xref: /openbmc/linux/arch/powerpc/platforms/pseries/eeh_pseries.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * The file intends to implement the platform dependent EEH operations on pseries.
3  * Actually, the pseries platform is built based on RTAS heavily. That means the
4  * pseries platform dependent EEH operations will be built on RTAS calls. The functions
5  * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
6  * been done.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
9  * Copyright IBM Corporation 2001, 2005, 2006
10  * Copyright Dave Engebretsen & Todd Inglett 2001
11  * Copyright Linas Vepstas 2005, 2006
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
26  */
27 
28 #include <linux/atomic.h>
29 #include <linux/delay.h>
30 #include <linux/export.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/of.h>
34 #include <linux/pci.h>
35 #include <linux/proc_fs.h>
36 #include <linux/rbtree.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47 
48 /* RTAS tokens */
49 static int ibm_set_eeh_option;
50 static int ibm_set_slot_reset;
51 static int ibm_read_slot_reset_state;
52 static int ibm_read_slot_reset_state2;
53 static int ibm_slot_error_detail;
54 static int ibm_get_config_addr_info;
55 static int ibm_get_config_addr_info2;
56 static int ibm_configure_pe;
57 
58 #ifdef CONFIG_PCI_IOV
59 void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
60 {
61 	struct pci_dn *pdn = pci_get_pdn(pdev);
62 	struct pci_dn *physfn_pdn;
63 	struct eeh_dev *edev;
64 
65 	if (!pdev->is_virtfn)
66 		return;
67 
68 	pdn->device_id  =  pdev->device;
69 	pdn->vendor_id  =  pdev->vendor;
70 	pdn->class_code =  pdev->class;
71 	/*
72 	 * Last allow unfreeze return code used for retrieval
73 	 * by user space in eeh-sysfs to show the last command
74 	 * completion from platform.
75 	 */
76 	pdn->last_allow_rc =  0;
77 	physfn_pdn      =  pci_get_pdn(pdev->physfn);
78 	pdn->pe_number  =  physfn_pdn->pe_num_map[pdn->vf_index];
79 	edev = pdn_to_eeh_dev(pdn);
80 
81 	/*
82 	 * The following operations will fail if VF's sysfs files
83 	 * aren't created or its resources aren't finalized.
84 	 */
85 	eeh_add_device_early(pdn);
86 	eeh_add_device_late(pdev);
87 	edev->pe_config_addr =  (pdn->busno << 16) | (pdn->devfn << 8);
88 	eeh_rmv_from_parent_pe(edev); /* Remove as it is adding to bus pe */
89 	eeh_add_to_parent_pe(edev);   /* Add as VF PE type */
90 	eeh_sysfs_add_device(pdev);
91 
92 }
93 #endif
94 
95 /*
96  * Buffer for reporting slot-error-detail rtas calls. Its here
97  * in BSS, and not dynamically alloced, so that it ends up in
98  * RMO where RTAS can access it.
99  */
100 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
101 static DEFINE_SPINLOCK(slot_errbuf_lock);
102 static int eeh_error_buf_size;
103 
104 /**
105  * pseries_eeh_init - EEH platform dependent initialization
106  *
107  * EEH platform dependent initialization on pseries.
108  */
109 static int pseries_eeh_init(void)
110 {
111 	/* figure out EEH RTAS function call tokens */
112 	ibm_set_eeh_option		= rtas_token("ibm,set-eeh-option");
113 	ibm_set_slot_reset		= rtas_token("ibm,set-slot-reset");
114 	ibm_read_slot_reset_state2	= rtas_token("ibm,read-slot-reset-state2");
115 	ibm_read_slot_reset_state	= rtas_token("ibm,read-slot-reset-state");
116 	ibm_slot_error_detail		= rtas_token("ibm,slot-error-detail");
117 	ibm_get_config_addr_info2	= rtas_token("ibm,get-config-addr-info2");
118 	ibm_get_config_addr_info	= rtas_token("ibm,get-config-addr-info");
119 	ibm_configure_pe		= rtas_token("ibm,configure-pe");
120 
121 	/*
122 	 * ibm,configure-pe and ibm,configure-bridge have the same semantics,
123 	 * however ibm,configure-pe can be faster.  If we can't find
124 	 * ibm,configure-pe then fall back to using ibm,configure-bridge.
125 	 */
126 	if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
127 		ibm_configure_pe 	= rtas_token("ibm,configure-bridge");
128 
129 	/*
130 	 * Necessary sanity check. We needn't check "get-config-addr-info"
131 	 * and its variant since the old firmware probably support address
132 	 * of domain/bus/slot/function for EEH RTAS operations.
133 	 */
134 	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE		||
135 	    ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE		||
136 	    (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
137 	     ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE)	||
138 	    ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE	||
139 	    ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
140 		pr_info("EEH functionality not supported\n");
141 		return -EINVAL;
142 	}
143 
144 	/* Initialize error log lock and size */
145 	spin_lock_init(&slot_errbuf_lock);
146 	eeh_error_buf_size = rtas_token("rtas-error-log-max");
147 	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
148 		pr_info("%s: unknown EEH error log size\n",
149 			__func__);
150 		eeh_error_buf_size = 1024;
151 	} else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
152 		pr_info("%s: EEH error log size %d exceeds the maximal %d\n",
153 			__func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
154 		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
155 	}
156 
157 	/* Set EEH probe mode */
158 	eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
159 
160 #ifdef CONFIG_PCI_IOV
161 	/* Set EEH machine dependent code */
162 	ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
163 #endif
164 
165 	return 0;
166 }
167 
168 static int pseries_eeh_cap_start(struct pci_dn *pdn)
169 {
170 	u32 status;
171 
172 	if (!pdn)
173 		return 0;
174 
175 	rtas_read_config(pdn, PCI_STATUS, 2, &status);
176 	if (!(status & PCI_STATUS_CAP_LIST))
177 		return 0;
178 
179 	return PCI_CAPABILITY_LIST;
180 }
181 
182 
183 static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
184 {
185 	int pos = pseries_eeh_cap_start(pdn);
186 	int cnt = 48;	/* Maximal number of capabilities */
187 	u32 id;
188 
189 	if (!pos)
190 		return 0;
191 
192         while (cnt--) {
193 		rtas_read_config(pdn, pos, 1, &pos);
194 		if (pos < 0x40)
195 			break;
196 		pos &= ~3;
197 		rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
198 		if (id == 0xff)
199 			break;
200 		if (id == cap)
201 			return pos;
202 		pos += PCI_CAP_LIST_NEXT;
203 	}
204 
205 	return 0;
206 }
207 
208 static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
209 {
210 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
211 	u32 header;
212 	int pos = 256;
213 	int ttl = (4096 - 256) / 8;
214 
215 	if (!edev || !edev->pcie_cap)
216 		return 0;
217 	if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
218 		return 0;
219 	else if (!header)
220 		return 0;
221 
222 	while (ttl-- > 0) {
223 		if (PCI_EXT_CAP_ID(header) == cap && pos)
224 			return pos;
225 
226 		pos = PCI_EXT_CAP_NEXT(header);
227 		if (pos < 256)
228 			break;
229 
230 		if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
231 			break;
232 	}
233 
234 	return 0;
235 }
236 
237 /**
238  * pseries_eeh_probe - EEH probe on the given device
239  * @pdn: PCI device node
240  * @data: Unused
241  *
242  * When EEH module is installed during system boot, all PCI devices
243  * are checked one by one to see if it supports EEH. The function
244  * is introduced for the purpose.
245  */
246 static void *pseries_eeh_probe(struct pci_dn *pdn, void *data)
247 {
248 	struct eeh_dev *edev;
249 	struct eeh_pe pe;
250 	u32 pcie_flags;
251 	int enable = 0;
252 	int ret;
253 
254 	/* Retrieve OF node and eeh device */
255 	edev = pdn_to_eeh_dev(pdn);
256 	if (!edev || edev->pe)
257 		return NULL;
258 
259 	/* Check class/vendor/device IDs */
260 	if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
261 		return NULL;
262 
263 	/* Skip for PCI-ISA bridge */
264         if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
265 		return NULL;
266 
267 	/*
268 	 * Update class code and mode of eeh device. We need
269 	 * correctly reflects that current device is root port
270 	 * or PCIe switch downstream port.
271 	 */
272 	edev->class_code = pdn->class_code;
273 	edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
274 	edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
275 	edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
276 	edev->mode &= 0xFFFFFF00;
277 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
278 		edev->mode |= EEH_DEV_BRIDGE;
279 		if (edev->pcie_cap) {
280 			rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
281 					 2, &pcie_flags);
282 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
283 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
284 				edev->mode |= EEH_DEV_ROOT_PORT;
285 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
286 				edev->mode |= EEH_DEV_DS_PORT;
287 		}
288 	}
289 
290 	/* Initialize the fake PE */
291 	memset(&pe, 0, sizeof(struct eeh_pe));
292 	pe.phb = pdn->phb;
293 	pe.config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
294 
295 	/* Enable EEH on the device */
296 	ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
297 	if (!ret) {
298 		/* Retrieve PE address */
299 		edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
300 		pe.addr = edev->pe_config_addr;
301 
302 		/* Some older systems (Power4) allow the ibm,set-eeh-option
303 		 * call to succeed even on nodes where EEH is not supported.
304 		 * Verify support explicitly.
305 		 */
306 		ret = eeh_ops->get_state(&pe, NULL);
307 		if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
308 			enable = 1;
309 
310 		if (enable) {
311 			eeh_add_flag(EEH_ENABLED);
312 			eeh_add_to_parent_pe(edev);
313 
314 			pr_debug("%s: EEH enabled on %02x:%02x.%01x PHB#%x-PE#%x\n",
315 				__func__, pdn->busno, PCI_SLOT(pdn->devfn),
316 				PCI_FUNC(pdn->devfn), pe.phb->global_number,
317 				pe.addr);
318 		} else if (pdn->parent && pdn_to_eeh_dev(pdn->parent) &&
319 			   (pdn_to_eeh_dev(pdn->parent))->pe) {
320 			/* This device doesn't support EEH, but it may have an
321 			 * EEH parent, in which case we mark it as supported.
322 			 */
323 			edev->pe_config_addr = pdn_to_eeh_dev(pdn->parent)->pe_config_addr;
324 			eeh_add_to_parent_pe(edev);
325 		}
326 	}
327 
328 	/* Save memory bars */
329 	eeh_save_bars(edev);
330 
331 	return NULL;
332 }
333 
334 /**
335  * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
336  * @pe: EEH PE
337  * @option: operation to be issued
338  *
339  * The function is used to control the EEH functionality globally.
340  * Currently, following options are support according to PAPR:
341  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
342  */
343 static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
344 {
345 	int ret = 0;
346 	int config_addr;
347 
348 	/*
349 	 * When we're enabling or disabling EEH functioality on
350 	 * the particular PE, the PE config address is possibly
351 	 * unavailable. Therefore, we have to figure it out from
352 	 * the FDT node.
353 	 */
354 	switch (option) {
355 	case EEH_OPT_DISABLE:
356 	case EEH_OPT_ENABLE:
357 	case EEH_OPT_THAW_MMIO:
358 	case EEH_OPT_THAW_DMA:
359 		config_addr = pe->config_addr;
360 		if (pe->addr)
361 			config_addr = pe->addr;
362 		break;
363 	case EEH_OPT_FREEZE_PE:
364 		/* Not support */
365 		return 0;
366 	default:
367 		pr_err("%s: Invalid option %d\n",
368 			__func__, option);
369 		return -EINVAL;
370 	}
371 
372 	ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
373 			config_addr, BUID_HI(pe->phb->buid),
374 			BUID_LO(pe->phb->buid), option);
375 
376 	return ret;
377 }
378 
379 /**
380  * pseries_eeh_get_pe_addr - Retrieve PE address
381  * @pe: EEH PE
382  *
383  * Retrieve the assocated PE address. Actually, there're 2 RTAS
384  * function calls dedicated for the purpose. We need implement
385  * it through the new function and then the old one. Besides,
386  * you should make sure the config address is figured out from
387  * FDT node before calling the function.
388  *
389  * It's notable that zero'ed return value means invalid PE config
390  * address.
391  */
392 static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
393 {
394 	int ret = 0;
395 	int rets[3];
396 
397 	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
398 		/*
399 		 * First of all, we need to make sure there has one PE
400 		 * associated with the device. Otherwise, PE address is
401 		 * meaningless.
402 		 */
403 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
404 				pe->config_addr, BUID_HI(pe->phb->buid),
405 				BUID_LO(pe->phb->buid), 1);
406 		if (ret || (rets[0] == 0))
407 			return 0;
408 
409 		/* Retrieve the associated PE config address */
410 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
411 				pe->config_addr, BUID_HI(pe->phb->buid),
412 				BUID_LO(pe->phb->buid), 0);
413 		if (ret) {
414 			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
415 				__func__, pe->phb->global_number, pe->config_addr);
416 			return 0;
417 		}
418 
419 		return rets[0];
420 	}
421 
422 	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
423 		ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
424 				pe->config_addr, BUID_HI(pe->phb->buid),
425 				BUID_LO(pe->phb->buid), 0);
426 		if (ret) {
427 			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
428 				__func__, pe->phb->global_number, pe->config_addr);
429 			return 0;
430 		}
431 
432 		return rets[0];
433 	}
434 
435 	return ret;
436 }
437 
438 /**
439  * pseries_eeh_get_state - Retrieve PE state
440  * @pe: EEH PE
441  * @state: return value
442  *
443  * Retrieve the state of the specified PE. On RTAS compliant
444  * pseries platform, there already has one dedicated RTAS function
445  * for the purpose. It's notable that the associated PE config address
446  * might be ready when calling the function. Therefore, endeavour to
447  * use the PE config address if possible. Further more, there're 2
448  * RTAS calls for the purpose, we need to try the new one and back
449  * to the old one if the new one couldn't work properly.
450  */
451 static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
452 {
453 	int config_addr;
454 	int ret;
455 	int rets[4];
456 	int result;
457 
458 	/* Figure out PE config address if possible */
459 	config_addr = pe->config_addr;
460 	if (pe->addr)
461 		config_addr = pe->addr;
462 
463 	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
464 		ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
465 				config_addr, BUID_HI(pe->phb->buid),
466 				BUID_LO(pe->phb->buid));
467 	} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
468 		/* Fake PE unavailable info */
469 		rets[2] = 0;
470 		ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
471 				config_addr, BUID_HI(pe->phb->buid),
472 				BUID_LO(pe->phb->buid));
473 	} else {
474 		return EEH_STATE_NOT_SUPPORT;
475 	}
476 
477 	if (ret)
478 		return ret;
479 
480 	/* Parse the result out */
481 	if (!rets[1])
482 		return EEH_STATE_NOT_SUPPORT;
483 
484 	switch(rets[0]) {
485 	case 0:
486 		result = EEH_STATE_MMIO_ACTIVE |
487 			 EEH_STATE_DMA_ACTIVE;
488 		break;
489 	case 1:
490 		result = EEH_STATE_RESET_ACTIVE |
491 			 EEH_STATE_MMIO_ACTIVE  |
492 			 EEH_STATE_DMA_ACTIVE;
493 		break;
494 	case 2:
495 		result = 0;
496 		break;
497 	case 4:
498 		result = EEH_STATE_MMIO_ENABLED;
499 		break;
500 	case 5:
501 		if (rets[2]) {
502 			if (state) *state = rets[2];
503 			result = EEH_STATE_UNAVAILABLE;
504 		} else {
505 			result = EEH_STATE_NOT_SUPPORT;
506 		}
507 		break;
508 	default:
509 		result = EEH_STATE_NOT_SUPPORT;
510 	}
511 
512 	return result;
513 }
514 
515 /**
516  * pseries_eeh_reset - Reset the specified PE
517  * @pe: EEH PE
518  * @option: reset option
519  *
520  * Reset the specified PE
521  */
522 static int pseries_eeh_reset(struct eeh_pe *pe, int option)
523 {
524 	int config_addr;
525 	int ret;
526 
527 	/* Figure out PE address */
528 	config_addr = pe->config_addr;
529 	if (pe->addr)
530 		config_addr = pe->addr;
531 
532 	/* Reset PE through RTAS call */
533 	ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
534 			config_addr, BUID_HI(pe->phb->buid),
535 			BUID_LO(pe->phb->buid), option);
536 
537 	/* If fundamental-reset not supported, try hot-reset */
538 	if (option == EEH_RESET_FUNDAMENTAL &&
539 	    ret == -8) {
540 		option = EEH_RESET_HOT;
541 		ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
542 				config_addr, BUID_HI(pe->phb->buid),
543 				BUID_LO(pe->phb->buid), option);
544 	}
545 
546 	/* We need reset hold or settlement delay */
547 	if (option == EEH_RESET_FUNDAMENTAL ||
548 	    option == EEH_RESET_HOT)
549 		msleep(EEH_PE_RST_HOLD_TIME);
550 	else
551 		msleep(EEH_PE_RST_SETTLE_TIME);
552 
553 	return ret;
554 }
555 
556 /**
557  * pseries_eeh_wait_state - Wait for PE state
558  * @pe: EEH PE
559  * @max_wait: maximal period in millisecond
560  *
561  * Wait for the state of associated PE. It might take some time
562  * to retrieve the PE's state.
563  */
564 static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
565 {
566 	int ret;
567 	int mwait;
568 
569 	/*
570 	 * According to PAPR, the state of PE might be temporarily
571 	 * unavailable. Under the circumstance, we have to wait
572 	 * for indicated time determined by firmware. The maximal
573 	 * wait time is 5 minutes, which is acquired from the original
574 	 * EEH implementation. Also, the original implementation
575 	 * also defined the minimal wait time as 1 second.
576 	 */
577 #define EEH_STATE_MIN_WAIT_TIME	(1000)
578 #define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
579 
580 	while (1) {
581 		ret = pseries_eeh_get_state(pe, &mwait);
582 
583 		/*
584 		 * If the PE's state is temporarily unavailable,
585 		 * we have to wait for the specified time. Otherwise,
586 		 * the PE's state will be returned immediately.
587 		 */
588 		if (ret != EEH_STATE_UNAVAILABLE)
589 			return ret;
590 
591 		if (max_wait <= 0) {
592 			pr_warn("%s: Timeout when getting PE's state (%d)\n",
593 				__func__, max_wait);
594 			return EEH_STATE_NOT_SUPPORT;
595 		}
596 
597 		if (mwait <= 0) {
598 			pr_warn("%s: Firmware returned bad wait value %d\n",
599 				__func__, mwait);
600 			mwait = EEH_STATE_MIN_WAIT_TIME;
601 		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
602 			pr_warn("%s: Firmware returned too long wait value %d\n",
603 				__func__, mwait);
604 			mwait = EEH_STATE_MAX_WAIT_TIME;
605 		}
606 
607 		max_wait -= mwait;
608 		msleep(mwait);
609 	}
610 
611 	return EEH_STATE_NOT_SUPPORT;
612 }
613 
614 /**
615  * pseries_eeh_get_log - Retrieve error log
616  * @pe: EEH PE
617  * @severity: temporary or permanent error log
618  * @drv_log: driver log to be combined with retrieved error log
619  * @len: length of driver log
620  *
621  * Retrieve the temporary or permanent error from the PE.
622  * Actually, the error will be retrieved through the dedicated
623  * RTAS call.
624  */
625 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
626 {
627 	int config_addr;
628 	unsigned long flags;
629 	int ret;
630 
631 	spin_lock_irqsave(&slot_errbuf_lock, flags);
632 	memset(slot_errbuf, 0, eeh_error_buf_size);
633 
634 	/* Figure out the PE address */
635 	config_addr = pe->config_addr;
636 	if (pe->addr)
637 		config_addr = pe->addr;
638 
639 	ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
640 			BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
641 			virt_to_phys(drv_log), len,
642 			virt_to_phys(slot_errbuf), eeh_error_buf_size,
643 			severity);
644 	if (!ret)
645 		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
646 	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
647 
648 	return ret;
649 }
650 
651 /**
652  * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
653  * @pe: EEH PE
654  *
655  * The function will be called to reconfigure the bridges included
656  * in the specified PE so that the mulfunctional PE would be recovered
657  * again.
658  */
659 static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
660 {
661 	int config_addr;
662 	int ret;
663 	/* Waiting 0.2s maximum before skipping configuration */
664 	int max_wait = 200;
665 
666 	/* Figure out the PE address */
667 	config_addr = pe->config_addr;
668 	if (pe->addr)
669 		config_addr = pe->addr;
670 
671 	while (max_wait > 0) {
672 		ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
673 				config_addr, BUID_HI(pe->phb->buid),
674 				BUID_LO(pe->phb->buid));
675 
676 		if (!ret)
677 			return ret;
678 
679 		/*
680 		 * If RTAS returns a delay value that's above 100ms, cut it
681 		 * down to 100ms in case firmware made a mistake.  For more
682 		 * on how these delay values work see rtas_busy_delay_time
683 		 */
684 		if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
685 		    ret <= RTAS_EXTENDED_DELAY_MAX)
686 			ret = RTAS_EXTENDED_DELAY_MIN+2;
687 
688 		max_wait -= rtas_busy_delay_time(ret);
689 
690 		if (max_wait < 0)
691 			break;
692 
693 		rtas_busy_delay(ret);
694 	}
695 
696 	pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
697 		__func__, pe->phb->global_number, pe->addr, ret);
698 	return ret;
699 }
700 
701 /**
702  * pseries_eeh_read_config - Read PCI config space
703  * @pdn: PCI device node
704  * @where: PCI address
705  * @size: size to read
706  * @val: return value
707  *
708  * Read config space from the speicifed device
709  */
710 static int pseries_eeh_read_config(struct pci_dn *pdn, int where, int size, u32 *val)
711 {
712 	return rtas_read_config(pdn, where, size, val);
713 }
714 
715 /**
716  * pseries_eeh_write_config - Write PCI config space
717  * @pdn: PCI device node
718  * @where: PCI address
719  * @size: size to write
720  * @val: value to be written
721  *
722  * Write config space to the specified device
723  */
724 static int pseries_eeh_write_config(struct pci_dn *pdn, int where, int size, u32 val)
725 {
726 	return rtas_write_config(pdn, where, size, val);
727 }
728 
729 static int pseries_eeh_restore_config(struct pci_dn *pdn)
730 {
731 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
732 	s64 ret = 0;
733 
734 	if (!edev)
735 		return -EEXIST;
736 
737 	/*
738 	 * FIXME: The MPS, error routing rules, timeout setting are worthy
739 	 * to be exported by firmware in extendible way.
740 	 */
741 	if (edev->physfn)
742 		ret = eeh_restore_vf_config(pdn);
743 
744 	if (ret) {
745 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
746 			__func__, edev->pe_config_addr, ret);
747 		return -EIO;
748 	}
749 
750 	return ret;
751 }
752 
753 #ifdef CONFIG_PCI_IOV
754 int pseries_send_allow_unfreeze(struct pci_dn *pdn,
755 				u16 *vf_pe_array, int cur_vfs)
756 {
757 	int rc;
758 	int ibm_allow_unfreeze = rtas_token("ibm,open-sriov-allow-unfreeze");
759 	unsigned long buid, addr;
760 
761 	addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
762 	buid = pdn->phb->buid;
763 	spin_lock(&rtas_data_buf_lock);
764 	memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
765 	rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
766 		       addr,
767 		       BUID_HI(buid),
768 		       BUID_LO(buid),
769 		       rtas_data_buf, cur_vfs * sizeof(u16));
770 	spin_unlock(&rtas_data_buf_lock);
771 	if (rc)
772 		pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
773 			__func__,
774 			pdn->phb->global_number, addr, rc);
775 	return rc;
776 }
777 
778 static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
779 {
780 	struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
781 	int cur_vfs = 0, rc = 0, vf_index, bus, devfn;
782 	u16 *vf_pe_array;
783 
784 	vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
785 	if (!vf_pe_array)
786 		return -ENOMEM;
787 	if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
788 		if (edev->pdev->is_physfn) {
789 			cur_vfs = pci_num_vf(edev->pdev);
790 			pdn = eeh_dev_to_pdn(edev);
791 			parent = pdn->parent;
792 			for (vf_index = 0; vf_index < cur_vfs; vf_index++)
793 				vf_pe_array[vf_index] =
794 					cpu_to_be16(pdn->pe_num_map[vf_index]);
795 			rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
796 							 cur_vfs);
797 			pdn->last_allow_rc = rc;
798 			for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
799 				list_for_each_entry_safe(pdn, tmp,
800 							 &parent->child_list,
801 							 list) {
802 					bus = pci_iov_virtfn_bus(edev->pdev,
803 								 vf_index);
804 					devfn = pci_iov_virtfn_devfn(edev->pdev,
805 								     vf_index);
806 					if (pdn->busno != bus ||
807 					    pdn->devfn != devfn)
808 						continue;
809 					pdn->last_allow_rc = rc;
810 				}
811 			}
812 		} else {
813 			pdn = pci_get_pdn(edev->pdev);
814 			vf_pe_array[0] = cpu_to_be16(pdn->pe_number);
815 			physfn_pdn = pci_get_pdn(edev->physfn);
816 			rc = pseries_send_allow_unfreeze(physfn_pdn,
817 							 vf_pe_array, 1);
818 			pdn->last_allow_rc = rc;
819 		}
820 	}
821 
822 	kfree(vf_pe_array);
823 	return rc;
824 }
825 
826 static int pseries_notify_resume(struct pci_dn *pdn)
827 {
828 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
829 
830 	if (!edev)
831 		return -EEXIST;
832 
833 	if (rtas_token("ibm,open-sriov-allow-unfreeze")
834 	    == RTAS_UNKNOWN_SERVICE)
835 		return -EINVAL;
836 
837 	if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
838 		return pseries_call_allow_unfreeze(edev);
839 
840 	return 0;
841 }
842 #endif
843 
844 static struct eeh_ops pseries_eeh_ops = {
845 	.name			= "pseries",
846 	.init			= pseries_eeh_init,
847 	.probe			= pseries_eeh_probe,
848 	.set_option		= pseries_eeh_set_option,
849 	.get_pe_addr		= pseries_eeh_get_pe_addr,
850 	.get_state		= pseries_eeh_get_state,
851 	.reset			= pseries_eeh_reset,
852 	.wait_state		= pseries_eeh_wait_state,
853 	.get_log		= pseries_eeh_get_log,
854 	.configure_bridge       = pseries_eeh_configure_bridge,
855 	.err_inject		= NULL,
856 	.read_config		= pseries_eeh_read_config,
857 	.write_config		= pseries_eeh_write_config,
858 	.next_error		= NULL,
859 	.restore_config		= pseries_eeh_restore_config,
860 #ifdef CONFIG_PCI_IOV
861 	.notify_resume		= pseries_notify_resume
862 #endif
863 };
864 
865 /**
866  * eeh_pseries_init - Register platform dependent EEH operations
867  *
868  * EEH initialization on pseries platform. This function should be
869  * called before any EEH related functions.
870  */
871 static int __init eeh_pseries_init(void)
872 {
873 	int ret;
874 
875 	ret = eeh_ops_register(&pseries_eeh_ops);
876 	if (!ret)
877 		pr_info("EEH: pSeries platform initialized\n");
878 	else
879 		pr_info("EEH: pSeries platform initialization failure (%d)\n",
880 			ret);
881 
882 	return ret;
883 }
884 machine_early_initcall(pseries, eeh_pseries_init);
885