1 /*
2  * The file intends to implement the platform dependent EEH operations on pseries.
3  * Actually, the pseries platform is built based on RTAS heavily. That means the
4  * pseries platform dependent EEH operations will be built on RTAS calls. The functions
5  * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
6  * been done.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
9  * Copyright IBM Corporation 2001, 2005, 2006
10  * Copyright Dave Engebretsen & Todd Inglett 2001
11  * Copyright Linas Vepstas 2005, 2006
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
26  */
27 
28 #include <linux/atomic.h>
29 #include <linux/delay.h>
30 #include <linux/export.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/of.h>
34 #include <linux/pci.h>
35 #include <linux/proc_fs.h>
36 #include <linux/rbtree.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47 
48 /* RTAS tokens */
49 static int ibm_set_eeh_option;
50 static int ibm_set_slot_reset;
51 static int ibm_read_slot_reset_state;
52 static int ibm_read_slot_reset_state2;
53 static int ibm_slot_error_detail;
54 static int ibm_get_config_addr_info;
55 static int ibm_get_config_addr_info2;
56 static int ibm_configure_bridge;
57 static int ibm_configure_pe;
58 
59 /*
60  * Buffer for reporting slot-error-detail rtas calls. Its here
61  * in BSS, and not dynamically alloced, so that it ends up in
62  * RMO where RTAS can access it.
63  */
64 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
65 static DEFINE_SPINLOCK(slot_errbuf_lock);
66 static int eeh_error_buf_size;
67 
68 /**
69  * pseries_eeh_init - EEH platform dependent initialization
70  *
71  * EEH platform dependent initialization on pseries.
72  */
73 static int pseries_eeh_init(void)
74 {
75 	/* figure out EEH RTAS function call tokens */
76 	ibm_set_eeh_option		= rtas_token("ibm,set-eeh-option");
77 	ibm_set_slot_reset		= rtas_token("ibm,set-slot-reset");
78 	ibm_read_slot_reset_state2	= rtas_token("ibm,read-slot-reset-state2");
79 	ibm_read_slot_reset_state	= rtas_token("ibm,read-slot-reset-state");
80 	ibm_slot_error_detail		= rtas_token("ibm,slot-error-detail");
81 	ibm_get_config_addr_info2	= rtas_token("ibm,get-config-addr-info2");
82 	ibm_get_config_addr_info	= rtas_token("ibm,get-config-addr-info");
83 	ibm_configure_pe		= rtas_token("ibm,configure-pe");
84 	ibm_configure_bridge		= rtas_token("ibm,configure-bridge");
85 
86 	/*
87 	 * Necessary sanity check. We needn't check "get-config-addr-info"
88 	 * and its variant since the old firmware probably support address
89 	 * of domain/bus/slot/function for EEH RTAS operations.
90 	 */
91 	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) {
92 		pr_warning("%s: RTAS service <ibm,set-eeh-option> invalid\n",
93 			__func__);
94 		return -EINVAL;
95 	} else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) {
96 		pr_warning("%s: RTAS service <ibm,set-slot-reset> invalid\n",
97 			__func__);
98 		return -EINVAL;
99 	} else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
100 		   ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) {
101 		pr_warning("%s: RTAS service <ibm,read-slot-reset-state2> and "
102 			"<ibm,read-slot-reset-state> invalid\n",
103 			__func__);
104 		return -EINVAL;
105 	} else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) {
106 		pr_warning("%s: RTAS service <ibm,slot-error-detail> invalid\n",
107 			__func__);
108 		return -EINVAL;
109 	} else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
110 		   ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) {
111 		pr_warning("%s: RTAS service <ibm,configure-pe> and "
112 			"<ibm,configure-bridge> invalid\n",
113 			__func__);
114 		return -EINVAL;
115 	}
116 
117 	/* Initialize error log lock and size */
118 	spin_lock_init(&slot_errbuf_lock);
119 	eeh_error_buf_size = rtas_token("rtas-error-log-max");
120 	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
121 		pr_warning("%s: unknown EEH error log size\n",
122 			__func__);
123 		eeh_error_buf_size = 1024;
124 	} else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
125 		pr_warning("%s: EEH error log size %d exceeds the maximal %d\n",
126 			__func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
127 		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
128 	}
129 
130 	/* Set EEH probe mode */
131 	eeh_probe_mode_set(EEH_PROBE_MODE_DEVTREE);
132 
133 	return 0;
134 }
135 
136 static int pseries_eeh_cap_start(struct device_node *dn)
137 {
138 	struct pci_dn *pdn = PCI_DN(dn);
139 	u32 status;
140 
141 	if (!pdn)
142 		return 0;
143 
144 	rtas_read_config(pdn, PCI_STATUS, 2, &status);
145 	if (!(status & PCI_STATUS_CAP_LIST))
146 		return 0;
147 
148 	return PCI_CAPABILITY_LIST;
149 }
150 
151 
152 static int pseries_eeh_find_cap(struct device_node *dn, int cap)
153 {
154 	struct pci_dn *pdn = PCI_DN(dn);
155 	int pos = pseries_eeh_cap_start(dn);
156 	int cnt = 48;	/* Maximal number of capabilities */
157 	u32 id;
158 
159 	if (!pos)
160 		return 0;
161 
162         while (cnt--) {
163 		rtas_read_config(pdn, pos, 1, &pos);
164 		if (pos < 0x40)
165 			break;
166 		pos &= ~3;
167 		rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
168 		if (id == 0xff)
169 			break;
170 		if (id == cap)
171 			return pos;
172 		pos += PCI_CAP_LIST_NEXT;
173 	}
174 
175 	return 0;
176 }
177 
178 /**
179  * pseries_eeh_of_probe - EEH probe on the given device
180  * @dn: OF node
181  * @flag: Unused
182  *
183  * When EEH module is installed during system boot, all PCI devices
184  * are checked one by one to see if it supports EEH. The function
185  * is introduced for the purpose.
186  */
187 static void *pseries_eeh_of_probe(struct device_node *dn, void *flag)
188 {
189 	struct eeh_dev *edev;
190 	struct eeh_pe pe;
191 	struct pci_dn *pdn = PCI_DN(dn);
192 	const __be32 *classp, *vendorp, *devicep;
193 	u32 class_code;
194 	const __be32 *regs;
195 	u32 pcie_flags;
196 	int enable = 0;
197 	int ret;
198 
199 	/* Retrieve OF node and eeh device */
200 	edev = of_node_to_eeh_dev(dn);
201 	if (edev->pe || !of_device_is_available(dn))
202 		return NULL;
203 
204 	/* Retrieve class/vendor/device IDs */
205 	classp = of_get_property(dn, "class-code", NULL);
206 	vendorp = of_get_property(dn, "vendor-id", NULL);
207 	devicep = of_get_property(dn, "device-id", NULL);
208 
209 	/* Skip for bad OF node or PCI-ISA bridge */
210 	if (!classp || !vendorp || !devicep)
211 		return NULL;
212 	if (dn->type && !strcmp(dn->type, "isa"))
213 		return NULL;
214 
215 	class_code = of_read_number(classp, 1);
216 
217 	/*
218 	 * Update class code and mode of eeh device. We need
219 	 * correctly reflects that current device is root port
220 	 * or PCIe switch downstream port.
221 	 */
222 	edev->class_code = class_code;
223 	edev->pcie_cap = pseries_eeh_find_cap(dn, PCI_CAP_ID_EXP);
224 	edev->mode &= 0xFFFFFF00;
225 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
226 		edev->mode |= EEH_DEV_BRIDGE;
227 		if (edev->pcie_cap) {
228 			rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
229 					 2, &pcie_flags);
230 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
231 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
232 				edev->mode |= EEH_DEV_ROOT_PORT;
233 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
234 				edev->mode |= EEH_DEV_DS_PORT;
235 		}
236 	}
237 
238 	/* Retrieve the device address */
239 	regs = of_get_property(dn, "reg", NULL);
240 	if (!regs) {
241 		pr_warning("%s: OF node property %s::reg not found\n",
242 			__func__, dn->full_name);
243 		return NULL;
244 	}
245 
246 	/* Initialize the fake PE */
247 	memset(&pe, 0, sizeof(struct eeh_pe));
248 	pe.phb = edev->phb;
249 	pe.config_addr = of_read_number(regs, 1);
250 
251 	/* Enable EEH on the device */
252 	ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
253 	if (!ret) {
254 		edev->config_addr = of_read_number(regs, 1);
255 		/* Retrieve PE address */
256 		edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
257 		pe.addr = edev->pe_config_addr;
258 
259 		/* Some older systems (Power4) allow the ibm,set-eeh-option
260 		 * call to succeed even on nodes where EEH is not supported.
261 		 * Verify support explicitly.
262 		 */
263 		ret = eeh_ops->get_state(&pe, NULL);
264 		if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
265 			enable = 1;
266 
267 		if (enable) {
268 			eeh_subsystem_enabled = 1;
269 			eeh_add_to_parent_pe(edev);
270 
271 			pr_debug("%s: EEH enabled on %s PHB#%d-PE#%x, config addr#%x\n",
272 				__func__, dn->full_name, pe.phb->global_number,
273 				pe.addr, pe.config_addr);
274 		} else if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
275 			   (of_node_to_eeh_dev(dn->parent))->pe) {
276 			/* This device doesn't support EEH, but it may have an
277 			 * EEH parent, in which case we mark it as supported.
278 			 */
279 			edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
280 			edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr;
281 			eeh_add_to_parent_pe(edev);
282 		}
283 	}
284 
285 	/* Save memory bars */
286 	eeh_save_bars(edev);
287 
288 	return NULL;
289 }
290 
291 /**
292  * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
293  * @pe: EEH PE
294  * @option: operation to be issued
295  *
296  * The function is used to control the EEH functionality globally.
297  * Currently, following options are support according to PAPR:
298  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
299  */
300 static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
301 {
302 	int ret = 0;
303 	int config_addr;
304 
305 	/*
306 	 * When we're enabling or disabling EEH functioality on
307 	 * the particular PE, the PE config address is possibly
308 	 * unavailable. Therefore, we have to figure it out from
309 	 * the FDT node.
310 	 */
311 	switch (option) {
312 	case EEH_OPT_DISABLE:
313 	case EEH_OPT_ENABLE:
314 	case EEH_OPT_THAW_MMIO:
315 	case EEH_OPT_THAW_DMA:
316 		config_addr = pe->config_addr;
317 		if (pe->addr)
318 			config_addr = pe->addr;
319 		break;
320 
321 	default:
322 		pr_err("%s: Invalid option %d\n",
323 			__func__, option);
324 		return -EINVAL;
325 	}
326 
327 	ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
328 			config_addr, BUID_HI(pe->phb->buid),
329 			BUID_LO(pe->phb->buid), option);
330 
331 	return ret;
332 }
333 
334 /**
335  * pseries_eeh_get_pe_addr - Retrieve PE address
336  * @pe: EEH PE
337  *
338  * Retrieve the assocated PE address. Actually, there're 2 RTAS
339  * function calls dedicated for the purpose. We need implement
340  * it through the new function and then the old one. Besides,
341  * you should make sure the config address is figured out from
342  * FDT node before calling the function.
343  *
344  * It's notable that zero'ed return value means invalid PE config
345  * address.
346  */
347 static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
348 {
349 	int ret = 0;
350 	int rets[3];
351 
352 	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
353 		/*
354 		 * First of all, we need to make sure there has one PE
355 		 * associated with the device. Otherwise, PE address is
356 		 * meaningless.
357 		 */
358 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
359 				pe->config_addr, BUID_HI(pe->phb->buid),
360 				BUID_LO(pe->phb->buid), 1);
361 		if (ret || (rets[0] == 0))
362 			return 0;
363 
364 		/* Retrieve the associated PE config address */
365 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
366 				pe->config_addr, BUID_HI(pe->phb->buid),
367 				BUID_LO(pe->phb->buid), 0);
368 		if (ret) {
369 			pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
370 				__func__, pe->phb->global_number, pe->config_addr);
371 			return 0;
372 		}
373 
374 		return rets[0];
375 	}
376 
377 	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
378 		ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
379 				pe->config_addr, BUID_HI(pe->phb->buid),
380 				BUID_LO(pe->phb->buid), 0);
381 		if (ret) {
382 			pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
383 				__func__, pe->phb->global_number, pe->config_addr);
384 			return 0;
385 		}
386 
387 		return rets[0];
388 	}
389 
390 	return ret;
391 }
392 
393 /**
394  * pseries_eeh_get_state - Retrieve PE state
395  * @pe: EEH PE
396  * @state: return value
397  *
398  * Retrieve the state of the specified PE. On RTAS compliant
399  * pseries platform, there already has one dedicated RTAS function
400  * for the purpose. It's notable that the associated PE config address
401  * might be ready when calling the function. Therefore, endeavour to
402  * use the PE config address if possible. Further more, there're 2
403  * RTAS calls for the purpose, we need to try the new one and back
404  * to the old one if the new one couldn't work properly.
405  */
406 static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
407 {
408 	int config_addr;
409 	int ret;
410 	int rets[4];
411 	int result;
412 
413 	/* Figure out PE config address if possible */
414 	config_addr = pe->config_addr;
415 	if (pe->addr)
416 		config_addr = pe->addr;
417 
418 	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
419 		ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
420 				config_addr, BUID_HI(pe->phb->buid),
421 				BUID_LO(pe->phb->buid));
422 	} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
423 		/* Fake PE unavailable info */
424 		rets[2] = 0;
425 		ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
426 				config_addr, BUID_HI(pe->phb->buid),
427 				BUID_LO(pe->phb->buid));
428 	} else {
429 		return EEH_STATE_NOT_SUPPORT;
430 	}
431 
432 	if (ret)
433 		return ret;
434 
435 	/* Parse the result out */
436 	result = 0;
437 	if (rets[1]) {
438 		switch(rets[0]) {
439 		case 0:
440 			result &= ~EEH_STATE_RESET_ACTIVE;
441 			result |= EEH_STATE_MMIO_ACTIVE;
442 			result |= EEH_STATE_DMA_ACTIVE;
443 			break;
444 		case 1:
445 			result |= EEH_STATE_RESET_ACTIVE;
446 			result |= EEH_STATE_MMIO_ACTIVE;
447 			result |= EEH_STATE_DMA_ACTIVE;
448 			break;
449 		case 2:
450 			result &= ~EEH_STATE_RESET_ACTIVE;
451 			result &= ~EEH_STATE_MMIO_ACTIVE;
452 			result &= ~EEH_STATE_DMA_ACTIVE;
453 			break;
454 		case 4:
455 			result &= ~EEH_STATE_RESET_ACTIVE;
456 			result &= ~EEH_STATE_MMIO_ACTIVE;
457 			result &= ~EEH_STATE_DMA_ACTIVE;
458 			result |= EEH_STATE_MMIO_ENABLED;
459 			break;
460 		case 5:
461 			if (rets[2]) {
462 				if (state) *state = rets[2];
463 				result = EEH_STATE_UNAVAILABLE;
464 			} else {
465 				result = EEH_STATE_NOT_SUPPORT;
466 			}
467 		default:
468 			result = EEH_STATE_NOT_SUPPORT;
469 		}
470 	} else {
471 		result = EEH_STATE_NOT_SUPPORT;
472 	}
473 
474 	return result;
475 }
476 
477 /**
478  * pseries_eeh_reset - Reset the specified PE
479  * @pe: EEH PE
480  * @option: reset option
481  *
482  * Reset the specified PE
483  */
484 static int pseries_eeh_reset(struct eeh_pe *pe, int option)
485 {
486 	int config_addr;
487 	int ret;
488 
489 	/* Figure out PE address */
490 	config_addr = pe->config_addr;
491 	if (pe->addr)
492 		config_addr = pe->addr;
493 
494 	/* Reset PE through RTAS call */
495 	ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
496 			config_addr, BUID_HI(pe->phb->buid),
497 			BUID_LO(pe->phb->buid), option);
498 
499 	/* If fundamental-reset not supported, try hot-reset */
500 	if (option == EEH_RESET_FUNDAMENTAL &&
501 	    ret == -8) {
502 		ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
503 				config_addr, BUID_HI(pe->phb->buid),
504 				BUID_LO(pe->phb->buid), EEH_RESET_HOT);
505 	}
506 
507 	return ret;
508 }
509 
510 /**
511  * pseries_eeh_wait_state - Wait for PE state
512  * @pe: EEH PE
513  * @max_wait: maximal period in microsecond
514  *
515  * Wait for the state of associated PE. It might take some time
516  * to retrieve the PE's state.
517  */
518 static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
519 {
520 	int ret;
521 	int mwait;
522 
523 	/*
524 	 * According to PAPR, the state of PE might be temporarily
525 	 * unavailable. Under the circumstance, we have to wait
526 	 * for indicated time determined by firmware. The maximal
527 	 * wait time is 5 minutes, which is acquired from the original
528 	 * EEH implementation. Also, the original implementation
529 	 * also defined the minimal wait time as 1 second.
530 	 */
531 #define EEH_STATE_MIN_WAIT_TIME	(1000)
532 #define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
533 
534 	while (1) {
535 		ret = pseries_eeh_get_state(pe, &mwait);
536 
537 		/*
538 		 * If the PE's state is temporarily unavailable,
539 		 * we have to wait for the specified time. Otherwise,
540 		 * the PE's state will be returned immediately.
541 		 */
542 		if (ret != EEH_STATE_UNAVAILABLE)
543 			return ret;
544 
545 		if (max_wait <= 0) {
546 			pr_warning("%s: Timeout when getting PE's state (%d)\n",
547 				__func__, max_wait);
548 			return EEH_STATE_NOT_SUPPORT;
549 		}
550 
551 		if (mwait <= 0) {
552 			pr_warning("%s: Firmware returned bad wait value %d\n",
553 				__func__, mwait);
554 			mwait = EEH_STATE_MIN_WAIT_TIME;
555 		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
556 			pr_warning("%s: Firmware returned too long wait value %d\n",
557 				__func__, mwait);
558 			mwait = EEH_STATE_MAX_WAIT_TIME;
559 		}
560 
561 		max_wait -= mwait;
562 		msleep(mwait);
563 	}
564 
565 	return EEH_STATE_NOT_SUPPORT;
566 }
567 
568 /**
569  * pseries_eeh_get_log - Retrieve error log
570  * @pe: EEH PE
571  * @severity: temporary or permanent error log
572  * @drv_log: driver log to be combined with retrieved error log
573  * @len: length of driver log
574  *
575  * Retrieve the temporary or permanent error from the PE.
576  * Actually, the error will be retrieved through the dedicated
577  * RTAS call.
578  */
579 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
580 {
581 	int config_addr;
582 	unsigned long flags;
583 	int ret;
584 
585 	spin_lock_irqsave(&slot_errbuf_lock, flags);
586 	memset(slot_errbuf, 0, eeh_error_buf_size);
587 
588 	/* Figure out the PE address */
589 	config_addr = pe->config_addr;
590 	if (pe->addr)
591 		config_addr = pe->addr;
592 
593 	ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
594 			BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
595 			virt_to_phys(drv_log), len,
596 			virt_to_phys(slot_errbuf), eeh_error_buf_size,
597 			severity);
598 	if (!ret)
599 		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
600 	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
601 
602 	return ret;
603 }
604 
605 /**
606  * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
607  * @pe: EEH PE
608  *
609  * The function will be called to reconfigure the bridges included
610  * in the specified PE so that the mulfunctional PE would be recovered
611  * again.
612  */
613 static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
614 {
615 	int config_addr;
616 	int ret;
617 
618 	/* Figure out the PE address */
619 	config_addr = pe->config_addr;
620 	if (pe->addr)
621 		config_addr = pe->addr;
622 
623 	/* Use new configure-pe function, if supported */
624 	if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
625 		ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
626 				config_addr, BUID_HI(pe->phb->buid),
627 				BUID_LO(pe->phb->buid));
628 	} else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
629 		ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
630 				config_addr, BUID_HI(pe->phb->buid),
631 				BUID_LO(pe->phb->buid));
632 	} else {
633 		return -EFAULT;
634 	}
635 
636 	if (ret)
637 		pr_warning("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
638 			__func__, pe->phb->global_number, pe->addr, ret);
639 
640 	return ret;
641 }
642 
643 /**
644  * pseries_eeh_read_config - Read PCI config space
645  * @dn: device node
646  * @where: PCI address
647  * @size: size to read
648  * @val: return value
649  *
650  * Read config space from the speicifed device
651  */
652 static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
653 {
654 	struct pci_dn *pdn;
655 
656 	pdn = PCI_DN(dn);
657 
658 	return rtas_read_config(pdn, where, size, val);
659 }
660 
661 /**
662  * pseries_eeh_write_config - Write PCI config space
663  * @dn: device node
664  * @where: PCI address
665  * @size: size to write
666  * @val: value to be written
667  *
668  * Write config space to the specified device
669  */
670 static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
671 {
672 	struct pci_dn *pdn;
673 
674 	pdn = PCI_DN(dn);
675 
676 	return rtas_write_config(pdn, where, size, val);
677 }
678 
679 static struct eeh_ops pseries_eeh_ops = {
680 	.name			= "pseries",
681 	.init			= pseries_eeh_init,
682 	.of_probe		= pseries_eeh_of_probe,
683 	.dev_probe		= NULL,
684 	.set_option		= pseries_eeh_set_option,
685 	.get_pe_addr		= pseries_eeh_get_pe_addr,
686 	.get_state		= pseries_eeh_get_state,
687 	.reset			= pseries_eeh_reset,
688 	.wait_state		= pseries_eeh_wait_state,
689 	.get_log		= pseries_eeh_get_log,
690 	.configure_bridge       = pseries_eeh_configure_bridge,
691 	.read_config		= pseries_eeh_read_config,
692 	.write_config		= pseries_eeh_write_config
693 };
694 
695 /**
696  * eeh_pseries_init - Register platform dependent EEH operations
697  *
698  * EEH initialization on pseries platform. This function should be
699  * called before any EEH related functions.
700  */
701 static int __init eeh_pseries_init(void)
702 {
703 	int ret = -EINVAL;
704 
705 	if (!machine_is(pseries))
706 		return ret;
707 
708 	ret = eeh_ops_register(&pseries_eeh_ops);
709 	if (!ret)
710 		pr_info("EEH: pSeries platform initialized\n");
711 	else
712 		pr_info("EEH: pSeries platform initialization failure (%d)\n",
713 			ret);
714 
715 	return ret;
716 }
717 
718 early_initcall(eeh_pseries_init);
719