1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * The file intends to implement the platform dependent EEH operations on pseries. 4 * Actually, the pseries platform is built based on RTAS heavily. That means the 5 * pseries platform dependent EEH operations will be built on RTAS calls. The functions 6 * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has 7 * been done. 8 * 9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011. 10 * Copyright IBM Corporation 2001, 2005, 2006 11 * Copyright Dave Engebretsen & Todd Inglett 2001 12 * Copyright Linas Vepstas 2005, 2006 13 */ 14 15 #include <linux/atomic.h> 16 #include <linux/delay.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/list.h> 20 #include <linux/of.h> 21 #include <linux/pci.h> 22 #include <linux/proc_fs.h> 23 #include <linux/rbtree.h> 24 #include <linux/sched.h> 25 #include <linux/seq_file.h> 26 #include <linux/spinlock.h> 27 #include <linux/crash_dump.h> 28 29 #include <asm/eeh.h> 30 #include <asm/eeh_event.h> 31 #include <asm/io.h> 32 #include <asm/machdep.h> 33 #include <asm/ppc-pci.h> 34 #include <asm/rtas.h> 35 36 static int pseries_eeh_get_pe_addr(struct pci_dn *pdn); 37 38 /* RTAS tokens */ 39 static int ibm_set_eeh_option; 40 static int ibm_set_slot_reset; 41 static int ibm_read_slot_reset_state; 42 static int ibm_read_slot_reset_state2; 43 static int ibm_slot_error_detail; 44 static int ibm_get_config_addr_info; 45 static int ibm_get_config_addr_info2; 46 static int ibm_configure_pe; 47 48 void pseries_pcibios_bus_add_device(struct pci_dev *pdev) 49 { 50 struct pci_dn *pdn = pci_get_pdn(pdev); 51 52 if (eeh_has_flag(EEH_FORCE_DISABLED)) 53 return; 54 55 dev_dbg(&pdev->dev, "EEH: Setting up device\n"); 56 #ifdef CONFIG_PCI_IOV 57 if (pdev->is_virtfn) { 58 pdn->device_id = pdev->device; 59 pdn->vendor_id = pdev->vendor; 60 pdn->class_code = pdev->class; 61 /* 62 * Last allow unfreeze return code used for retrieval 63 * by user space in eeh-sysfs to show the last command 64 * completion from platform. 65 */ 66 pdn->last_allow_rc = 0; 67 } 68 #endif 69 pseries_eeh_init_edev(pdn); 70 #ifdef CONFIG_PCI_IOV 71 if (pdev->is_virtfn) { 72 /* 73 * FIXME: This really should be handled by choosing the right 74 * parent PE in in pseries_eeh_init_edev(). 75 */ 76 struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe; 77 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 78 79 edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8); 80 eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */ 81 eeh_pe_tree_insert(edev, physfn_pe); /* Add as VF PE type */ 82 } 83 #endif 84 eeh_probe_device(pdev); 85 } 86 87 88 /** 89 * pseries_eeh_get_config_addr - Retrieve config address 90 * 91 * Retrieve the assocated config address. Actually, there're 2 RTAS 92 * function calls dedicated for the purpose. We need implement 93 * it through the new function and then the old one. Besides, 94 * you should make sure the config address is figured out from 95 * FDT node before calling the function. 96 * 97 * It's notable that zero'ed return value means invalid PE config 98 * address. 99 */ 100 static int pseries_eeh_get_config_addr(struct pci_controller *phb, int config_addr) 101 { 102 int ret = 0; 103 int rets[3]; 104 105 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) { 106 /* 107 * First of all, we need to make sure there has one PE 108 * associated with the device. Otherwise, PE address is 109 * meaningless. 110 */ 111 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, 112 config_addr, BUID_HI(phb->buid), 113 BUID_LO(phb->buid), 1); 114 if (ret || (rets[0] == 0)) 115 return 0; 116 117 /* Retrieve the associated PE config address */ 118 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, 119 config_addr, BUID_HI(phb->buid), 120 BUID_LO(phb->buid), 0); 121 if (ret) { 122 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", 123 __func__, phb->global_number, config_addr); 124 return 0; 125 } 126 127 return rets[0]; 128 } 129 130 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) { 131 ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets, 132 config_addr, BUID_HI(phb->buid), 133 BUID_LO(phb->buid), 0); 134 if (ret) { 135 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", 136 __func__, phb->global_number, config_addr); 137 return 0; 138 } 139 140 return rets[0]; 141 } 142 143 return ret; 144 } 145 146 /** 147 * pseries_eeh_phb_reset - Reset the specified PHB 148 * @phb: PCI controller 149 * @config_adddr: the associated config address 150 * @option: reset option 151 * 152 * Reset the specified PHB/PE 153 */ 154 static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option) 155 { 156 int ret; 157 158 /* Reset PE through RTAS call */ 159 ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, 160 config_addr, BUID_HI(phb->buid), 161 BUID_LO(phb->buid), option); 162 163 /* If fundamental-reset not supported, try hot-reset */ 164 if (option == EEH_RESET_FUNDAMENTAL && 165 ret == -8) { 166 option = EEH_RESET_HOT; 167 ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, 168 config_addr, BUID_HI(phb->buid), 169 BUID_LO(phb->buid), option); 170 } 171 172 /* We need reset hold or settlement delay */ 173 if (option == EEH_RESET_FUNDAMENTAL || 174 option == EEH_RESET_HOT) 175 msleep(EEH_PE_RST_HOLD_TIME); 176 else 177 msleep(EEH_PE_RST_SETTLE_TIME); 178 179 return ret; 180 } 181 182 /** 183 * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE 184 * @phb: PCI controller 185 * @config_adddr: the associated config address 186 * 187 * The function will be called to reconfigure the bridges included 188 * in the specified PE so that the mulfunctional PE would be recovered 189 * again. 190 */ 191 static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr) 192 { 193 int ret; 194 /* Waiting 0.2s maximum before skipping configuration */ 195 int max_wait = 200; 196 197 while (max_wait > 0) { 198 ret = rtas_call(ibm_configure_pe, 3, 1, NULL, 199 config_addr, BUID_HI(phb->buid), 200 BUID_LO(phb->buid)); 201 202 if (!ret) 203 return ret; 204 if (ret < 0) 205 break; 206 207 /* 208 * If RTAS returns a delay value that's above 100ms, cut it 209 * down to 100ms in case firmware made a mistake. For more 210 * on how these delay values work see rtas_busy_delay_time 211 */ 212 if (ret > RTAS_EXTENDED_DELAY_MIN+2 && 213 ret <= RTAS_EXTENDED_DELAY_MAX) 214 ret = RTAS_EXTENDED_DELAY_MIN+2; 215 216 max_wait -= rtas_busy_delay_time(ret); 217 218 if (max_wait < 0) 219 break; 220 221 rtas_busy_delay(ret); 222 } 223 224 pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n", 225 __func__, phb->global_number, config_addr, ret); 226 /* PAPR defines -3 as "Parameter Error" for this function: */ 227 if (ret == -3) 228 return -EINVAL; 229 else 230 return -EIO; 231 } 232 233 /* 234 * Buffer for reporting slot-error-detail rtas calls. Its here 235 * in BSS, and not dynamically alloced, so that it ends up in 236 * RMO where RTAS can access it. 237 */ 238 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; 239 static DEFINE_SPINLOCK(slot_errbuf_lock); 240 static int eeh_error_buf_size; 241 242 /** 243 * pseries_eeh_init - EEH platform dependent initialization 244 * 245 * EEH platform dependent initialization on pseries. 246 */ 247 static int pseries_eeh_init(void) 248 { 249 struct pci_controller *phb; 250 struct pci_dn *pdn; 251 int addr, config_addr; 252 253 /* figure out EEH RTAS function call tokens */ 254 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option"); 255 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset"); 256 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2"); 257 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state"); 258 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail"); 259 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2"); 260 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info"); 261 ibm_configure_pe = rtas_token("ibm,configure-pe"); 262 263 /* 264 * ibm,configure-pe and ibm,configure-bridge have the same semantics, 265 * however ibm,configure-pe can be faster. If we can't find 266 * ibm,configure-pe then fall back to using ibm,configure-bridge. 267 */ 268 if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE) 269 ibm_configure_pe = rtas_token("ibm,configure-bridge"); 270 271 /* 272 * Necessary sanity check. We needn't check "get-config-addr-info" 273 * and its variant since the old firmware probably support address 274 * of domain/bus/slot/function for EEH RTAS operations. 275 */ 276 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE || 277 ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE || 278 (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE && 279 ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) || 280 ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE || 281 ibm_configure_pe == RTAS_UNKNOWN_SERVICE) { 282 pr_info("EEH functionality not supported\n"); 283 return -EINVAL; 284 } 285 286 /* Initialize error log lock and size */ 287 spin_lock_init(&slot_errbuf_lock); 288 eeh_error_buf_size = rtas_token("rtas-error-log-max"); 289 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) { 290 pr_info("%s: unknown EEH error log size\n", 291 __func__); 292 eeh_error_buf_size = 1024; 293 } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) { 294 pr_info("%s: EEH error log size %d exceeds the maximal %d\n", 295 __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX); 296 eeh_error_buf_size = RTAS_ERROR_LOG_MAX; 297 } 298 299 /* Set EEH probe mode */ 300 eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG); 301 302 /* Set EEH machine dependent code */ 303 ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device; 304 305 if (is_kdump_kernel() || reset_devices) { 306 pr_info("Issue PHB reset ...\n"); 307 list_for_each_entry(phb, &hose_list, list_node) { 308 pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list); 309 addr = (pdn->busno << 16) | (pdn->devfn << 8); 310 config_addr = pseries_eeh_get_config_addr(phb, addr); 311 /* invalid PE config addr */ 312 if (config_addr == 0) 313 continue; 314 315 pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL); 316 pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE); 317 pseries_eeh_phb_configure_bridge(phb, config_addr); 318 } 319 } 320 321 return 0; 322 } 323 324 static int pseries_eeh_cap_start(struct pci_dn *pdn) 325 { 326 u32 status; 327 328 if (!pdn) 329 return 0; 330 331 rtas_read_config(pdn, PCI_STATUS, 2, &status); 332 if (!(status & PCI_STATUS_CAP_LIST)) 333 return 0; 334 335 return PCI_CAPABILITY_LIST; 336 } 337 338 339 static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap) 340 { 341 int pos = pseries_eeh_cap_start(pdn); 342 int cnt = 48; /* Maximal number of capabilities */ 343 u32 id; 344 345 if (!pos) 346 return 0; 347 348 while (cnt--) { 349 rtas_read_config(pdn, pos, 1, &pos); 350 if (pos < 0x40) 351 break; 352 pos &= ~3; 353 rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id); 354 if (id == 0xff) 355 break; 356 if (id == cap) 357 return pos; 358 pos += PCI_CAP_LIST_NEXT; 359 } 360 361 return 0; 362 } 363 364 static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap) 365 { 366 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 367 u32 header; 368 int pos = 256; 369 int ttl = (4096 - 256) / 8; 370 371 if (!edev || !edev->pcie_cap) 372 return 0; 373 if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 374 return 0; 375 else if (!header) 376 return 0; 377 378 while (ttl-- > 0) { 379 if (PCI_EXT_CAP_ID(header) == cap && pos) 380 return pos; 381 382 pos = PCI_EXT_CAP_NEXT(header); 383 if (pos < 256) 384 break; 385 386 if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 387 break; 388 } 389 390 return 0; 391 } 392 393 /** 394 * pseries_eeh_pe_get_parent - Retrieve the parent PE 395 * @edev: EEH device 396 * 397 * The whole PEs existing in the system are organized as hierarchy 398 * tree. The function is used to retrieve the parent PE according 399 * to the parent EEH device. 400 */ 401 static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev) 402 { 403 struct eeh_dev *parent; 404 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 405 406 /* 407 * It might have the case for the indirect parent 408 * EEH device already having associated PE, but 409 * the direct parent EEH device doesn't have yet. 410 */ 411 if (edev->physfn) 412 pdn = pci_get_pdn(edev->physfn); 413 else 414 pdn = pdn ? pdn->parent : NULL; 415 while (pdn) { 416 /* We're poking out of PCI territory */ 417 parent = pdn_to_eeh_dev(pdn); 418 if (!parent) 419 return NULL; 420 421 if (parent->pe) 422 return parent->pe; 423 424 pdn = pdn->parent; 425 } 426 427 return NULL; 428 } 429 430 /** 431 * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn 432 * 433 * @pdn: PCI device node 434 * 435 * When we discover a new PCI device via the device-tree we create a 436 * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev. 437 * This function takes care of the initialisation and inserts the eeh_dev 438 * into the correct eeh_pe. If no eeh_pe exists we'll allocate one. 439 */ 440 void pseries_eeh_init_edev(struct pci_dn *pdn) 441 { 442 struct eeh_dev *edev; 443 struct eeh_pe pe; 444 u32 pcie_flags; 445 int enable = 0; 446 int ret; 447 448 if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))) 449 return; 450 451 /* 452 * Find the eeh_dev for this pdn. The storage for the eeh_dev was 453 * allocated at the same time as the pci_dn. 454 * 455 * XXX: We should probably re-visit that. 456 */ 457 edev = pdn_to_eeh_dev(pdn); 458 if (!edev) 459 return; 460 461 /* 462 * If ->pe is set then we've already probed this device. We hit 463 * this path when a pci_dev is removed and rescanned while recovering 464 * a PE (i.e. for devices where the driver doesn't support error 465 * recovery). 466 */ 467 if (edev->pe) 468 return; 469 470 /* Check class/vendor/device IDs */ 471 if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code) 472 return; 473 474 /* Skip for PCI-ISA bridge */ 475 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) 476 return; 477 478 eeh_edev_dbg(edev, "Probing device\n"); 479 480 /* 481 * Update class code and mode of eeh device. We need 482 * correctly reflects that current device is root port 483 * or PCIe switch downstream port. 484 */ 485 edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); 486 edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP); 487 edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); 488 edev->mode &= 0xFFFFFF00; 489 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { 490 edev->mode |= EEH_DEV_BRIDGE; 491 if (edev->pcie_cap) { 492 rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS, 493 2, &pcie_flags); 494 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; 495 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) 496 edev->mode |= EEH_DEV_ROOT_PORT; 497 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) 498 edev->mode |= EEH_DEV_DS_PORT; 499 } 500 } 501 502 /* Initialize the fake PE */ 503 memset(&pe, 0, sizeof(struct eeh_pe)); 504 pe.phb = pdn->phb; 505 pe.config_addr = (pdn->busno << 16) | (pdn->devfn << 8); 506 507 /* Enable EEH on the device */ 508 eeh_edev_dbg(edev, "Enabling EEH on device\n"); 509 ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE); 510 if (ret) { 511 eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret); 512 } else { 513 struct eeh_pe *parent; 514 515 /* Retrieve PE address */ 516 edev->pe_config_addr = pseries_eeh_get_pe_addr(pdn); 517 pe.addr = edev->pe_config_addr; 518 519 /* Some older systems (Power4) allow the ibm,set-eeh-option 520 * call to succeed even on nodes where EEH is not supported. 521 * Verify support explicitly. 522 */ 523 ret = eeh_ops->get_state(&pe, NULL); 524 if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT) 525 enable = 1; 526 527 /* 528 * This device doesn't support EEH, but it may have an 529 * EEH parent. In this case any error on the device will 530 * freeze the PE of it's upstream bridge, so added it to 531 * the upstream PE. 532 */ 533 parent = pseries_eeh_pe_get_parent(edev); 534 if (parent && !enable) 535 edev->pe_config_addr = parent->addr; 536 537 if (enable || parent) { 538 eeh_add_flag(EEH_ENABLED); 539 eeh_pe_tree_insert(edev, parent); 540 } 541 eeh_edev_dbg(edev, "EEH is %s on device (code %d)\n", 542 (enable ? "enabled" : "unsupported"), ret); 543 } 544 545 /* Save memory bars */ 546 eeh_save_bars(edev); 547 } 548 549 static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev) 550 { 551 struct eeh_dev *edev; 552 struct pci_dn *pdn; 553 554 pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn); 555 if (!pdn) 556 return NULL; 557 558 /* 559 * If the system supports EEH on this device then the eeh_dev was 560 * configured and inserted into a PE in pseries_eeh_init_edev() 561 */ 562 edev = pdn_to_eeh_dev(pdn); 563 if (!edev || !edev->pe) 564 return NULL; 565 566 return edev; 567 } 568 569 /** 570 * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device 571 * @pdn: PCI device node 572 * 573 * This routine must be used to perform EEH initialization for the 574 * indicated PCI device that was added after system boot (e.g. 575 * hotplug, dlpar). 576 */ 577 void pseries_eeh_init_edev_recursive(struct pci_dn *pdn) 578 { 579 struct pci_dn *n; 580 581 if (!pdn) 582 return; 583 584 list_for_each_entry(n, &pdn->child_list, list) 585 pseries_eeh_init_edev_recursive(n); 586 587 pseries_eeh_init_edev(pdn); 588 } 589 EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive); 590 591 /** 592 * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable 593 * @pe: EEH PE 594 * @option: operation to be issued 595 * 596 * The function is used to control the EEH functionality globally. 597 * Currently, following options are support according to PAPR: 598 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA 599 */ 600 static int pseries_eeh_set_option(struct eeh_pe *pe, int option) 601 { 602 int ret = 0; 603 int config_addr; 604 605 /* 606 * When we're enabling or disabling EEH functioality on 607 * the particular PE, the PE config address is possibly 608 * unavailable. Therefore, we have to figure it out from 609 * the FDT node. 610 */ 611 switch (option) { 612 case EEH_OPT_DISABLE: 613 case EEH_OPT_ENABLE: 614 case EEH_OPT_THAW_MMIO: 615 case EEH_OPT_THAW_DMA: 616 config_addr = pe->config_addr; 617 if (pe->addr) 618 config_addr = pe->addr; 619 break; 620 case EEH_OPT_FREEZE_PE: 621 /* Not support */ 622 return 0; 623 default: 624 pr_err("%s: Invalid option %d\n", 625 __func__, option); 626 return -EINVAL; 627 } 628 629 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, 630 config_addr, BUID_HI(pe->phb->buid), 631 BUID_LO(pe->phb->buid), option); 632 633 return ret; 634 } 635 636 /** 637 * pseries_eeh_get_pe_addr - Retrieve PE address 638 * @pe: EEH PE 639 * 640 * Retrieve the assocated PE address. Actually, there're 2 RTAS 641 * function calls dedicated for the purpose. We need implement 642 * it through the new function and then the old one. Besides, 643 * you should make sure the config address is figured out from 644 * FDT node before calling the function. 645 * 646 * It's notable that zero'ed return value means invalid PE config 647 * address. 648 */ 649 static int pseries_eeh_get_pe_addr(struct pci_dn *pdn) 650 { 651 int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); 652 unsigned long buid = pdn->phb->buid; 653 int ret = 0; 654 int rets[3]; 655 656 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) { 657 /* 658 * First of all, we need to make sure there has one PE 659 * associated with the device. Otherwise, PE address is 660 * meaningless. 661 */ 662 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, 663 config_addr, BUID_HI(buid), BUID_LO(buid), 1); 664 if (ret || (rets[0] == 0)) 665 return 0; 666 667 /* Retrieve the associated PE config address */ 668 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, 669 config_addr, BUID_HI(buid), BUID_LO(buid), 0); 670 if (ret) { 671 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", 672 __func__, pdn->phb->global_number, config_addr); 673 return 0; 674 } 675 676 return rets[0]; 677 } 678 679 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) { 680 ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets, 681 config_addr, BUID_HI(buid), BUID_LO(buid), 0); 682 if (ret) { 683 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", 684 __func__, pdn->phb->global_number, config_addr); 685 return 0; 686 } 687 688 return rets[0]; 689 } 690 691 return ret; 692 } 693 694 /** 695 * pseries_eeh_get_state - Retrieve PE state 696 * @pe: EEH PE 697 * @delay: suggested time to wait if state is unavailable 698 * 699 * Retrieve the state of the specified PE. On RTAS compliant 700 * pseries platform, there already has one dedicated RTAS function 701 * for the purpose. It's notable that the associated PE config address 702 * might be ready when calling the function. Therefore, endeavour to 703 * use the PE config address if possible. Further more, there're 2 704 * RTAS calls for the purpose, we need to try the new one and back 705 * to the old one if the new one couldn't work properly. 706 */ 707 static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay) 708 { 709 int config_addr; 710 int ret; 711 int rets[4]; 712 int result; 713 714 /* Figure out PE config address if possible */ 715 config_addr = pe->config_addr; 716 if (pe->addr) 717 config_addr = pe->addr; 718 719 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { 720 ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets, 721 config_addr, BUID_HI(pe->phb->buid), 722 BUID_LO(pe->phb->buid)); 723 } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) { 724 /* Fake PE unavailable info */ 725 rets[2] = 0; 726 ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets, 727 config_addr, BUID_HI(pe->phb->buid), 728 BUID_LO(pe->phb->buid)); 729 } else { 730 return EEH_STATE_NOT_SUPPORT; 731 } 732 733 if (ret) 734 return ret; 735 736 /* Parse the result out */ 737 if (!rets[1]) 738 return EEH_STATE_NOT_SUPPORT; 739 740 switch(rets[0]) { 741 case 0: 742 result = EEH_STATE_MMIO_ACTIVE | 743 EEH_STATE_DMA_ACTIVE; 744 break; 745 case 1: 746 result = EEH_STATE_RESET_ACTIVE | 747 EEH_STATE_MMIO_ACTIVE | 748 EEH_STATE_DMA_ACTIVE; 749 break; 750 case 2: 751 result = 0; 752 break; 753 case 4: 754 result = EEH_STATE_MMIO_ENABLED; 755 break; 756 case 5: 757 if (rets[2]) { 758 if (delay) 759 *delay = rets[2]; 760 result = EEH_STATE_UNAVAILABLE; 761 } else { 762 result = EEH_STATE_NOT_SUPPORT; 763 } 764 break; 765 default: 766 result = EEH_STATE_NOT_SUPPORT; 767 } 768 769 return result; 770 } 771 772 /** 773 * pseries_eeh_reset - Reset the specified PE 774 * @pe: EEH PE 775 * @option: reset option 776 * 777 * Reset the specified PE 778 */ 779 static int pseries_eeh_reset(struct eeh_pe *pe, int option) 780 { 781 int config_addr; 782 783 /* Figure out PE address */ 784 config_addr = pe->config_addr; 785 if (pe->addr) 786 config_addr = pe->addr; 787 788 return pseries_eeh_phb_reset(pe->phb, config_addr, option); 789 } 790 791 /** 792 * pseries_eeh_get_log - Retrieve error log 793 * @pe: EEH PE 794 * @severity: temporary or permanent error log 795 * @drv_log: driver log to be combined with retrieved error log 796 * @len: length of driver log 797 * 798 * Retrieve the temporary or permanent error from the PE. 799 * Actually, the error will be retrieved through the dedicated 800 * RTAS call. 801 */ 802 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len) 803 { 804 int config_addr; 805 unsigned long flags; 806 int ret; 807 808 spin_lock_irqsave(&slot_errbuf_lock, flags); 809 memset(slot_errbuf, 0, eeh_error_buf_size); 810 811 /* Figure out the PE address */ 812 config_addr = pe->config_addr; 813 if (pe->addr) 814 config_addr = pe->addr; 815 816 ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr, 817 BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), 818 virt_to_phys(drv_log), len, 819 virt_to_phys(slot_errbuf), eeh_error_buf_size, 820 severity); 821 if (!ret) 822 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); 823 spin_unlock_irqrestore(&slot_errbuf_lock, flags); 824 825 return ret; 826 } 827 828 /** 829 * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE 830 * @pe: EEH PE 831 * 832 */ 833 static int pseries_eeh_configure_bridge(struct eeh_pe *pe) 834 { 835 int config_addr; 836 837 /* Figure out the PE address */ 838 config_addr = pe->config_addr; 839 if (pe->addr) 840 config_addr = pe->addr; 841 842 return pseries_eeh_phb_configure_bridge(pe->phb, config_addr); 843 } 844 845 /** 846 * pseries_eeh_read_config - Read PCI config space 847 * @edev: EEH device handle 848 * @where: PCI config space offset 849 * @size: size to read 850 * @val: return value 851 * 852 * Read config space from the speicifed device 853 */ 854 static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val) 855 { 856 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 857 858 return rtas_read_config(pdn, where, size, val); 859 } 860 861 /** 862 * pseries_eeh_write_config - Write PCI config space 863 * @edev: EEH device handle 864 * @where: PCI config space offset 865 * @size: size to write 866 * @val: value to be written 867 * 868 * Write config space to the specified device 869 */ 870 static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val) 871 { 872 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 873 874 return rtas_write_config(pdn, where, size, val); 875 } 876 877 #ifdef CONFIG_PCI_IOV 878 int pseries_send_allow_unfreeze(struct pci_dn *pdn, 879 u16 *vf_pe_array, int cur_vfs) 880 { 881 int rc; 882 int ibm_allow_unfreeze = rtas_token("ibm,open-sriov-allow-unfreeze"); 883 unsigned long buid, addr; 884 885 addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); 886 buid = pdn->phb->buid; 887 spin_lock(&rtas_data_buf_lock); 888 memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE); 889 rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL, 890 addr, 891 BUID_HI(buid), 892 BUID_LO(buid), 893 rtas_data_buf, cur_vfs * sizeof(u16)); 894 spin_unlock(&rtas_data_buf_lock); 895 if (rc) 896 pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n", 897 __func__, 898 pdn->phb->global_number, addr, rc); 899 return rc; 900 } 901 902 static int pseries_call_allow_unfreeze(struct eeh_dev *edev) 903 { 904 int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num; 905 struct pci_dn *pdn, *tmp, *parent, *physfn_pdn; 906 u16 *vf_pe_array; 907 908 vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); 909 if (!vf_pe_array) 910 return -ENOMEM; 911 if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) { 912 if (edev->pdev->is_physfn) { 913 cur_vfs = pci_num_vf(edev->pdev); 914 pdn = eeh_dev_to_pdn(edev); 915 parent = pdn->parent; 916 for (vf_index = 0; vf_index < cur_vfs; vf_index++) 917 vf_pe_array[vf_index] = 918 cpu_to_be16(pdn->pe_num_map[vf_index]); 919 rc = pseries_send_allow_unfreeze(pdn, vf_pe_array, 920 cur_vfs); 921 pdn->last_allow_rc = rc; 922 for (vf_index = 0; vf_index < cur_vfs; vf_index++) { 923 list_for_each_entry_safe(pdn, tmp, 924 &parent->child_list, 925 list) { 926 bus = pci_iov_virtfn_bus(edev->pdev, 927 vf_index); 928 devfn = pci_iov_virtfn_devfn(edev->pdev, 929 vf_index); 930 if (pdn->busno != bus || 931 pdn->devfn != devfn) 932 continue; 933 pdn->last_allow_rc = rc; 934 } 935 } 936 } else { 937 pdn = pci_get_pdn(edev->pdev); 938 physfn_pdn = pci_get_pdn(edev->physfn); 939 940 vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index]; 941 vf_pe_array[0] = cpu_to_be16(vf_pe_num); 942 rc = pseries_send_allow_unfreeze(physfn_pdn, 943 vf_pe_array, 1); 944 pdn->last_allow_rc = rc; 945 } 946 } 947 948 kfree(vf_pe_array); 949 return rc; 950 } 951 952 static int pseries_notify_resume(struct eeh_dev *edev) 953 { 954 if (!edev) 955 return -EEXIST; 956 957 if (rtas_token("ibm,open-sriov-allow-unfreeze") 958 == RTAS_UNKNOWN_SERVICE) 959 return -EINVAL; 960 961 if (edev->pdev->is_physfn || edev->pdev->is_virtfn) 962 return pseries_call_allow_unfreeze(edev); 963 964 return 0; 965 } 966 #endif 967 968 static struct eeh_ops pseries_eeh_ops = { 969 .name = "pseries", 970 .init = pseries_eeh_init, 971 .probe = pseries_eeh_probe, 972 .set_option = pseries_eeh_set_option, 973 .get_state = pseries_eeh_get_state, 974 .reset = pseries_eeh_reset, 975 .get_log = pseries_eeh_get_log, 976 .configure_bridge = pseries_eeh_configure_bridge, 977 .err_inject = NULL, 978 .read_config = pseries_eeh_read_config, 979 .write_config = pseries_eeh_write_config, 980 .next_error = NULL, 981 .restore_config = NULL, /* NB: configure_bridge() does this */ 982 #ifdef CONFIG_PCI_IOV 983 .notify_resume = pseries_notify_resume 984 #endif 985 }; 986 987 /** 988 * eeh_pseries_init - Register platform dependent EEH operations 989 * 990 * EEH initialization on pseries platform. This function should be 991 * called before any EEH related functions. 992 */ 993 static int __init eeh_pseries_init(void) 994 { 995 int ret; 996 997 ret = eeh_ops_register(&pseries_eeh_ops); 998 if (!ret) 999 pr_info("EEH: pSeries platform initialized\n"); 1000 else 1001 pr_info("EEH: pSeries platform initialization failure (%d)\n", 1002 ret); 1003 1004 return ret; 1005 } 1006 machine_early_initcall(pseries, eeh_pseries_init); 1007