1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * The file intends to implement the platform dependent EEH operations on pseries.
4  * Actually, the pseries platform is built based on RTAS heavily. That means the
5  * pseries platform dependent EEH operations will be built on RTAS calls. The functions
6  * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
7  * been done.
8  *
9  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
10  * Copyright IBM Corporation 2001, 2005, 2006
11  * Copyright Dave Engebretsen & Todd Inglett 2001
12  * Copyright Linas Vepstas 2005, 2006
13  */
14 
15 #include <linux/atomic.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
20 #include <linux/of.h>
21 #include <linux/pci.h>
22 #include <linux/proc_fs.h>
23 #include <linux/rbtree.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/spinlock.h>
27 #include <linux/crash_dump.h>
28 
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
35 
36 /* RTAS tokens */
37 static int ibm_set_eeh_option;
38 static int ibm_set_slot_reset;
39 static int ibm_read_slot_reset_state;
40 static int ibm_read_slot_reset_state2;
41 static int ibm_slot_error_detail;
42 static int ibm_get_config_addr_info;
43 static int ibm_get_config_addr_info2;
44 static int ibm_configure_pe;
45 
46 static void pseries_eeh_init_edev(struct pci_dn *pdn);
47 
48 static void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
49 {
50 	struct pci_dn *pdn = pci_get_pdn(pdev);
51 
52 	if (eeh_has_flag(EEH_FORCE_DISABLED))
53 		return;
54 
55 	dev_dbg(&pdev->dev, "EEH: Setting up device\n");
56 #ifdef CONFIG_PCI_IOV
57 	if (pdev->is_virtfn) {
58 		pdn->device_id  =  pdev->device;
59 		pdn->vendor_id  =  pdev->vendor;
60 		pdn->class_code =  pdev->class;
61 		/*
62 		 * Last allow unfreeze return code used for retrieval
63 		 * by user space in eeh-sysfs to show the last command
64 		 * completion from platform.
65 		 */
66 		pdn->last_allow_rc =  0;
67 	}
68 #endif
69 	pseries_eeh_init_edev(pdn);
70 #ifdef CONFIG_PCI_IOV
71 	if (pdev->is_virtfn) {
72 		/*
73 		 * FIXME: This really should be handled by choosing the right
74 		 *        parent PE in pseries_eeh_init_edev().
75 		 */
76 		struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe;
77 		struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
78 
79 		edev->pe_config_addr =  (pdn->busno << 16) | (pdn->devfn << 8);
80 		eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */
81 		eeh_pe_tree_insert(edev, physfn_pe);   /* Add as VF PE type */
82 	}
83 #endif
84 	eeh_probe_device(pdev);
85 }
86 
87 
88 /**
89  * pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
90  * @pdn: pci_dn of the input device
91  *
92  * The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
93  * pe_config_addr) as a handle to a given PE. This function finds the
94  * pe_config_addr based on the device's config addr.
95  *
96  * Keep in mind that the pe_config_addr *might* be numerically identical to the
97  * device's config addr, but the two are conceptually distinct.
98  *
99  * Returns the pe_config_addr, or a negative error code.
100  */
101 static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn)
102 {
103 	int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
104 	struct pci_controller *phb = pdn->phb;
105 	int ret, rets[3];
106 
107 	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
108 		/*
109 		 * First of all, use function 1 to determine if this device is
110 		 * part of a PE or not. ret[0] being zero indicates it's not.
111 		 */
112 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
113 				config_addr, BUID_HI(phb->buid),
114 				BUID_LO(phb->buid), 1);
115 		if (ret || (rets[0] == 0))
116 			return -ENOENT;
117 
118 		/* Retrieve the associated PE config address with function 0 */
119 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
120 				config_addr, BUID_HI(phb->buid),
121 				BUID_LO(phb->buid), 0);
122 		if (ret) {
123 			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
124 				__func__, phb->global_number, config_addr);
125 			return -ENXIO;
126 		}
127 
128 		return rets[0];
129 	}
130 
131 	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
132 		ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
133 				config_addr, BUID_HI(phb->buid),
134 				BUID_LO(phb->buid), 0);
135 		if (ret) {
136 			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
137 				__func__, phb->global_number, config_addr);
138 			return -ENXIO;
139 		}
140 
141 		return rets[0];
142 	}
143 
144 	/*
145 	 * PAPR does describe a process for finding the pe_config_addr that was
146 	 * used before the ibm,get-config-addr-info calls were added. However,
147 	 * I haven't found *any* systems that don't have that RTAS call
148 	 * implemented. If you happen to find one that needs the old DT based
149 	 * process, patches are welcome!
150 	 */
151 	return -ENOENT;
152 }
153 
154 /**
155  * pseries_eeh_phb_reset - Reset the specified PHB
156  * @phb: PCI controller
157  * @config_addr: the associated config address
158  * @option: reset option
159  *
160  * Reset the specified PHB/PE
161  */
162 static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option)
163 {
164 	int ret;
165 
166 	/* Reset PE through RTAS call */
167 	ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
168 			config_addr, BUID_HI(phb->buid),
169 			BUID_LO(phb->buid), option);
170 
171 	/* If fundamental-reset not supported, try hot-reset */
172 	if (option == EEH_RESET_FUNDAMENTAL && ret == -8) {
173 		option = EEH_RESET_HOT;
174 		ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
175 				config_addr, BUID_HI(phb->buid),
176 				BUID_LO(phb->buid), option);
177 	}
178 
179 	/* We need reset hold or settlement delay */
180 	if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT)
181 		msleep(EEH_PE_RST_HOLD_TIME);
182 	else
183 		msleep(EEH_PE_RST_SETTLE_TIME);
184 
185 	return ret;
186 }
187 
188 /**
189  * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
190  * @phb: PCI controller
191  * @config_addr: the associated config address
192  *
193  * The function will be called to reconfigure the bridges included
194  * in the specified PE so that the mulfunctional PE would be recovered
195  * again.
196  */
197 static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr)
198 {
199 	int ret;
200 	/* Waiting 0.2s maximum before skipping configuration */
201 	int max_wait = 200;
202 
203 	while (max_wait > 0) {
204 		ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
205 				config_addr, BUID_HI(phb->buid),
206 				BUID_LO(phb->buid));
207 
208 		if (!ret)
209 			return ret;
210 		if (ret < 0)
211 			break;
212 
213 		/*
214 		 * If RTAS returns a delay value that's above 100ms, cut it
215 		 * down to 100ms in case firmware made a mistake.  For more
216 		 * on how these delay values work see rtas_busy_delay_time
217 		 */
218 		if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
219 		    ret <= RTAS_EXTENDED_DELAY_MAX)
220 			ret = RTAS_EXTENDED_DELAY_MIN+2;
221 
222 		max_wait -= rtas_busy_delay_time(ret);
223 
224 		if (max_wait < 0)
225 			break;
226 
227 		rtas_busy_delay(ret);
228 	}
229 
230 	pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
231 		__func__, phb->global_number, config_addr, ret);
232 	/* PAPR defines -3 as "Parameter Error" for this function: */
233 	if (ret == -3)
234 		return -EINVAL;
235 	else
236 		return -EIO;
237 }
238 
239 /*
240  * Buffer for reporting slot-error-detail rtas calls. Its here
241  * in BSS, and not dynamically alloced, so that it ends up in
242  * RMO where RTAS can access it.
243  */
244 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
245 static DEFINE_SPINLOCK(slot_errbuf_lock);
246 static int eeh_error_buf_size;
247 
248 static int pseries_eeh_cap_start(struct pci_dn *pdn)
249 {
250 	u32 status;
251 
252 	if (!pdn)
253 		return 0;
254 
255 	rtas_read_config(pdn, PCI_STATUS, 2, &status);
256 	if (!(status & PCI_STATUS_CAP_LIST))
257 		return 0;
258 
259 	return PCI_CAPABILITY_LIST;
260 }
261 
262 
263 static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
264 {
265 	int pos = pseries_eeh_cap_start(pdn);
266 	int cnt = 48;	/* Maximal number of capabilities */
267 	u32 id;
268 
269 	if (!pos)
270 		return 0;
271 
272         while (cnt--) {
273 		rtas_read_config(pdn, pos, 1, &pos);
274 		if (pos < 0x40)
275 			break;
276 		pos &= ~3;
277 		rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
278 		if (id == 0xff)
279 			break;
280 		if (id == cap)
281 			return pos;
282 		pos += PCI_CAP_LIST_NEXT;
283 	}
284 
285 	return 0;
286 }
287 
288 static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
289 {
290 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
291 	u32 header;
292 	int pos = 256;
293 	int ttl = (4096 - 256) / 8;
294 
295 	if (!edev || !edev->pcie_cap)
296 		return 0;
297 	if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
298 		return 0;
299 	else if (!header)
300 		return 0;
301 
302 	while (ttl-- > 0) {
303 		if (PCI_EXT_CAP_ID(header) == cap && pos)
304 			return pos;
305 
306 		pos = PCI_EXT_CAP_NEXT(header);
307 		if (pos < 256)
308 			break;
309 
310 		if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
311 			break;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * pseries_eeh_pe_get_parent - Retrieve the parent PE
319  * @edev: EEH device
320  *
321  * The whole PEs existing in the system are organized as hierarchy
322  * tree. The function is used to retrieve the parent PE according
323  * to the parent EEH device.
324  */
325 static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev)
326 {
327 	struct eeh_dev *parent;
328 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
329 
330 	/*
331 	 * It might have the case for the indirect parent
332 	 * EEH device already having associated PE, but
333 	 * the direct parent EEH device doesn't have yet.
334 	 */
335 	if (edev->physfn)
336 		pdn = pci_get_pdn(edev->physfn);
337 	else
338 		pdn = pdn ? pdn->parent : NULL;
339 	while (pdn) {
340 		/* We're poking out of PCI territory */
341 		parent = pdn_to_eeh_dev(pdn);
342 		if (!parent)
343 			return NULL;
344 
345 		if (parent->pe)
346 			return parent->pe;
347 
348 		pdn = pdn->parent;
349 	}
350 
351 	return NULL;
352 }
353 
354 /**
355  * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
356  *
357  * @pdn: PCI device node
358  *
359  * When we discover a new PCI device via the device-tree we create a
360  * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
361  * This function takes care of the initialisation and inserts the eeh_dev
362  * into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
363  */
364 static void pseries_eeh_init_edev(struct pci_dn *pdn)
365 {
366 	struct eeh_pe pe, *parent;
367 	struct eeh_dev *edev;
368 	u32 pcie_flags;
369 	int ret;
370 
371 	if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)))
372 		return;
373 
374 	/*
375 	 * Find the eeh_dev for this pdn. The storage for the eeh_dev was
376 	 * allocated at the same time as the pci_dn.
377 	 *
378 	 * XXX: We should probably re-visit that.
379 	 */
380 	edev = pdn_to_eeh_dev(pdn);
381 	if (!edev)
382 		return;
383 
384 	/*
385 	 * If ->pe is set then we've already probed this device. We hit
386 	 * this path when a pci_dev is removed and rescanned while recovering
387 	 * a PE (i.e. for devices where the driver doesn't support error
388 	 * recovery).
389 	 */
390 	if (edev->pe)
391 		return;
392 
393 	/* Check class/vendor/device IDs */
394 	if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
395 		return;
396 
397 	/* Skip for PCI-ISA bridge */
398         if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
399 		return;
400 
401 	eeh_edev_dbg(edev, "Probing device\n");
402 
403 	/*
404 	 * Update class code and mode of eeh device. We need
405 	 * correctly reflects that current device is root port
406 	 * or PCIe switch downstream port.
407 	 */
408 	edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
409 	edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
410 	edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
411 	edev->mode &= 0xFFFFFF00;
412 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
413 		edev->mode |= EEH_DEV_BRIDGE;
414 		if (edev->pcie_cap) {
415 			rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
416 					 2, &pcie_flags);
417 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
418 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
419 				edev->mode |= EEH_DEV_ROOT_PORT;
420 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
421 				edev->mode |= EEH_DEV_DS_PORT;
422 		}
423 	}
424 
425 	/* first up, find the pe_config_addr for the PE containing the device */
426 	ret = pseries_eeh_get_pe_config_addr(pdn);
427 	if (ret < 0) {
428 		eeh_edev_dbg(edev, "Unable to find pe_config_addr\n");
429 		goto err;
430 	}
431 
432 	/* Try enable EEH on the fake PE */
433 	memset(&pe, 0, sizeof(struct eeh_pe));
434 	pe.phb = pdn->phb;
435 	pe.addr = ret;
436 
437 	eeh_edev_dbg(edev, "Enabling EEH on device\n");
438 	ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
439 	if (ret) {
440 		eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret);
441 		goto err;
442 	}
443 
444 	edev->pe_config_addr = pe.addr;
445 
446 	eeh_add_flag(EEH_ENABLED);
447 
448 	parent = pseries_eeh_pe_get_parent(edev);
449 	eeh_pe_tree_insert(edev, parent);
450 	eeh_save_bars(edev);
451 	eeh_edev_dbg(edev, "EEH enabled for device");
452 
453 	return;
454 
455 err:
456 	eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret);
457 }
458 
459 static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev)
460 {
461 	struct eeh_dev *edev;
462 	struct pci_dn *pdn;
463 
464 	pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn);
465 	if (!pdn)
466 		return NULL;
467 
468 	/*
469 	 * If the system supports EEH on this device then the eeh_dev was
470 	 * configured and inserted into a PE in pseries_eeh_init_edev()
471 	 */
472 	edev = pdn_to_eeh_dev(pdn);
473 	if (!edev || !edev->pe)
474 		return NULL;
475 
476 	return edev;
477 }
478 
479 /**
480  * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
481  * @pdn: PCI device node
482  *
483  * This routine must be used to perform EEH initialization for the
484  * indicated PCI device that was added after system boot (e.g.
485  * hotplug, dlpar).
486  */
487 void pseries_eeh_init_edev_recursive(struct pci_dn *pdn)
488 {
489 	struct pci_dn *n;
490 
491 	if (!pdn)
492 		return;
493 
494 	list_for_each_entry(n, &pdn->child_list, list)
495 		pseries_eeh_init_edev_recursive(n);
496 
497 	pseries_eeh_init_edev(pdn);
498 }
499 EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive);
500 
501 /**
502  * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
503  * @pe: EEH PE
504  * @option: operation to be issued
505  *
506  * The function is used to control the EEH functionality globally.
507  * Currently, following options are support according to PAPR:
508  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
509  */
510 static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
511 {
512 	int ret = 0;
513 
514 	/*
515 	 * When we're enabling or disabling EEH functionality on
516 	 * the particular PE, the PE config address is possibly
517 	 * unavailable. Therefore, we have to figure it out from
518 	 * the FDT node.
519 	 */
520 	switch (option) {
521 	case EEH_OPT_DISABLE:
522 	case EEH_OPT_ENABLE:
523 	case EEH_OPT_THAW_MMIO:
524 	case EEH_OPT_THAW_DMA:
525 		break;
526 	case EEH_OPT_FREEZE_PE:
527 		/* Not support */
528 		return 0;
529 	default:
530 		pr_err("%s: Invalid option %d\n", __func__, option);
531 		return -EINVAL;
532 	}
533 
534 	ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
535 			pe->addr, BUID_HI(pe->phb->buid),
536 			BUID_LO(pe->phb->buid), option);
537 
538 	return ret;
539 }
540 
541 /**
542  * pseries_eeh_get_state - Retrieve PE state
543  * @pe: EEH PE
544  * @delay: suggested time to wait if state is unavailable
545  *
546  * Retrieve the state of the specified PE. On RTAS compliant
547  * pseries platform, there already has one dedicated RTAS function
548  * for the purpose. It's notable that the associated PE config address
549  * might be ready when calling the function. Therefore, endeavour to
550  * use the PE config address if possible. Further more, there're 2
551  * RTAS calls for the purpose, we need to try the new one and back
552  * to the old one if the new one couldn't work properly.
553  */
554 static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
555 {
556 	int ret;
557 	int rets[4];
558 	int result;
559 
560 	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
561 		ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
562 				pe->addr, BUID_HI(pe->phb->buid),
563 				BUID_LO(pe->phb->buid));
564 	} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
565 		/* Fake PE unavailable info */
566 		rets[2] = 0;
567 		ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
568 				pe->addr, BUID_HI(pe->phb->buid),
569 				BUID_LO(pe->phb->buid));
570 	} else {
571 		return EEH_STATE_NOT_SUPPORT;
572 	}
573 
574 	if (ret)
575 		return ret;
576 
577 	/* Parse the result out */
578 	if (!rets[1])
579 		return EEH_STATE_NOT_SUPPORT;
580 
581 	switch(rets[0]) {
582 	case 0:
583 		result = EEH_STATE_MMIO_ACTIVE |
584 			 EEH_STATE_DMA_ACTIVE;
585 		break;
586 	case 1:
587 		result = EEH_STATE_RESET_ACTIVE |
588 			 EEH_STATE_MMIO_ACTIVE  |
589 			 EEH_STATE_DMA_ACTIVE;
590 		break;
591 	case 2:
592 		result = 0;
593 		break;
594 	case 4:
595 		result = EEH_STATE_MMIO_ENABLED;
596 		break;
597 	case 5:
598 		if (rets[2]) {
599 			if (delay)
600 				*delay = rets[2];
601 			result = EEH_STATE_UNAVAILABLE;
602 		} else {
603 			result = EEH_STATE_NOT_SUPPORT;
604 		}
605 		break;
606 	default:
607 		result = EEH_STATE_NOT_SUPPORT;
608 	}
609 
610 	return result;
611 }
612 
613 /**
614  * pseries_eeh_reset - Reset the specified PE
615  * @pe: EEH PE
616  * @option: reset option
617  *
618  * Reset the specified PE
619  */
620 static int pseries_eeh_reset(struct eeh_pe *pe, int option)
621 {
622 	return pseries_eeh_phb_reset(pe->phb, pe->addr, option);
623 }
624 
625 /**
626  * pseries_eeh_get_log - Retrieve error log
627  * @pe: EEH PE
628  * @severity: temporary or permanent error log
629  * @drv_log: driver log to be combined with retrieved error log
630  * @len: length of driver log
631  *
632  * Retrieve the temporary or permanent error from the PE.
633  * Actually, the error will be retrieved through the dedicated
634  * RTAS call.
635  */
636 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
637 {
638 	unsigned long flags;
639 	int ret;
640 
641 	spin_lock_irqsave(&slot_errbuf_lock, flags);
642 	memset(slot_errbuf, 0, eeh_error_buf_size);
643 
644 	ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr,
645 			BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
646 			virt_to_phys(drv_log), len,
647 			virt_to_phys(slot_errbuf), eeh_error_buf_size,
648 			severity);
649 	if (!ret)
650 		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
651 	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
652 
653 	return ret;
654 }
655 
656 /**
657  * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
658  * @pe: EEH PE
659  *
660  */
661 static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
662 {
663 	return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr);
664 }
665 
666 /**
667  * pseries_eeh_read_config - Read PCI config space
668  * @edev: EEH device handle
669  * @where: PCI config space offset
670  * @size: size to read
671  * @val: return value
672  *
673  * Read config space from the speicifed device
674  */
675 static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val)
676 {
677 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
678 
679 	return rtas_read_config(pdn, where, size, val);
680 }
681 
682 /**
683  * pseries_eeh_write_config - Write PCI config space
684  * @edev: EEH device handle
685  * @where: PCI config space offset
686  * @size: size to write
687  * @val: value to be written
688  *
689  * Write config space to the specified device
690  */
691 static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val)
692 {
693 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
694 
695 	return rtas_write_config(pdn, where, size, val);
696 }
697 
698 #ifdef CONFIG_PCI_IOV
699 static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs)
700 {
701 	int rc;
702 	int ibm_allow_unfreeze = rtas_token("ibm,open-sriov-allow-unfreeze");
703 	unsigned long buid, addr;
704 
705 	addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
706 	buid = pdn->phb->buid;
707 	spin_lock(&rtas_data_buf_lock);
708 	memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
709 	rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
710 		       addr,
711 		       BUID_HI(buid),
712 		       BUID_LO(buid),
713 		       rtas_data_buf, cur_vfs * sizeof(u16));
714 	spin_unlock(&rtas_data_buf_lock);
715 	if (rc)
716 		pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
717 			__func__,
718 			pdn->phb->global_number, addr, rc);
719 	return rc;
720 }
721 
722 static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
723 {
724 	int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num;
725 	struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
726 	u16 *vf_pe_array;
727 
728 	vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
729 	if (!vf_pe_array)
730 		return -ENOMEM;
731 	if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
732 		if (edev->pdev->is_physfn) {
733 			cur_vfs = pci_num_vf(edev->pdev);
734 			pdn = eeh_dev_to_pdn(edev);
735 			parent = pdn->parent;
736 			for (vf_index = 0; vf_index < cur_vfs; vf_index++)
737 				vf_pe_array[vf_index] =
738 					cpu_to_be16(pdn->pe_num_map[vf_index]);
739 			rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
740 							 cur_vfs);
741 			pdn->last_allow_rc = rc;
742 			for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
743 				list_for_each_entry_safe(pdn, tmp,
744 							 &parent->child_list,
745 							 list) {
746 					bus = pci_iov_virtfn_bus(edev->pdev,
747 								 vf_index);
748 					devfn = pci_iov_virtfn_devfn(edev->pdev,
749 								     vf_index);
750 					if (pdn->busno != bus ||
751 					    pdn->devfn != devfn)
752 						continue;
753 					pdn->last_allow_rc = rc;
754 				}
755 			}
756 		} else {
757 			pdn = pci_get_pdn(edev->pdev);
758 			physfn_pdn = pci_get_pdn(edev->physfn);
759 
760 			vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index];
761 			vf_pe_array[0] = cpu_to_be16(vf_pe_num);
762 			rc = pseries_send_allow_unfreeze(physfn_pdn,
763 							 vf_pe_array, 1);
764 			pdn->last_allow_rc = rc;
765 		}
766 	}
767 
768 	kfree(vf_pe_array);
769 	return rc;
770 }
771 
772 static int pseries_notify_resume(struct eeh_dev *edev)
773 {
774 	if (!edev)
775 		return -EEXIST;
776 
777 	if (rtas_token("ibm,open-sriov-allow-unfreeze") == RTAS_UNKNOWN_SERVICE)
778 		return -EINVAL;
779 
780 	if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
781 		return pseries_call_allow_unfreeze(edev);
782 
783 	return 0;
784 }
785 #endif
786 
787 static struct eeh_ops pseries_eeh_ops = {
788 	.name			= "pseries",
789 	.probe			= pseries_eeh_probe,
790 	.set_option		= pseries_eeh_set_option,
791 	.get_state		= pseries_eeh_get_state,
792 	.reset			= pseries_eeh_reset,
793 	.get_log		= pseries_eeh_get_log,
794 	.configure_bridge       = pseries_eeh_configure_bridge,
795 	.err_inject		= NULL,
796 	.read_config		= pseries_eeh_read_config,
797 	.write_config		= pseries_eeh_write_config,
798 	.next_error		= NULL,
799 	.restore_config		= NULL, /* NB: configure_bridge() does this */
800 #ifdef CONFIG_PCI_IOV
801 	.notify_resume		= pseries_notify_resume
802 #endif
803 };
804 
805 /**
806  * eeh_pseries_init - Register platform dependent EEH operations
807  *
808  * EEH initialization on pseries platform. This function should be
809  * called before any EEH related functions.
810  */
811 static int __init eeh_pseries_init(void)
812 {
813 	struct pci_controller *phb;
814 	struct pci_dn *pdn;
815 	int ret, config_addr;
816 
817 	/* figure out EEH RTAS function call tokens */
818 	ibm_set_eeh_option		= rtas_token("ibm,set-eeh-option");
819 	ibm_set_slot_reset		= rtas_token("ibm,set-slot-reset");
820 	ibm_read_slot_reset_state2	= rtas_token("ibm,read-slot-reset-state2");
821 	ibm_read_slot_reset_state	= rtas_token("ibm,read-slot-reset-state");
822 	ibm_slot_error_detail		= rtas_token("ibm,slot-error-detail");
823 	ibm_get_config_addr_info2	= rtas_token("ibm,get-config-addr-info2");
824 	ibm_get_config_addr_info	= rtas_token("ibm,get-config-addr-info");
825 	ibm_configure_pe		= rtas_token("ibm,configure-pe");
826 
827 	/*
828 	 * ibm,configure-pe and ibm,configure-bridge have the same semantics,
829 	 * however ibm,configure-pe can be faster.  If we can't find
830 	 * ibm,configure-pe then fall back to using ibm,configure-bridge.
831 	 */
832 	if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
833 		ibm_configure_pe	= rtas_token("ibm,configure-bridge");
834 
835 	/*
836 	 * Necessary sanity check. We needn't check "get-config-addr-info"
837 	 * and its variant since the old firmware probably support address
838 	 * of domain/bus/slot/function for EEH RTAS operations.
839 	 */
840 	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE		||
841 	    ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE		||
842 	    (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
843 	     ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE)	||
844 	    ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE	||
845 	    ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
846 		pr_info("EEH functionality not supported\n");
847 		return -EINVAL;
848 	}
849 
850 	/* Initialize error log size */
851 	eeh_error_buf_size = rtas_get_error_log_max();
852 
853 	/* Set EEH probe mode */
854 	eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
855 
856 	/* Set EEH machine dependent code */
857 	ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
858 
859 	if (is_kdump_kernel() || reset_devices) {
860 		pr_info("Issue PHB reset ...\n");
861 		list_for_each_entry(phb, &hose_list, list_node) {
862 			// Skip if the slot is empty
863 			if (list_empty(&PCI_DN(phb->dn)->child_list))
864 				continue;
865 
866 			pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list);
867 			config_addr = pseries_eeh_get_pe_config_addr(pdn);
868 
869 			/* invalid PE config addr */
870 			if (config_addr < 0)
871 				continue;
872 
873 			pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL);
874 			pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE);
875 			pseries_eeh_phb_configure_bridge(phb, config_addr);
876 		}
877 	}
878 
879 	ret = eeh_init(&pseries_eeh_ops);
880 	if (!ret)
881 		pr_info("EEH: pSeries platform initialized\n");
882 	else
883 		pr_info("EEH: pSeries platform initialization failure (%d)\n",
884 			ret);
885 	return ret;
886 }
887 machine_arch_initcall(pseries, eeh_pseries_init);
888