 230 } 231 232 rpn = __pa(uaddr) >> TCE_SHIFT; 233 proto_tce = TCE_PCI_READ; 234 if (direction != DMA_TO_DEVICE) 235 proto_tce |= TCE_PCI_WRITE; 236 237 /* We can map max one pageful of TCEs at a time */ 238 do { 239 /* 240 * Set up the page with TCE data, looping through and setting 241 * the values. 242 */ 243 limit = min_t(long, npages, 4096/TCE_ENTRY_SIZE); 244 245 for (l = 0; l < limit; l++) { 246 tcep[l] = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT); 247 rpn++; 248 } 249 250 rc = plpar_tce_put_indirect((u64)tbl->it_index, 251 (u64)tcenum << 12, 252 (u64)__pa(tcep), 253 limit); 254 255 npages -= limit; 256 tcenum += limit; 257 } while (npages > 0 && !rc); 258 259 local_irq_restore(flags); 260 261 if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { 262 ret = (int)rc; 263 tce_freemulti_pSeriesLP(tbl, tcenum_start, 264 (npages_start - (npages + limit))); 265 return ret; 266 } 267 268 if (rc && printk_ratelimit()) { 269 printk("tce_buildmulti_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); 270 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 271 printk("\tnpages = 0x%llx\n", (u64)npages); 272 printk("\ttce[0] val = 0x%llx\n", tcep[0]); 273 dump_stack(); 274 } 275 return ret; 276 } 277 278 static void tce_free_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) 279 { 280 u64 rc; 281 282 while (npages--) { 283 rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, 0); 284 285 if (rc && printk_ratelimit()) { 286 printk("tce_free_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); 287 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 288 printk("\ttcenum = 0x%llx\n", (u64)tcenum); 289 dump_stack(); 290 } 291 292 tcenum++; 293 } 294 } 295 296 297 static void tce_freemulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) 298 { 299 u64 rc; 300 301 if (!firmware_has_feature(FW_FEATURE_MULTITCE)) 302 return tce_free_pSeriesLP(tbl, tcenum, npages); 303 304 rc = plpar_tce_stuff((u64)tbl->it_index, (u64)tcenum << 12, 0, npages); 305 306 if (rc && printk_ratelimit()) { 307 printk("tce_freemulti_pSeriesLP: plpar_tce_stuff failed\n"); 308 printk("\trc = %lld\n", rc); 309 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 310 printk("\tnpages = 0x%llx\n", (u64)npages); 311 dump_stack(); 312 } 313 } 314 315 static unsigned long tce_get_pSeriesLP(struct iommu_table *tbl, long tcenum) 316 { 317 u64 rc; 318 unsigned long tce_ret; 319 320 rc = plpar_tce_get((u64)tbl->it_index, (u64)tcenum << 12, &tce_ret); 321 322 if (rc && printk_ratelimit()) { 323 printk("tce_get_pSeriesLP: plpar_tce_get failed. rc=%lld\n", rc); 324 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 325 printk("\ttcenum = 0x%llx\n", (u64)tcenum); 326 dump_stack(); 327 } 328 329 return tce_ret; 330 } 331 332 /* this is compatible with cells for the device tree property */ 333 struct dynamic_dma_window_prop { 334 __be32 liobn; /* tce table number */ 335 __be64 dma_base; /* address hi,lo */ 336 __be32 tce_shift; /* ilog2(tce_page_size) */ 337 __be32 window_shift; /* ilog2(tce_window_size) */ 338 }; 339 340 struct direct_window { 341 struct device_node *device; 342 const struct dynamic_dma_window_prop *prop; 343 struct list_head list; 344 }; 345 346 /* Dynamic DMA Window support */ 347 struct ddw_query_response { 348 u32 windows_available; 349 u32 largest_available_block; 350 u32 page_size; 351 u32 migration_capable; 352 }; 353 354 struct ddw_create_response { 355 u32 liobn; 356 u32 addr_hi; 357 u32 addr_lo; 358 }; 359 360 static LIST_HEAD(direct_window_list); 361 /* prevents races between memory on/offline and window creation */ 362 static DEFINE_SPINLOCK(direct_window_list_lock); 363 /* protects initializing window twice for same device */ 364 static DEFINE_MUTEX(direct_window_init_mutex); 365 #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info" 366 367 static int tce_clearrange_multi_pSeriesLP(unsigned long start_pfn, 368 unsigned long num_pfn, const void *arg) 369 { 370 const struct dynamic_dma_window_prop *maprange = arg; 371 int rc; 372 u64 tce_size, num_tce, dma_offset, next; 373 u32 tce_shift; 374 long limit; 375 376 tce_shift = be32_to_cpu(maprange->tce_shift); 377 tce_size = 1ULL << tce_shift; 378 next = start_pfn << PAGE_SHIFT; 379 num_tce = num_pfn << PAGE_SHIFT; 380 381 /* round back to the beginning of the tce page size */ 382 num_tce += next & (tce_size - 1); 383 next &= ~(tce_size - 1); 384 385 /* covert to number of tces */ 386 num_tce |= tce_size - 1; 387 num_tce >>= tce_shift; 388 389 do { 390 /* 391 * Set up the page with TCE data, looping through and setting 392 * the values. 393 */ 394 limit = min_t(long, num_tce, 512); 395 dma_offset = next + be64_to_cpu(maprange->dma_base); 396 397 rc = plpar_tce_stuff((u64)be32_to_cpu(maprange->liobn), 398 dma_offset, 399 0, limit); 400 next += limit * tce_size; 401 num_tce -= limit; 402 } while (num_tce > 0 && !rc); 403 404 return rc; 405 } 406 407 static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn, 408 unsigned long num_pfn, const void *arg) 409 { 410 const struct dynamic_dma_window_prop *maprange = arg; 411 u64 tce_size, num_tce, dma_offset, next, proto_tce, liobn; 412 __be64 *tcep; 413 u32 tce_shift; 414 u64 rc = 0; 415 long l, limit; 416 417 local_irq_disable(); /* to protect tcep and the page behind it */ 418 tcep = __this_cpu_read(tce_page); 419 420 if (!tcep) { 421 tcep = (__be64 *)__get_free_page(GFP_ATOMIC); 422 if (!tcep) { 423 local_irq_enable(); 424 return -ENOMEM; 425 } 426 __this_cpu_write(tce_page, tcep); 427 } 428 429 proto_tce = TCE_PCI_READ | TCE_PCI_WRITE; 430 431 liobn = (u64)be32_to_cpu(maprange->liobn); 432 tce_shift = be32_to_cpu(maprange->tce_shift); 433 tce_size = 1ULL << tce_shift; 434 next = start_pfn << PAGE_SHIFT; 435 num_tce = num_pfn << PAGE_SHIFT; 436 437 /* round back to the beginning of the tce page size */ 438 num_tce += next & (tce_size - 1); 439 next &= ~(tce_size - 1); 440 441 /* covert to number of tces */ 442 num_tce |= tce_size - 1; 443 num_tce >>= tce_shift; 444 445 /* We can map max one pageful of TCEs at a time */ 446 do { 447 /* 448 * Set up the page with TCE data, looping through and setting 449 * the values. 450 */ 451 limit = min_t(long, num_tce, 4096/TCE_ENTRY_SIZE); 452 dma_offset = next + be64_to_cpu(maprange->dma_base); 453 454 for (l = 0; l < limit; l++) { 455 tcep[l] = cpu_to_be64(proto_tce | next); 456 next += tce_size; 457 } 458 459 rc = plpar_tce_put_indirect(liobn, 460 dma_offset, 461 (u64)__pa(tcep), 462 limit); 463 464 num_tce -= limit; 465 } while (num_tce > 0 && !rc); 466 467 /* error cleanup: caller will clear whole range */ 468 469 local_irq_enable(); 470 return rc; 471 } 472 473 static int tce_setrange_multi_pSeriesLP_walk(unsigned long start_pfn, 474 unsigned long num_pfn, void *arg) 475 { 476 return tce_setrange_multi_pSeriesLP(start_pfn, num_pfn, arg); 477 } 478 479 static void iommu_table_setparms(struct pci_controller *phb, 480 struct device_node *dn, 481 struct iommu_table *tbl) 482 { 483 struct device_node *node; 484 const unsigned long *basep; 485 const u32 *sizep; 486 487 node = phb->dn; 488 489 basep = of_get_property(node, "linux,tce-base", NULL); 490 sizep = of_get_property(node, "linux,tce-size", NULL); 491 if (basep == NULL || sizep == NULL) { 492 printk(KERN_ERR "PCI_DMA: iommu_table_setparms: %pOF has " 493 "missing tce entries !\n", dn); 494 return; 495 } 496 497 tbl->it_base = (unsigned long)__va(*basep); 498 499 if (!is_kdump_kernel()) 500 memset((void *)tbl->it_base, 0, *sizep); 501 502 tbl->it_busno = phb->bus->number; 503 tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K; 504 505 /* Units of tce entries */ 506 tbl->it_offset = phb->dma_window_base_cur >> tbl->it_page_shift; 507 508 /* Test if we are going over 2GB of DMA space */ 509 if (phb->dma_window_base_cur + phb->dma_window_size > 0x80000000ul) { 510 udbg_printf("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); 511 panic("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); 512 } 513 514 phb->dma_window_base_cur += phb->dma_window_size; 515 516 /* Set the tce table size - measured in entries */ 517 tbl->it_size = phb->dma_window_size >> tbl->it_page_shift; 518 519 tbl->it_index = 0; 520 tbl->it_blocksize = 16; 521 tbl->it_type = TCE_PCI; 522 } 523 524 /* 525 * iommu_table_setparms_lpar 526 * 527 * Function: On pSeries LPAR systems, return TCE table info, given a pci bus. 528 */ 529 static void iommu_table_setparms_lpar(struct pci_controller *phb, 530 struct device_node *dn, 531 struct iommu_table *tbl, 532 struct iommu_table_group *table_group, 533 const __be32 *dma_window) 534 { 535 unsigned long offset, size; 536 537 of_parse_dma_window(dn, dma_window, &tbl->it_index, &offset, &size); 538 539 tbl->it_busno = phb->bus->number; 540 tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K; 541 tbl->it_base = 0; 542 tbl->it_blocksize = 16; 543 tbl->it_type = TCE_PCI; 544 tbl->it_offset = offset >> tbl->it_page_shift; 545 tbl->it_size = size >> tbl->it_page_shift; 546 547 table_group->tce32_start = offset; 548 table_group->tce32_size = size; 549 } 550 551 struct iommu_table_ops iommu_table_pseries_ops = { 552 .set = tce_build_pSeries, 553 .clear = tce_free_pSeries, 554 .get = tce_get_pseries 555 }; 556 557 static void pci_dma_bus_setup_pSeries(struct pci_bus *bus) 558 { 559 struct device_node *dn; 560 struct iommu_table *tbl; 561 struct device_node *isa_dn, *isa_dn_orig; 562 struct device_node *tmp; 563 struct pci_dn *pci; 564 int children; 565 566 dn = pci_bus_to_OF_node(bus); 567 568 pr_debug("pci_dma_bus_setup_pSeries: setting up bus %pOF\n", dn); 569 570 if (bus->self) { 571 /* This is not a root bus, any setup will be done for the 572 * device-side of the bridge in iommu_dev_setup_pSeries(). 573 */ 574 return; 575 } 576 pci = PCI_DN(dn); 577 578 /* Check if the ISA bus on the system is under 579 * this PHB. 580 */ 581 isa_dn = isa_dn_orig = of_find_node_by_type(NULL, "isa"); 582 583 while (isa_dn && isa_dn != dn) 584 isa_dn = isa_dn->parent; 585 586 of_node_put(isa_dn_orig); 587 588 /* Count number of direct PCI children of the PHB. */ 589 for (children = 0, tmp = dn->child; tmp; tmp = tmp->sibling) 590 children++; 591 592 pr_debug("Children: %d\n", children); 593 594 /* Calculate amount of DMA window per slot. Each window must be 595 * a power of two (due to pci_alloc_consistent requirements). 596 * 597 * Keep 256MB aside for PHBs with ISA. 598 */ 599 600 if (!isa_dn) { 601 /* No ISA/IDE - just set window size and return */ 602 pci->phb->dma_window_size = 0x80000000ul; /* To be divided */ 603 604 while (pci->phb->dma_window_size * children > 0x80000000ul) 605 pci->phb->dma_window_size >>= 1; 606 pr_debug("No ISA/IDE, window size is 0x%llx\n", 607 pci->phb->dma_window_size); 608 pci->phb->dma_window_base_cur = 0; 609 610 return; 611 } 612 613 /* If we have ISA, then we probably have an IDE 614 * controller too. Allocate a 128MB table but 615 * skip the first 128MB to avoid stepping on ISA 616 * space. 617 */ 618 pci->phb->dma_window_size = 0x8000000ul; 619 pci->phb->dma_window_base_cur = 0x8000000ul; 620 621 pci->table_group = iommu_pseries_alloc_group(pci->phb->node); 622 tbl = pci->table_group->tables[0]; 623 624 iommu_table_setparms(pci->phb, dn, tbl); 625 tbl->it_ops = &iommu_table_pseries_ops; 626 iommu_init_table(tbl, pci->phb->node); 627 628 /* Divide the rest (1.75GB) among the children */ 629 pci->phb->dma_window_size = 0x80000000ul; 630 while (pci->phb->dma_window_size * children > 0x70000000ul) 631 pci->phb->dma_window_size >>= 1; 632 633 pr_debug("ISA/IDE, window size is 0x%llx\n", pci->phb->dma_window_size); 634 } 635 636 #ifdef CONFIG_IOMMU_API 637 static int tce_exchange_pseries(struct iommu_table *tbl, long index, unsigned 638 long *tce, enum dma_data_direction *direction) 639 { 640 long rc; 641 unsigned long ioba = (unsigned long) index << tbl->it_page_shift; 642 unsigned long flags, oldtce = 0; 643 u64 proto_tce = iommu_direction_to_tce_perm(*direction); 644 unsigned long newtce = *tce | proto_tce; 645 646 spin_lock_irqsave(&tbl->large_pool.lock, flags); 647 648 rc = plpar_tce_get((u64)tbl->it_index, ioba, &oldtce); 649 if (!rc) 650 rc = plpar_tce_put((u64)tbl->it_index, ioba, newtce); 651 652 if (!rc) { 653 *direction = iommu_tce_direction(oldtce); 654 *tce = oldtce & ~(TCE_PCI_READ | TCE_PCI_WRITE); 655 } 656 657 spin_unlock_irqrestore(&tbl->large_pool.lock, flags); 658 659 return rc; 660 } 661 #endif 662 663 struct iommu_table_ops iommu_table_lpar_multi_ops = { 664 .set = tce_buildmulti_pSeriesLP, 665 #ifdef CONFIG_IOMMU_API 666 .exchange = tce_exchange_pseries, 667 #endif 668 .clear = tce_freemulti_pSeriesLP, 669 .get = tce_get_pSeriesLP 670 }; 671 672 static void pci_dma_bus_setup_pSeriesLP(struct pci_bus *bus) 673 { 674 struct iommu_table *tbl; 675 struct device_node *dn, *pdn; 676 struct pci_dn *ppci; 677 const __be32 *dma_window = NULL; 678 679 dn = pci_bus_to_OF_node(bus); 680 681 pr_debug("pci_dma_bus_setup_pSeriesLP: setting up bus %pOF\n", 682 dn); 683 684 /* Find nearest ibm,dma-window, walking up the device tree */ 685 for (pdn = dn; pdn != NULL; pdn = pdn->parent) { 686 dma_window = of_get_property(pdn, "ibm,dma-window", NULL); 687 if (dma_window != NULL) 688 break; 689 } 690 691 if (dma_window == NULL) { 692 pr_debug(" no ibm,dma-window property !\n"); 693 return; 694 } 695 696 ppci = PCI_DN(pdn); 697 698 pr_debug(" parent is %pOF, iommu_table: 0x%p\n", 699 pdn, ppci->table_group); 700 701 if (!ppci->table_group) { 702 ppci->table_group = iommu_pseries_alloc_group(ppci->phb->node); 703 tbl = ppci->table_group->tables[0]; 704 iommu_table_setparms_lpar(ppci->phb, pdn, tbl, 705 ppci->table_group, dma_window); 706 tbl->it_ops = &iommu_table_lpar_multi_ops; 707 iommu_init_table(tbl, ppci->phb->node); 708 iommu_register_group(ppci->table_group, 709 pci_domain_nr(bus), 0); 710 pr_debug(" created table: %p\n", ppci->table_group); 711 } 712 } 713 714 715 static void pci_dma_dev_setup_pSeries(struct pci_dev *dev) 716 { 717 struct device_node *dn; 718 struct iommu_table *tbl; 719 720 pr_debug("pci_dma_dev_setup_pSeries: %s\n", pci_name(dev)); 721 722 dn = dev->dev.of_node; 723 724 /* If we're the direct child of a root bus, then we need to allocate 725 * an iommu table ourselves. The bus setup code should have setup 726 * the window sizes already. 727 */ 728 if (!dev->bus->self) { 729 struct pci_controller *phb = PCI_DN(dn)->phb; 730 731 pr_debug(" --> first child, no bridge. Allocating iommu table.\n"); 732 PCI_DN(dn)->table_group = iommu_pseries_alloc_group(phb->node); 733 tbl = PCI_DN(dn)->table_group->tables[0]; 734 iommu_table_setparms(phb, dn, tbl); 735 tbl->it_ops = &iommu_table_pseries_ops; 736 iommu_init_table(tbl, phb->node); 737 set_iommu_table_base(&dev->dev, tbl); 738 return; 739 } 740 741 /* If this device is further down the bus tree, search upwards until 742 * an already allocated iommu table is found and use that. 743 */ 744 745 while (dn && PCI_DN(dn) && PCI_DN(dn)->table_group == NULL) 746 dn = dn->parent; 747 748 if (dn && PCI_DN(dn)) 749 set_iommu_table_base(&dev->dev, 750 PCI_DN(dn)->table_group->tables[0]); 751 else 752 printk(KERN_WARNING "iommu: Device %s has no iommu table\n", 753 pci_name(dev)); 754 } 755 756 static int __read_mostly disable_ddw; 757 758 static int __init disable_ddw_setup(char *str) 759 { 760 disable_ddw = 1; 761 printk(KERN_INFO "ppc iommu: disabling ddw.\n"); 762 763 return 0; 764 } 765 766 early_param("disable_ddw", disable_ddw_setup); 767 768 static void remove_ddw(struct device_node *np, bool remove_prop) 769 { 770 struct dynamic_dma_window_prop *dwp; 771 struct property *win64; 772 u32 ddw_avail[3]; 773 u64 liobn; 774 int ret = 0; 775 776 ret = of_property_read_u32_array(np, "ibm,ddw-applicable", 777 &ddw_avail[0], 3); 778 779 win64 = of_find_property(np, DIRECT64_PROPNAME, NULL); 780 if (!win64) 781 return; 782 783 if (ret || win64->length < sizeof(*dwp)) 784 goto delprop; 785 786 dwp = win64->value; 787 liobn = (u64)be32_to_cpu(dwp->liobn); 788 789 /* clear the whole window, note the arg is in kernel pages */ 790 ret = tce_clearrange_multi_pSeriesLP(0, 791 1ULL << (be32_to_cpu(dwp->window_shift) - PAGE_SHIFT), dwp); 792 if (ret) 793 pr_warn("%pOF failed to clear tces in window.\n", 794 np); 795 else 796 pr_debug("%pOF successfully cleared tces in window.\n", 797 np); 798 799 ret = rtas_call(ddw_avail[2], 1, 1, NULL, liobn); 800 if (ret) 801 pr_warn("%pOF: failed to remove direct window: rtas returned " 802 "%d to ibm,remove-pe-dma-window(%x) %llx\n", 803 np, ret, ddw_avail[2], liobn); 804 else 805 pr_debug("%pOF: successfully removed direct window: rtas returned " 806 "%d to ibm,remove-pe-dma-window(%x) %llx\n", 807 np, ret, ddw_avail[2], liobn); 808 809 delprop: 810 if (remove_prop) 811 ret = of_remove_property(np, win64); 812 if (ret) 813 pr_warn("%pOF: failed to remove direct window property: %d\n", 814 np, ret); 815 } 816 817 static u64 find_existing_ddw(struct device_node *pdn) 818 { 819 struct direct_window *window; 820 const struct dynamic_dma_window_prop *direct64; 821 u64 dma_addr = 0; 822 823 spin_lock(&direct_window_list_lock); 824 /* check if we already created a window and dupe that config if so */ 825 list_for_each_entry(window, &direct_window_list, list) { 826 if (window->device == pdn) { 827 direct64 = window->prop; 828 dma_addr = be64_to_cpu(direct64->dma_base); 829 break; 830 } 831 } 832 spin_unlock(&direct_window_list_lock); 833 834 return dma_addr; 835 } 836 837 static int find_existing_ddw_windows(void) 838 { 839 int len; 840 struct device_node *pdn; 841 struct direct_window *window; 842 const struct dynamic_dma_window_prop *direct64; 843 844 if (!firmware_has_feature(FW_FEATURE_LPAR)) 845 return 0; 846 847 for_each_node_with_property(pdn, DIRECT64_PROPNAME) { 848 direct64 = of_get_property(pdn, DIRECT64_PROPNAME, &len); 849 if (!direct64) 850 continue; 851 852 window = kzalloc(sizeof(*window), GFP_KERNEL); 853 if (!window || len < sizeof(struct dynamic_dma_window_prop)) { 854 kfree(window); 855 remove_ddw(pdn, true); 856 continue; 857 } 858 859 window->device = pdn; 860 window->prop = direct64; 861 spin_lock(&direct_window_list_lock); 862 list_add(&window->list, &direct_window_list); 863 spin_unlock(&direct_window_list_lock); 864 } 865 866 return 0; 867 } 868 machine_arch_initcall(pseries, find_existing_ddw_windows); 869 870 static int query_ddw(struct pci_dev *dev, const u32 *ddw_avail, 871 struct ddw_query_response *query) 872 { 873 struct device_node *dn; 874 struct pci_dn *pdn; 875 u32 cfg_addr; 876 u64 buid; 877 int ret; 878 879 /* 880 * Get the config address and phb buid of the PE window. 881 * Rely on eeh to retrieve this for us. 882 * Retrieve them from the pci device, not the node with the 883 * dma-window property 884 */ 885 dn = pci_device_to_OF_node(dev); 886 pdn = PCI_DN(dn); 887 buid = pdn->phb->buid; 888 cfg_addr = ((pdn->busno << 16) | (pdn->devfn << 8)); 889 890 ret = rtas_call(ddw_avail[0], 3, 5, (u32 *)query, 891 cfg_addr, BUID_HI(buid), BUID_LO(buid)); 892 dev_info(&dev->dev, "ibm,query-pe-dma-windows(%x) %x %x %x" 893 " returned %d\n", ddw_avail[0], cfg_addr, BUID_HI(buid), 894 BUID_LO(buid), ret); 895 return ret; 896 } 897 898 static int create_ddw(struct pci_dev *dev, const u32 *ddw_avail, 899 struct ddw_create_response *create, int page_shift, 900 int window_shift) 901 { 902 struct device_node *dn; 903 struct pci_dn *pdn; 904 u32 cfg_addr; 905 u64 buid; 906 int ret; 907 908 /* 909 * Get the config address and phb buid of the PE window. 910 * Rely on eeh to retrieve this for us. 911 * Retrieve them from the pci device, not the node with the 912 * dma-window property 913 */ 914 dn = pci_device_to_OF_node(dev); 915 pdn = PCI_DN(dn); 916 buid = pdn->phb->buid; 917 cfg_addr = ((pdn->busno << 16) | (pdn->devfn << 8)); 918 919 do { 920 /* extra outputs are LIOBN and dma-addr (hi, lo) */ 921 ret = rtas_call(ddw_avail[1], 5, 4, (u32 *)create, 922 cfg_addr, BUID_HI(buid), BUID_LO(buid), 923 page_shift, window_shift); 924 } while (rtas_busy_delay(ret)); 925 dev_info(&dev->dev, 926 "ibm,create-pe-dma-window(%x) %x %x %x %x %x returned %d " 927 "(liobn = 0x%x starting addr = %x %x)\n", ddw_avail[1], 928 cfg_addr, BUID_HI(buid), BUID_LO(buid), page_shift, 929 window_shift, ret, create->liobn, create->addr_hi, create->addr_lo); 930 931 return ret; 932 } 933 934 struct failed_ddw_pdn { 935 struct device_node *pdn; 936 struct list_head list; 937 }; 938 939 static LIST_HEAD(failed_ddw_pdn_list); 940 941 static phys_addr_t ddw_memory_hotplug_max(void) 942 { 943 phys_addr_t max_addr = memory_hotplug_max(); 944 struct device_node *memory; 945 946 for_each_node_by_type(memory, "memory") { 947 unsigned long start, size; 948 int n_mem_addr_cells, n_mem_size_cells, len; 949 const __be32 *memcell_buf; 950 951 memcell_buf = of_get_property(memory, "reg", &len); 952 if (!memcell_buf || len <= 0) 953 continue; 954 955 n_mem_addr_cells = of_n_addr_cells(memory); 956 n_mem_size_cells = of_n_size_cells(memory); 957 958 start = of_read_number(memcell_buf, n_mem_addr_cells); 959 memcell_buf += n_mem_addr_cells; 960 size = of_read_number(memcell_buf, n_mem_size_cells); 961 memcell_buf += n_mem_size_cells; 962 963 max_addr = max_t(phys_addr_t, max_addr, start + size); 964 } 965 966 return max_addr; 967 } 968 969 /* 970 * If the PE supports dynamic dma windows, and there is space for a table 971 * that can map all pages in a linear offset, then setup such a table, 972 * and record the dma-offset in the struct device. 973 * 974 * dev: the pci device we are checking 975 * pdn: the parent pe node with the ibm,dma_window property 976 * Future: also check if we can remap the base window for our base page size 977 * 978 * returns the dma offset for use by the direct mapped DMA code. 979 */ 980 static u64 enable_ddw(struct pci_dev *dev, struct device_node *pdn) 981 { 982 int len, ret; 983 struct ddw_query_response query; 984 struct ddw_create_response create; 985 int page_shift; 986 u64 dma_addr, max_addr; 987 struct device_node *dn; 988 u32 ddw_avail[3]; 989 struct direct_window *window; 990 struct property *win64; 991 struct dynamic_dma_window_prop *ddwprop; 992 struct failed_ddw_pdn *fpdn; 993 994 mutex_lock(&direct_window_init_mutex); 995 996 dma_addr = find_existing_ddw(pdn); 997 if (dma_addr != 0) 998 goto out_unlock; 999 1000 /* 1001 * If we already went through this for a previous function of 1002 * the same device and failed, we don't want to muck with the 1003 * DMA window again, as it will race with in-flight operations 1004 * and can lead to EEHs. The above mutex protects access to the 1005 * list. 1006 */ 1007 list_for_each_entry(fpdn, &failed_ddw_pdn_list, list) { 1008 if (fpdn->pdn == pdn) 1009 goto out_unlock; 1010 } 1011 1012 /* 1013 * the ibm,ddw-applicable property holds the tokens for: 1014 * ibm,query-pe-dma-window 1015 * ibm,create-pe-dma-window 1016 * ibm,remove-pe-dma-window 1017 * for the given node in that order. 1018 * the property is actually in the parent, not the PE 1019 */ 1020 ret = of_property_read_u32_array(pdn, "ibm,ddw-applicable", 1021 &ddw_avail[0], 3); 1022 if (ret) 1023 goto out_failed; 1024 1025 /* 1026 * Query if there is a second window of size to map the 1027 * whole partition. Query returns number of windows, largest 1028 * block assigned to PE (partition endpoint), and two bitmasks 1029 * of page sizes: supported and supported for migrate-dma. 1030 */ 1031 dn = pci_device_to_OF_node(dev); 1032 ret = query_ddw(dev, ddw_avail, &query); 1033 if (ret != 0) 1034 goto out_failed; 1035 1036 if (query.windows_available == 0) { 1037 /* 1038 * no additional windows are available for this device. 1039 * We might be able to reallocate the existing window, 1040 * trading in for a larger page size. 1041 */ 1042 dev_dbg(&dev->dev, "no free dynamic windows"); 1043 goto out_failed; 1044 } 1045 if (query.page_size & 4) { 1046 page_shift = 24; /* 16MB */ 1047 } else if (query.page_size & 2) { 1048 page_shift = 16; /* 64kB */ 1049 } else if (query.page_size & 1) { 1050 page_shift = 12; /* 4kB */ 1051 } else { 1052 dev_dbg(&dev->dev, "no supported direct page size in mask %x", 1053 query.page_size); 1054 goto out_failed; 1055 } 1056 /* verify the window * number of ptes will map the partition */ 1057 /* check largest block * page size > max memory hotplug addr */ 1058 max_addr = ddw_memory_hotplug_max(); 1059 if (query.largest_available_block < (max_addr >> page_shift)) { 1060 dev_dbg(&dev->dev, "can't map partition max 0x%llx with %u " 1061 "%llu-sized pages\n", max_addr, query.largest_available_block, 1062 1ULL << page_shift); 1063 goto out_failed; 1064 } 1065 len = order_base_2(max_addr); 1066 win64 = kzalloc(sizeof(struct property), GFP_KERNEL); 1067 if (!win64) { 1068 dev_info(&dev->dev, 1069 "couldn't allocate property for 64bit dma window\n"); 1070 goto out_failed; 1071 } 1072 win64->name = kstrdup(DIRECT64_PROPNAME, GFP_KERNEL); 1073 win64->value = ddwprop = kmalloc(sizeof(*ddwprop), GFP_KERNEL); 1074 win64->length = sizeof(*ddwprop); 1075 if (!win64->name || !win64->value) { 1076 dev_info(&dev->dev, 1077 "couldn't allocate property name and value\n"); 1078 goto out_free_prop; 1079 } 1080 1081 ret = create_ddw(dev, ddw_avail, &create, page_shift, len); 1082 if (ret != 0) 1083 goto out_free_prop; 1084 1085 ddwprop->liobn = cpu_to_be32(create.liobn); 1086 ddwprop->dma_base = cpu_to_be64(((u64)create.addr_hi << 32) | 1087 create.addr_lo); 1088 ddwprop->tce_shift = cpu_to_be32(page_shift); 1089 ddwprop->window_shift = cpu_to_be32(len); 1090 1091 dev_dbg(&dev->dev, "created tce table LIOBN 0x%x for %pOF\n", 1092 create.liobn, dn); 1093 1094 window = kzalloc(sizeof(*window), GFP_KERNEL); 1095 if (!window) 1096 goto out_clear_window; 1097 1098 ret = walk_system_ram_range(0, memblock_end_of_DRAM() >> PAGE_SHIFT, 1099 win64->value, tce_setrange_multi_pSeriesLP_walk); 1100 if (ret) { 1101 dev_info(&dev->dev, "failed to map direct window for %pOF: %d\n", 1102 dn, ret); 1103 goto out_free_window; 1104 } 1105 1106 ret = of_add_property(pdn, win64); 1107 if (ret) { 1108 dev_err(&dev->dev, "unable to add dma window property for %pOF: %d", 1109 pdn, ret); 1110 goto out_free_window; 1111 } 1112 1113 window->device = pdn; 1114 window->prop = ddwprop; 1115 spin_lock(&direct_window_list_lock); 1116 list_add(&window->list, &direct_window_list); 1117 spin_unlock(&direct_window_list_lock); 1118 1119 dma_addr = be64_to_cpu(ddwprop->dma_base); 1120 goto out_unlock; 1121 1122 out_free_window: 1123 kfree(window); 1124 1125 out_clear_window: 1126 remove_ddw(pdn, true); 1127 1128 out_free_prop: 1129 kfree(win64->name); 1130 kfree(win64->value); 1131 kfree(win64); 1132 1133 out_failed: 1134 1135 fpdn = kzalloc(sizeof(*fpdn), GFP_KERNEL); 1136 if (!fpdn) 1137 goto out_unlock; 1138 fpdn->pdn = pdn; 1139 list_add(&fpdn->list, &failed_ddw_pdn_list); 1140 1141 out_unlock: 1142 mutex_unlock(&direct_window_init_mutex); 1143 return dma_addr; 1144 } 1145 1146 static void pci_dma_dev_setup_pSeriesLP(struct pci_dev *dev) 1147 { 1148 struct device_node *pdn, *dn; 1149 struct iommu_table *tbl; 1150 const __be32 *dma_window = NULL; 1151 struct pci_dn *pci; 1152 1153 pr_debug("pci_dma_dev_setup_pSeriesLP: %s\n", pci_name(dev)); 1154 1155 /* dev setup for LPAR is a little tricky, since the device tree might 1156 * contain the dma-window properties per-device and not necessarily 1157 * for the bus. So we need to search upwards in the tree until we 1158 * either hit a dma-window property, OR find a parent with a table 1159 * already allocated. 1160 */ 1161 dn = pci_device_to_OF_node(dev); 1162 pr_debug(" node is %pOF\n", dn); 1163 1164 for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->table_group; 1165 pdn = pdn->parent) { 1166 dma_window = of_get_property(pdn, "ibm,dma-window", NULL); 1167 if (dma_window) 1168 break; 1169 } 1170 1171 if (!pdn || !PCI_DN(pdn)) { 1172 printk(KERN_WARNING "pci_dma_dev_setup_pSeriesLP: " 1173 "no DMA window found for pci dev=%s dn=%pOF\n", 1174 pci_name(dev), dn); 1175 return; 1176 } 1177 pr_debug(" parent is %pOF\n", pdn); 1178 1179 pci = PCI_DN(pdn); 1180 if (!pci->table_group) { 1181 pci->table_group = iommu_pseries_alloc_group(pci->phb->node); 1182 tbl = pci->table_group->tables[0]; 1183 iommu_table_setparms_lpar(pci->phb, pdn, tbl, 1184 pci->table_group, dma_window); 1185 tbl->it_ops = &iommu_table_lpar_multi_ops; 1186 iommu_init_table(tbl, pci->phb->node); 1187 iommu_register_group(pci->table_group, 1188 pci_domain_nr(pci->phb->bus), 0); 1189 pr_debug(" created table: %p\n", pci->table_group); 1190 } else { 1191 pr_debug(" found DMA window, table: %p\n", pci->table_group); 1192 } 1193 1194 set_iommu_table_base(&dev->dev, pci->table_group->tables[0]); 1195 iommu_add_device(pci->table_group, &dev->dev); 1196 } 1197 1198 static bool iommu_bypass_supported_pSeriesLP(struct pci_dev *pdev, u64 dma_mask) 1199 { 1200 struct device_node *dn = pci_device_to_OF_node(pdev), *pdn; 1201 const __be32 *dma_window = NULL; 1202 1203 /* only attempt to use a new window if 64-bit DMA is requested */ 1204 if (dma_mask < DMA_BIT_MASK(64)) 1205 return false; 1206 1207 dev_dbg(&pdev->dev, "node is %pOF\n", dn); 1208 1209 /* 1210 * the device tree might contain the dma-window properties 1211 * per-device and not necessarily for the bus. So we need to 1212 * search upwards in the tree until we either hit a dma-window 1213 * property, OR find a parent with a table already allocated. 1214 */ 1215 for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->table_group; 1216 pdn = pdn->parent) { 1217 dma_window = of_get_property(pdn, "ibm,dma-window", NULL); 1218 if (dma_window) 1219 break; 1220 } 1221 1222 if (pdn && PCI_DN(pdn)) { 1223 pdev->dev.archdata.dma_offset = enable_ddw(pdev, pdn); 1224 if (pdev->dev.archdata.dma_offset) 1225 return true; 1226 } 1227 1228 return false; 1229 } 1230 1231 static int iommu_mem_notifier(struct notifier_block *nb, unsigned long action, 1232 void *data) 1233 { 1234 struct direct_window *window; 1235 struct memory_notify *arg = data; 1236 int ret = 0; 1237 1238 switch (action) { 1239 case MEM_GOING_ONLINE: 1240 spin_lock(&direct_window_list_lock); 1241 list_for_each_entry(window, &direct_window_list, list) { 1242 ret |= tce_setrange_multi_pSeriesLP(arg->start_pfn, 1243 arg->nr_pages, window->prop); 1244 /* XXX log error */ 1245 } 1246 spin_unlock(&direct_window_list_lock); 1247 break; 1248 case MEM_CANCEL_ONLINE: 1249 case MEM_OFFLINE: 1250 spin_lock(&direct_window_list_lock); 1251 list_for_each_entry(window, &direct_window_list, list) { 1252 ret |= tce_clearrange_multi_pSeriesLP(arg->start_pfn, 1253 arg->nr_pages, window->prop); 1254 /* XXX log error */ 1255 } 1256 spin_unlock(&direct_window_list_lock); 1257 break; 1258 default: 1259 break; 1260 } 1261 if (ret && action != MEM_CANCEL_ONLINE) 1262 return NOTIFY_BAD; 1263 1264 return NOTIFY_OK; 1265 } 1266 1267 static struct notifier_block iommu_mem_nb = { 1268 .notifier_call = iommu_mem_notifier, 1269 }; 1270 1271 static int iommu_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *data) 1272 { 1273 int err = NOTIFY_OK; 1274 struct of_reconfig_data *rd = data; 1275 struct device_node *np = rd->dn; 1276 struct pci_dn *pci = PCI_DN(np); 1277 struct direct_window *window; 1278 1279 switch (action) { 1280 case OF_RECONFIG_DETACH_NODE: 1281 /* 1282 * Removing the property will invoke the reconfig 1283 * notifier again, which causes dead-lock on the 1284 * read-write semaphore of the notifier chain. So 1285 * we have to remove the property when releasing 1286 * the device node. 1287 */ 1288 remove_ddw(np, false); 1289 if (pci && pci->table_group) 1290 iommu_pseries_free_group(pci->table_group, 1291 np->full_name); 1292 1293 spin_lock(&direct_window_list_lock); 1294 list_for_each_entry(window, &direct_window_list, list) { 1295 if (window->device == np) { 1296 list_del(&window->list); 1297 kfree(window); 1298 break; 1299 } 1300 } 1301 spin_unlock(&direct_window_list_lock); 1302 break; 1303 default: 1304 err = NOTIFY_DONE; 1305 break; 1306 } 1307 return err; 1308 } 1309 1310 static struct notifier_block iommu_reconfig_nb = { 1311 .notifier_call = iommu_reconfig_notifier, 1312 }; 1313 1314 /* These are called very early. */ 1315 void iommu_init_early_pSeries(void) 1316 { 1317 if (of_chosen && of_get_property(of_chosen, "linux,iommu-off", NULL)) 1318 return; 1319 1320 if (firmware_has_feature(FW_FEATURE_LPAR)) { 1321 pseries_pci_controller_ops.dma_bus_setup = pci_dma_bus_setup_pSeriesLP; 1322 pseries_pci_controller_ops.dma_dev_setup = pci_dma_dev_setup_pSeriesLP; 1323 if (!disable_ddw) 1324 pseries_pci_controller_ops.iommu_bypass_supported = 1325 iommu_bypass_supported_pSeriesLP; 1326 } else { 1327 pseries_pci_controller_ops.dma_bus_setup = pci_dma_bus_setup_pSeries; 1328 pseries_pci_controller_ops.dma_dev_setup = pci_dma_dev_setup_pSeries; 1329 } 1330 1331 1332 of_reconfig_notifier_register(&iommu_reconfig_nb); 1333 register_memory_notifier(&iommu_mem_nb); 1334 1335 set_pci_dma_ops(&dma_iommu_ops); 1336 } 1337 1338 static int __init disable_multitce(char *str) 1339 { 1340 if (strcmp(str, "off") == 0 && 1341 firmware_has_feature(FW_FEATURE_LPAR) && 1342 firmware_has_feature(FW_FEATURE_MULTITCE)) { 1343 printk(KERN_INFO "Disabling MULTITCE firmware feature\n"); 1344 powerpc_firmware_features &= ~FW_FEATURE_MULTITCE; 1345 } 1346 return 1; 1347 } 1348 1349 __setup("multitce=", disable_multitce); 1350 1351 static int tce_iommu_bus_notifier(struct notifier_block *nb, 1352 unsigned long action, void *data) 1353 { 1354 struct device *dev = data; 1355 1356 switch (action) { 1357 case BUS_NOTIFY_DEL_DEVICE: 1358 iommu_del_device(dev); 1359 return 0; 1360 default: 1361 return 0; 1362 } 1363 } 1364 1365 static struct notifier_block tce_iommu_bus_nb = { 1366 .notifier_call = tce_iommu_bus_notifier, 1367 }; 1368 1369 static int __init tce_iommu_bus_notifier_init(void) 1370 { 1371 bus_register_notifier(&pci_bus_type, &tce_iommu_bus_nb); 1372 return 0; 1373 } 1374 machine_subsys_initcall_sync(pseries, tce_iommu_bus_notifier_init); 1375