xref: /openbmc/linux/arch/powerpc/platforms/ps3/spu.c (revision 791d3ef2)
1 /*
2  *  PS3 Platform spu routines.
3  *
4  *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5  *  Copyright 2006 Sony Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; version 2 of the License.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/slab.h>
24 #include <linux/mmzone.h>
25 #include <linux/export.h>
26 #include <linux/io.h>
27 #include <linux/mm.h>
28 
29 #include <asm/spu.h>
30 #include <asm/spu_priv1.h>
31 #include <asm/lv1call.h>
32 #include <asm/ps3.h>
33 
34 #include "../cell/spufs/spufs.h"
35 #include "platform.h"
36 
37 /* spu_management_ops */
38 
39 /**
40  * enum spe_type - Type of spe to create.
41  * @spe_type_logical: Standard logical spe.
42  *
43  * For use with lv1_construct_logical_spe().  The current HV does not support
44  * any types other than those listed.
45  */
46 
47 enum spe_type {
48 	SPE_TYPE_LOGICAL = 0,
49 };
50 
51 /**
52  * struct spe_shadow - logical spe shadow register area.
53  *
54  * Read-only shadow of spe registers.
55  */
56 
57 struct spe_shadow {
58 	u8 padding_0140[0x0140];
59 	u64 int_status_class0_RW;       /* 0x0140 */
60 	u64 int_status_class1_RW;       /* 0x0148 */
61 	u64 int_status_class2_RW;       /* 0x0150 */
62 	u8 padding_0158[0x0610-0x0158];
63 	u64 mfc_dsisr_RW;               /* 0x0610 */
64 	u8 padding_0618[0x0620-0x0618];
65 	u64 mfc_dar_RW;                 /* 0x0620 */
66 	u8 padding_0628[0x0800-0x0628];
67 	u64 mfc_dsipr_R;                /* 0x0800 */
68 	u8 padding_0808[0x0810-0x0808];
69 	u64 mfc_lscrr_R;                /* 0x0810 */
70 	u8 padding_0818[0x0c00-0x0818];
71 	u64 mfc_cer_R;                  /* 0x0c00 */
72 	u8 padding_0c08[0x0f00-0x0c08];
73 	u64 spe_execution_status;       /* 0x0f00 */
74 	u8 padding_0f08[0x1000-0x0f08];
75 };
76 
77 /**
78  * enum spe_ex_state - Logical spe execution state.
79  * @spe_ex_state_unexecutable: Uninitialized.
80  * @spe_ex_state_executable: Enabled, not ready.
81  * @spe_ex_state_executed: Ready for use.
82  *
83  * The execution state (status) of the logical spe as reported in
84  * struct spe_shadow:spe_execution_status.
85  */
86 
87 enum spe_ex_state {
88 	SPE_EX_STATE_UNEXECUTABLE = 0,
89 	SPE_EX_STATE_EXECUTABLE = 2,
90 	SPE_EX_STATE_EXECUTED = 3,
91 };
92 
93 /**
94  * struct priv1_cache - Cached values of priv1 registers.
95  * @masks[]: Array of cached spe interrupt masks, indexed by class.
96  * @sr1: Cached mfc_sr1 register.
97  * @tclass_id: Cached mfc_tclass_id register.
98  */
99 
100 struct priv1_cache {
101 	u64 masks[3];
102 	u64 sr1;
103 	u64 tclass_id;
104 };
105 
106 /**
107  * struct spu_pdata - Platform state variables.
108  * @spe_id: HV spe id returned by lv1_construct_logical_spe().
109  * @resource_id: HV spe resource id returned by
110  * 	ps3_repository_read_spe_resource_id().
111  * @priv2_addr: lpar address of spe priv2 area returned by
112  * 	lv1_construct_logical_spe().
113  * @shadow_addr: lpar address of spe register shadow area returned by
114  * 	lv1_construct_logical_spe().
115  * @shadow: Virtual (ioremap) address of spe register shadow area.
116  * @cache: Cached values of priv1 registers.
117  */
118 
119 struct spu_pdata {
120 	u64 spe_id;
121 	u64 resource_id;
122 	u64 priv2_addr;
123 	u64 shadow_addr;
124 	struct spe_shadow __iomem *shadow;
125 	struct priv1_cache cache;
126 };
127 
128 static struct spu_pdata *spu_pdata(struct spu *spu)
129 {
130 	return spu->pdata;
131 }
132 
133 #define dump_areas(_a, _b, _c, _d, _e) \
134 	_dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
135 static void _dump_areas(unsigned int spe_id, unsigned long priv2,
136 	unsigned long problem, unsigned long ls, unsigned long shadow,
137 	const char* func, int line)
138 {
139 	pr_debug("%s:%d: spe_id:  %xh (%u)\n", func, line, spe_id, spe_id);
140 	pr_debug("%s:%d: priv2:   %lxh\n", func, line, priv2);
141 	pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
142 	pr_debug("%s:%d: ls:      %lxh\n", func, line, ls);
143 	pr_debug("%s:%d: shadow:  %lxh\n", func, line, shadow);
144 }
145 
146 u64 ps3_get_spe_id(void *arg)
147 {
148 	return spu_pdata(arg)->spe_id;
149 }
150 EXPORT_SYMBOL_GPL(ps3_get_spe_id);
151 
152 static unsigned long get_vas_id(void)
153 {
154 	u64 id;
155 
156 	lv1_get_logical_ppe_id(&id);
157 	lv1_get_virtual_address_space_id_of_ppe(&id);
158 
159 	return id;
160 }
161 
162 static int __init construct_spu(struct spu *spu)
163 {
164 	int result;
165 	u64 unused;
166 	u64 problem_phys;
167 	u64 local_store_phys;
168 
169 	result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
170 		PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
171 		&spu_pdata(spu)->priv2_addr, &problem_phys,
172 		&local_store_phys, &unused,
173 		&spu_pdata(spu)->shadow_addr,
174 		&spu_pdata(spu)->spe_id);
175 	spu->problem_phys = problem_phys;
176 	spu->local_store_phys = local_store_phys;
177 
178 	if (result) {
179 		pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
180 			__func__, __LINE__, ps3_result(result));
181 		return result;
182 	}
183 
184 	return result;
185 }
186 
187 static void spu_unmap(struct spu *spu)
188 {
189 	iounmap(spu->priv2);
190 	iounmap(spu->problem);
191 	iounmap((__force u8 __iomem *)spu->local_store);
192 	iounmap(spu_pdata(spu)->shadow);
193 }
194 
195 /**
196  * setup_areas - Map the spu regions into the address space.
197  *
198  * The current HV requires the spu shadow regs to be mapped with the
199  * PTE page protection bits set as read-only (PP=3).  This implementation
200  * uses the low level __ioremap() to bypass the page protection settings
201  * inforced by ioremap_prot() to get the needed PTE bits set for the
202  * shadow regs.
203  */
204 
205 static int __init setup_areas(struct spu *spu)
206 {
207 	struct table {char* name; unsigned long addr; unsigned long size;};
208 	unsigned long shadow_flags = pgprot_val(pgprot_noncached_wc(PAGE_KERNEL_RO));
209 
210 	spu_pdata(spu)->shadow = __ioremap(spu_pdata(spu)->shadow_addr,
211 					   sizeof(struct spe_shadow),
212 					   shadow_flags);
213 	if (!spu_pdata(spu)->shadow) {
214 		pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
215 		goto fail_ioremap;
216 	}
217 
218 	spu->local_store = (__force void *)ioremap_prot(spu->local_store_phys,
219 		LS_SIZE, pgprot_val(pgprot_noncached_wc(__pgprot(0))));
220 
221 	if (!spu->local_store) {
222 		pr_debug("%s:%d: ioremap local_store failed\n",
223 			__func__, __LINE__);
224 		goto fail_ioremap;
225 	}
226 
227 	spu->problem = ioremap(spu->problem_phys,
228 		sizeof(struct spu_problem));
229 
230 	if (!spu->problem) {
231 		pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
232 		goto fail_ioremap;
233 	}
234 
235 	spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
236 		sizeof(struct spu_priv2));
237 
238 	if (!spu->priv2) {
239 		pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
240 		goto fail_ioremap;
241 	}
242 
243 	dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
244 		spu->problem_phys, spu->local_store_phys,
245 		spu_pdata(spu)->shadow_addr);
246 	dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
247 		(unsigned long)spu->problem, (unsigned long)spu->local_store,
248 		(unsigned long)spu_pdata(spu)->shadow);
249 
250 	return 0;
251 
252 fail_ioremap:
253 	spu_unmap(spu);
254 
255 	return -ENOMEM;
256 }
257 
258 static int __init setup_interrupts(struct spu *spu)
259 {
260 	int result;
261 
262 	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
263 		0, &spu->irqs[0]);
264 
265 	if (result)
266 		goto fail_alloc_0;
267 
268 	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
269 		1, &spu->irqs[1]);
270 
271 	if (result)
272 		goto fail_alloc_1;
273 
274 	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
275 		2, &spu->irqs[2]);
276 
277 	if (result)
278 		goto fail_alloc_2;
279 
280 	return result;
281 
282 fail_alloc_2:
283 	ps3_spe_irq_destroy(spu->irqs[1]);
284 fail_alloc_1:
285 	ps3_spe_irq_destroy(spu->irqs[0]);
286 fail_alloc_0:
287 	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0;
288 	return result;
289 }
290 
291 static int __init enable_spu(struct spu *spu)
292 {
293 	int result;
294 
295 	result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
296 		spu_pdata(spu)->resource_id);
297 
298 	if (result) {
299 		pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
300 			__func__, __LINE__, ps3_result(result));
301 		goto fail_enable;
302 	}
303 
304 	result = setup_areas(spu);
305 
306 	if (result)
307 		goto fail_areas;
308 
309 	result = setup_interrupts(spu);
310 
311 	if (result)
312 		goto fail_interrupts;
313 
314 	return 0;
315 
316 fail_interrupts:
317 	spu_unmap(spu);
318 fail_areas:
319 	lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
320 fail_enable:
321 	return result;
322 }
323 
324 static int ps3_destroy_spu(struct spu *spu)
325 {
326 	int result;
327 
328 	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
329 
330 	result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
331 	BUG_ON(result);
332 
333 	ps3_spe_irq_destroy(spu->irqs[2]);
334 	ps3_spe_irq_destroy(spu->irqs[1]);
335 	ps3_spe_irq_destroy(spu->irqs[0]);
336 
337 	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0;
338 
339 	spu_unmap(spu);
340 
341 	result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
342 	BUG_ON(result);
343 
344 	kfree(spu->pdata);
345 	spu->pdata = NULL;
346 
347 	return 0;
348 }
349 
350 static int __init ps3_create_spu(struct spu *spu, void *data)
351 {
352 	int result;
353 
354 	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
355 
356 	spu->pdata = kzalloc(sizeof(struct spu_pdata),
357 		GFP_KERNEL);
358 
359 	if (!spu->pdata) {
360 		result = -ENOMEM;
361 		goto fail_malloc;
362 	}
363 
364 	spu_pdata(spu)->resource_id = (unsigned long)data;
365 
366 	/* Init cached reg values to HV defaults. */
367 
368 	spu_pdata(spu)->cache.sr1 = 0x33;
369 
370 	result = construct_spu(spu);
371 
372 	if (result)
373 		goto fail_construct;
374 
375 	/* For now, just go ahead and enable it. */
376 
377 	result = enable_spu(spu);
378 
379 	if (result)
380 		goto fail_enable;
381 
382 	/* Make sure the spu is in SPE_EX_STATE_EXECUTED. */
383 
384 	/* need something better here!!! */
385 	while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
386 		!= SPE_EX_STATE_EXECUTED)
387 		(void)0;
388 
389 	return result;
390 
391 fail_enable:
392 fail_construct:
393 	ps3_destroy_spu(spu);
394 fail_malloc:
395 	return result;
396 }
397 
398 static int __init ps3_enumerate_spus(int (*fn)(void *data))
399 {
400 	int result;
401 	unsigned int num_resource_id;
402 	unsigned int i;
403 
404 	result = ps3_repository_read_num_spu_resource_id(&num_resource_id);
405 
406 	pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
407 		num_resource_id);
408 
409 	/*
410 	 * For now, just create logical spus equal to the number
411 	 * of physical spus reserved for the partition.
412 	 */
413 
414 	for (i = 0; i < num_resource_id; i++) {
415 		enum ps3_spu_resource_type resource_type;
416 		unsigned int resource_id;
417 
418 		result = ps3_repository_read_spu_resource_id(i,
419 			&resource_type, &resource_id);
420 
421 		if (result)
422 			break;
423 
424 		if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
425 			result = fn((void*)(unsigned long)resource_id);
426 
427 			if (result)
428 				break;
429 		}
430 	}
431 
432 	if (result) {
433 		printk(KERN_WARNING "%s:%d: Error initializing spus\n",
434 			__func__, __LINE__);
435 		return result;
436 	}
437 
438 	return num_resource_id;
439 }
440 
441 static int ps3_init_affinity(void)
442 {
443 	return 0;
444 }
445 
446 /**
447  * ps3_enable_spu - Enable SPU run control.
448  *
449  * An outstanding enhancement for the PS3 would be to add a guard to check
450  * for incorrect access to the spu problem state when the spu context is
451  * disabled.  This check could be implemented with a flag added to the spu
452  * context that would inhibit mapping problem state pages, and a routine
453  * to unmap spu problem state pages.  When the spu is enabled with
454  * ps3_enable_spu() the flag would be set allowing pages to be mapped,
455  * and when the spu is disabled with ps3_disable_spu() the flag would be
456  * cleared and the mapped problem state pages would be unmapped.
457  */
458 
459 static void ps3_enable_spu(struct spu_context *ctx)
460 {
461 }
462 
463 static void ps3_disable_spu(struct spu_context *ctx)
464 {
465 	ctx->ops->runcntl_stop(ctx);
466 }
467 
468 const struct spu_management_ops spu_management_ps3_ops = {
469 	.enumerate_spus = ps3_enumerate_spus,
470 	.create_spu = ps3_create_spu,
471 	.destroy_spu = ps3_destroy_spu,
472 	.enable_spu = ps3_enable_spu,
473 	.disable_spu = ps3_disable_spu,
474 	.init_affinity = ps3_init_affinity,
475 };
476 
477 /* spu_priv1_ops */
478 
479 static void int_mask_and(struct spu *spu, int class, u64 mask)
480 {
481 	u64 old_mask;
482 
483 	/* are these serialized by caller??? */
484 	old_mask = spu_int_mask_get(spu, class);
485 	spu_int_mask_set(spu, class, old_mask & mask);
486 }
487 
488 static void int_mask_or(struct spu *spu, int class, u64 mask)
489 {
490 	u64 old_mask;
491 
492 	old_mask = spu_int_mask_get(spu, class);
493 	spu_int_mask_set(spu, class, old_mask | mask);
494 }
495 
496 static void int_mask_set(struct spu *spu, int class, u64 mask)
497 {
498 	spu_pdata(spu)->cache.masks[class] = mask;
499 	lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
500 		spu_pdata(spu)->cache.masks[class]);
501 }
502 
503 static u64 int_mask_get(struct spu *spu, int class)
504 {
505 	return spu_pdata(spu)->cache.masks[class];
506 }
507 
508 static void int_stat_clear(struct spu *spu, int class, u64 stat)
509 {
510 	/* Note that MFC_DSISR will be cleared when class1[MF] is set. */
511 
512 	lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
513 		stat, 0);
514 }
515 
516 static u64 int_stat_get(struct spu *spu, int class)
517 {
518 	u64 stat;
519 
520 	lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
521 	return stat;
522 }
523 
524 static void cpu_affinity_set(struct spu *spu, int cpu)
525 {
526 	/* No support. */
527 }
528 
529 static u64 mfc_dar_get(struct spu *spu)
530 {
531 	return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
532 }
533 
534 static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
535 {
536 	/* Nothing to do, cleared in int_stat_clear(). */
537 }
538 
539 static u64 mfc_dsisr_get(struct spu *spu)
540 {
541 	return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
542 }
543 
544 static void mfc_sdr_setup(struct spu *spu)
545 {
546 	/* Nothing to do. */
547 }
548 
549 static void mfc_sr1_set(struct spu *spu, u64 sr1)
550 {
551 	/* Check bits allowed by HV. */
552 
553 	static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
554 		| MFC_STATE1_PROBLEM_STATE_MASK);
555 
556 	BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));
557 
558 	spu_pdata(spu)->cache.sr1 = sr1;
559 	lv1_set_spe_privilege_state_area_1_register(
560 		spu_pdata(spu)->spe_id,
561 		offsetof(struct spu_priv1, mfc_sr1_RW),
562 		spu_pdata(spu)->cache.sr1);
563 }
564 
565 static u64 mfc_sr1_get(struct spu *spu)
566 {
567 	return spu_pdata(spu)->cache.sr1;
568 }
569 
570 static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
571 {
572 	spu_pdata(spu)->cache.tclass_id = tclass_id;
573 	lv1_set_spe_privilege_state_area_1_register(
574 		spu_pdata(spu)->spe_id,
575 		offsetof(struct spu_priv1, mfc_tclass_id_RW),
576 		spu_pdata(spu)->cache.tclass_id);
577 }
578 
579 static u64 mfc_tclass_id_get(struct spu *spu)
580 {
581 	return spu_pdata(spu)->cache.tclass_id;
582 }
583 
584 static void tlb_invalidate(struct spu *spu)
585 {
586 	/* Nothing to do. */
587 }
588 
589 static void resource_allocation_groupID_set(struct spu *spu, u64 id)
590 {
591 	/* No support. */
592 }
593 
594 static u64 resource_allocation_groupID_get(struct spu *spu)
595 {
596 	return 0; /* No support. */
597 }
598 
599 static void resource_allocation_enable_set(struct spu *spu, u64 enable)
600 {
601 	/* No support. */
602 }
603 
604 static u64 resource_allocation_enable_get(struct spu *spu)
605 {
606 	return 0; /* No support. */
607 }
608 
609 const struct spu_priv1_ops spu_priv1_ps3_ops = {
610 	.int_mask_and = int_mask_and,
611 	.int_mask_or = int_mask_or,
612 	.int_mask_set = int_mask_set,
613 	.int_mask_get = int_mask_get,
614 	.int_stat_clear = int_stat_clear,
615 	.int_stat_get = int_stat_get,
616 	.cpu_affinity_set = cpu_affinity_set,
617 	.mfc_dar_get = mfc_dar_get,
618 	.mfc_dsisr_set = mfc_dsisr_set,
619 	.mfc_dsisr_get = mfc_dsisr_get,
620 	.mfc_sdr_setup = mfc_sdr_setup,
621 	.mfc_sr1_set = mfc_sr1_set,
622 	.mfc_sr1_get = mfc_sr1_get,
623 	.mfc_tclass_id_set = mfc_tclass_id_set,
624 	.mfc_tclass_id_get = mfc_tclass_id_get,
625 	.tlb_invalidate = tlb_invalidate,
626 	.resource_allocation_groupID_set = resource_allocation_groupID_set,
627 	.resource_allocation_groupID_get = resource_allocation_groupID_get,
628 	.resource_allocation_enable_set = resource_allocation_enable_set,
629 	.resource_allocation_enable_get = resource_allocation_enable_get,
630 };
631 
632 void ps3_spu_set_platform(void)
633 {
634 	spu_priv1_ops = &spu_priv1_ps3_ops;
635 	spu_management_ops = &spu_management_ps3_ops;
636 }
637