xref: /openbmc/linux/arch/powerpc/platforms/ps3/spu.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *  PS3 Platform spu routines.
3  *
4  *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5  *  Copyright 2006 Sony Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; version 2 of the License.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/slab.h>
24 #include <linux/mmzone.h>
25 #include <linux/export.h>
26 #include <linux/io.h>
27 #include <linux/mm.h>
28 
29 #include <asm/spu.h>
30 #include <asm/spu_priv1.h>
31 #include <asm/lv1call.h>
32 #include <asm/ps3.h>
33 
34 #include "../cell/spufs/spufs.h"
35 #include "platform.h"
36 
37 /* spu_management_ops */
38 
39 /**
40  * enum spe_type - Type of spe to create.
41  * @spe_type_logical: Standard logical spe.
42  *
43  * For use with lv1_construct_logical_spe().  The current HV does not support
44  * any types other than those listed.
45  */
46 
47 enum spe_type {
48 	SPE_TYPE_LOGICAL = 0,
49 };
50 
51 /**
52  * struct spe_shadow - logical spe shadow register area.
53  *
54  * Read-only shadow of spe registers.
55  */
56 
57 struct spe_shadow {
58 	u8 padding_0140[0x0140];
59 	u64 int_status_class0_RW;       /* 0x0140 */
60 	u64 int_status_class1_RW;       /* 0x0148 */
61 	u64 int_status_class2_RW;       /* 0x0150 */
62 	u8 padding_0158[0x0610-0x0158];
63 	u64 mfc_dsisr_RW;               /* 0x0610 */
64 	u8 padding_0618[0x0620-0x0618];
65 	u64 mfc_dar_RW;                 /* 0x0620 */
66 	u8 padding_0628[0x0800-0x0628];
67 	u64 mfc_dsipr_R;                /* 0x0800 */
68 	u8 padding_0808[0x0810-0x0808];
69 	u64 mfc_lscrr_R;                /* 0x0810 */
70 	u8 padding_0818[0x0c00-0x0818];
71 	u64 mfc_cer_R;                  /* 0x0c00 */
72 	u8 padding_0c08[0x0f00-0x0c08];
73 	u64 spe_execution_status;       /* 0x0f00 */
74 	u8 padding_0f08[0x1000-0x0f08];
75 };
76 
77 /**
78  * enum spe_ex_state - Logical spe execution state.
79  * @spe_ex_state_unexecutable: Uninitialized.
80  * @spe_ex_state_executable: Enabled, not ready.
81  * @spe_ex_state_executed: Ready for use.
82  *
83  * The execution state (status) of the logical spe as reported in
84  * struct spe_shadow:spe_execution_status.
85  */
86 
87 enum spe_ex_state {
88 	SPE_EX_STATE_UNEXECUTABLE = 0,
89 	SPE_EX_STATE_EXECUTABLE = 2,
90 	SPE_EX_STATE_EXECUTED = 3,
91 };
92 
93 /**
94  * struct priv1_cache - Cached values of priv1 registers.
95  * @masks[]: Array of cached spe interrupt masks, indexed by class.
96  * @sr1: Cached mfc_sr1 register.
97  * @tclass_id: Cached mfc_tclass_id register.
98  */
99 
100 struct priv1_cache {
101 	u64 masks[3];
102 	u64 sr1;
103 	u64 tclass_id;
104 };
105 
106 /**
107  * struct spu_pdata - Platform state variables.
108  * @spe_id: HV spe id returned by lv1_construct_logical_spe().
109  * @resource_id: HV spe resource id returned by
110  * 	ps3_repository_read_spe_resource_id().
111  * @priv2_addr: lpar address of spe priv2 area returned by
112  * 	lv1_construct_logical_spe().
113  * @shadow_addr: lpar address of spe register shadow area returned by
114  * 	lv1_construct_logical_spe().
115  * @shadow: Virtual (ioremap) address of spe register shadow area.
116  * @cache: Cached values of priv1 registers.
117  */
118 
119 struct spu_pdata {
120 	u64 spe_id;
121 	u64 resource_id;
122 	u64 priv2_addr;
123 	u64 shadow_addr;
124 	struct spe_shadow __iomem *shadow;
125 	struct priv1_cache cache;
126 };
127 
128 static struct spu_pdata *spu_pdata(struct spu *spu)
129 {
130 	return spu->pdata;
131 }
132 
133 #define dump_areas(_a, _b, _c, _d, _e) \
134 	_dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
135 static void _dump_areas(unsigned int spe_id, unsigned long priv2,
136 	unsigned long problem, unsigned long ls, unsigned long shadow,
137 	const char* func, int line)
138 {
139 	pr_debug("%s:%d: spe_id:  %xh (%u)\n", func, line, spe_id, spe_id);
140 	pr_debug("%s:%d: priv2:   %lxh\n", func, line, priv2);
141 	pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
142 	pr_debug("%s:%d: ls:      %lxh\n", func, line, ls);
143 	pr_debug("%s:%d: shadow:  %lxh\n", func, line, shadow);
144 }
145 
146 u64 ps3_get_spe_id(void *arg)
147 {
148 	return spu_pdata(arg)->spe_id;
149 }
150 EXPORT_SYMBOL_GPL(ps3_get_spe_id);
151 
152 static unsigned long get_vas_id(void)
153 {
154 	u64 id;
155 
156 	lv1_get_logical_ppe_id(&id);
157 	lv1_get_virtual_address_space_id_of_ppe(&id);
158 
159 	return id;
160 }
161 
162 static int __init construct_spu(struct spu *spu)
163 {
164 	int result;
165 	u64 unused;
166 	u64 problem_phys;
167 	u64 local_store_phys;
168 
169 	result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
170 		PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
171 		&spu_pdata(spu)->priv2_addr, &problem_phys,
172 		&local_store_phys, &unused,
173 		&spu_pdata(spu)->shadow_addr,
174 		&spu_pdata(spu)->spe_id);
175 	spu->problem_phys = problem_phys;
176 	spu->local_store_phys = local_store_phys;
177 
178 	if (result) {
179 		pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
180 			__func__, __LINE__, ps3_result(result));
181 		return result;
182 	}
183 
184 	return result;
185 }
186 
187 static void spu_unmap(struct spu *spu)
188 {
189 	iounmap(spu->priv2);
190 	iounmap(spu->problem);
191 	iounmap((__force u8 __iomem *)spu->local_store);
192 	iounmap(spu_pdata(spu)->shadow);
193 }
194 
195 /**
196  * setup_areas - Map the spu regions into the address space.
197  *
198  * The current HV requires the spu shadow regs to be mapped with the
199  * PTE page protection bits set as read-only (PP=3).  This implementation
200  * uses the low level __ioremap() to bypass the page protection settings
201  * inforced by ioremap_prot() to get the needed PTE bits set for the
202  * shadow regs.
203  */
204 
205 static int __init setup_areas(struct spu *spu)
206 {
207 	struct table {char* name; unsigned long addr; unsigned long size;};
208 	unsigned long shadow_flags = pgprot_val(pgprot_noncached_wc(PAGE_KERNEL_RO));
209 
210 	spu_pdata(spu)->shadow = __ioremap(spu_pdata(spu)->shadow_addr,
211 					   sizeof(struct spe_shadow),
212 					   shadow_flags);
213 	if (!spu_pdata(spu)->shadow) {
214 		pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
215 		goto fail_ioremap;
216 	}
217 
218 	spu->local_store = (__force void *)ioremap_wc(spu->local_store_phys, LS_SIZE);
219 
220 	if (!spu->local_store) {
221 		pr_debug("%s:%d: ioremap local_store failed\n",
222 			__func__, __LINE__);
223 		goto fail_ioremap;
224 	}
225 
226 	spu->problem = ioremap(spu->problem_phys,
227 		sizeof(struct spu_problem));
228 
229 	if (!spu->problem) {
230 		pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
231 		goto fail_ioremap;
232 	}
233 
234 	spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
235 		sizeof(struct spu_priv2));
236 
237 	if (!spu->priv2) {
238 		pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
239 		goto fail_ioremap;
240 	}
241 
242 	dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
243 		spu->problem_phys, spu->local_store_phys,
244 		spu_pdata(spu)->shadow_addr);
245 	dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
246 		(unsigned long)spu->problem, (unsigned long)spu->local_store,
247 		(unsigned long)spu_pdata(spu)->shadow);
248 
249 	return 0;
250 
251 fail_ioremap:
252 	spu_unmap(spu);
253 
254 	return -ENOMEM;
255 }
256 
257 static int __init setup_interrupts(struct spu *spu)
258 {
259 	int result;
260 
261 	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
262 		0, &spu->irqs[0]);
263 
264 	if (result)
265 		goto fail_alloc_0;
266 
267 	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
268 		1, &spu->irqs[1]);
269 
270 	if (result)
271 		goto fail_alloc_1;
272 
273 	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
274 		2, &spu->irqs[2]);
275 
276 	if (result)
277 		goto fail_alloc_2;
278 
279 	return result;
280 
281 fail_alloc_2:
282 	ps3_spe_irq_destroy(spu->irqs[1]);
283 fail_alloc_1:
284 	ps3_spe_irq_destroy(spu->irqs[0]);
285 fail_alloc_0:
286 	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0;
287 	return result;
288 }
289 
290 static int __init enable_spu(struct spu *spu)
291 {
292 	int result;
293 
294 	result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
295 		spu_pdata(spu)->resource_id);
296 
297 	if (result) {
298 		pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
299 			__func__, __LINE__, ps3_result(result));
300 		goto fail_enable;
301 	}
302 
303 	result = setup_areas(spu);
304 
305 	if (result)
306 		goto fail_areas;
307 
308 	result = setup_interrupts(spu);
309 
310 	if (result)
311 		goto fail_interrupts;
312 
313 	return 0;
314 
315 fail_interrupts:
316 	spu_unmap(spu);
317 fail_areas:
318 	lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
319 fail_enable:
320 	return result;
321 }
322 
323 static int ps3_destroy_spu(struct spu *spu)
324 {
325 	int result;
326 
327 	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
328 
329 	result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
330 	BUG_ON(result);
331 
332 	ps3_spe_irq_destroy(spu->irqs[2]);
333 	ps3_spe_irq_destroy(spu->irqs[1]);
334 	ps3_spe_irq_destroy(spu->irqs[0]);
335 
336 	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0;
337 
338 	spu_unmap(spu);
339 
340 	result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
341 	BUG_ON(result);
342 
343 	kfree(spu->pdata);
344 	spu->pdata = NULL;
345 
346 	return 0;
347 }
348 
349 static int __init ps3_create_spu(struct spu *spu, void *data)
350 {
351 	int result;
352 
353 	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
354 
355 	spu->pdata = kzalloc(sizeof(struct spu_pdata),
356 		GFP_KERNEL);
357 
358 	if (!spu->pdata) {
359 		result = -ENOMEM;
360 		goto fail_malloc;
361 	}
362 
363 	spu_pdata(spu)->resource_id = (unsigned long)data;
364 
365 	/* Init cached reg values to HV defaults. */
366 
367 	spu_pdata(spu)->cache.sr1 = 0x33;
368 
369 	result = construct_spu(spu);
370 
371 	if (result)
372 		goto fail_construct;
373 
374 	/* For now, just go ahead and enable it. */
375 
376 	result = enable_spu(spu);
377 
378 	if (result)
379 		goto fail_enable;
380 
381 	/* Make sure the spu is in SPE_EX_STATE_EXECUTED. */
382 
383 	/* need something better here!!! */
384 	while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
385 		!= SPE_EX_STATE_EXECUTED)
386 		(void)0;
387 
388 	return result;
389 
390 fail_enable:
391 fail_construct:
392 	ps3_destroy_spu(spu);
393 fail_malloc:
394 	return result;
395 }
396 
397 static int __init ps3_enumerate_spus(int (*fn)(void *data))
398 {
399 	int result;
400 	unsigned int num_resource_id;
401 	unsigned int i;
402 
403 	result = ps3_repository_read_num_spu_resource_id(&num_resource_id);
404 
405 	pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
406 		num_resource_id);
407 
408 	/*
409 	 * For now, just create logical spus equal to the number
410 	 * of physical spus reserved for the partition.
411 	 */
412 
413 	for (i = 0; i < num_resource_id; i++) {
414 		enum ps3_spu_resource_type resource_type;
415 		unsigned int resource_id;
416 
417 		result = ps3_repository_read_spu_resource_id(i,
418 			&resource_type, &resource_id);
419 
420 		if (result)
421 			break;
422 
423 		if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
424 			result = fn((void*)(unsigned long)resource_id);
425 
426 			if (result)
427 				break;
428 		}
429 	}
430 
431 	if (result) {
432 		printk(KERN_WARNING "%s:%d: Error initializing spus\n",
433 			__func__, __LINE__);
434 		return result;
435 	}
436 
437 	return num_resource_id;
438 }
439 
440 static int ps3_init_affinity(void)
441 {
442 	return 0;
443 }
444 
445 /**
446  * ps3_enable_spu - Enable SPU run control.
447  *
448  * An outstanding enhancement for the PS3 would be to add a guard to check
449  * for incorrect access to the spu problem state when the spu context is
450  * disabled.  This check could be implemented with a flag added to the spu
451  * context that would inhibit mapping problem state pages, and a routine
452  * to unmap spu problem state pages.  When the spu is enabled with
453  * ps3_enable_spu() the flag would be set allowing pages to be mapped,
454  * and when the spu is disabled with ps3_disable_spu() the flag would be
455  * cleared and the mapped problem state pages would be unmapped.
456  */
457 
458 static void ps3_enable_spu(struct spu_context *ctx)
459 {
460 }
461 
462 static void ps3_disable_spu(struct spu_context *ctx)
463 {
464 	ctx->ops->runcntl_stop(ctx);
465 }
466 
467 const struct spu_management_ops spu_management_ps3_ops = {
468 	.enumerate_spus = ps3_enumerate_spus,
469 	.create_spu = ps3_create_spu,
470 	.destroy_spu = ps3_destroy_spu,
471 	.enable_spu = ps3_enable_spu,
472 	.disable_spu = ps3_disable_spu,
473 	.init_affinity = ps3_init_affinity,
474 };
475 
476 /* spu_priv1_ops */
477 
478 static void int_mask_and(struct spu *spu, int class, u64 mask)
479 {
480 	u64 old_mask;
481 
482 	/* are these serialized by caller??? */
483 	old_mask = spu_int_mask_get(spu, class);
484 	spu_int_mask_set(spu, class, old_mask & mask);
485 }
486 
487 static void int_mask_or(struct spu *spu, int class, u64 mask)
488 {
489 	u64 old_mask;
490 
491 	old_mask = spu_int_mask_get(spu, class);
492 	spu_int_mask_set(spu, class, old_mask | mask);
493 }
494 
495 static void int_mask_set(struct spu *spu, int class, u64 mask)
496 {
497 	spu_pdata(spu)->cache.masks[class] = mask;
498 	lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
499 		spu_pdata(spu)->cache.masks[class]);
500 }
501 
502 static u64 int_mask_get(struct spu *spu, int class)
503 {
504 	return spu_pdata(spu)->cache.masks[class];
505 }
506 
507 static void int_stat_clear(struct spu *spu, int class, u64 stat)
508 {
509 	/* Note that MFC_DSISR will be cleared when class1[MF] is set. */
510 
511 	lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
512 		stat, 0);
513 }
514 
515 static u64 int_stat_get(struct spu *spu, int class)
516 {
517 	u64 stat;
518 
519 	lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
520 	return stat;
521 }
522 
523 static void cpu_affinity_set(struct spu *spu, int cpu)
524 {
525 	/* No support. */
526 }
527 
528 static u64 mfc_dar_get(struct spu *spu)
529 {
530 	return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
531 }
532 
533 static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
534 {
535 	/* Nothing to do, cleared in int_stat_clear(). */
536 }
537 
538 static u64 mfc_dsisr_get(struct spu *spu)
539 {
540 	return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
541 }
542 
543 static void mfc_sdr_setup(struct spu *spu)
544 {
545 	/* Nothing to do. */
546 }
547 
548 static void mfc_sr1_set(struct spu *spu, u64 sr1)
549 {
550 	/* Check bits allowed by HV. */
551 
552 	static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
553 		| MFC_STATE1_PROBLEM_STATE_MASK);
554 
555 	BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));
556 
557 	spu_pdata(spu)->cache.sr1 = sr1;
558 	lv1_set_spe_privilege_state_area_1_register(
559 		spu_pdata(spu)->spe_id,
560 		offsetof(struct spu_priv1, mfc_sr1_RW),
561 		spu_pdata(spu)->cache.sr1);
562 }
563 
564 static u64 mfc_sr1_get(struct spu *spu)
565 {
566 	return spu_pdata(spu)->cache.sr1;
567 }
568 
569 static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
570 {
571 	spu_pdata(spu)->cache.tclass_id = tclass_id;
572 	lv1_set_spe_privilege_state_area_1_register(
573 		spu_pdata(spu)->spe_id,
574 		offsetof(struct spu_priv1, mfc_tclass_id_RW),
575 		spu_pdata(spu)->cache.tclass_id);
576 }
577 
578 static u64 mfc_tclass_id_get(struct spu *spu)
579 {
580 	return spu_pdata(spu)->cache.tclass_id;
581 }
582 
583 static void tlb_invalidate(struct spu *spu)
584 {
585 	/* Nothing to do. */
586 }
587 
588 static void resource_allocation_groupID_set(struct spu *spu, u64 id)
589 {
590 	/* No support. */
591 }
592 
593 static u64 resource_allocation_groupID_get(struct spu *spu)
594 {
595 	return 0; /* No support. */
596 }
597 
598 static void resource_allocation_enable_set(struct spu *spu, u64 enable)
599 {
600 	/* No support. */
601 }
602 
603 static u64 resource_allocation_enable_get(struct spu *spu)
604 {
605 	return 0; /* No support. */
606 }
607 
608 const struct spu_priv1_ops spu_priv1_ps3_ops = {
609 	.int_mask_and = int_mask_and,
610 	.int_mask_or = int_mask_or,
611 	.int_mask_set = int_mask_set,
612 	.int_mask_get = int_mask_get,
613 	.int_stat_clear = int_stat_clear,
614 	.int_stat_get = int_stat_get,
615 	.cpu_affinity_set = cpu_affinity_set,
616 	.mfc_dar_get = mfc_dar_get,
617 	.mfc_dsisr_set = mfc_dsisr_set,
618 	.mfc_dsisr_get = mfc_dsisr_get,
619 	.mfc_sdr_setup = mfc_sdr_setup,
620 	.mfc_sr1_set = mfc_sr1_set,
621 	.mfc_sr1_get = mfc_sr1_get,
622 	.mfc_tclass_id_set = mfc_tclass_id_set,
623 	.mfc_tclass_id_get = mfc_tclass_id_get,
624 	.tlb_invalidate = tlb_invalidate,
625 	.resource_allocation_groupID_set = resource_allocation_groupID_set,
626 	.resource_allocation_groupID_get = resource_allocation_groupID_get,
627 	.resource_allocation_enable_set = resource_allocation_enable_set,
628 	.resource_allocation_enable_get = resource_allocation_enable_get,
629 };
630 
631 void ps3_spu_set_platform(void)
632 {
633 	spu_priv1_ops = &spu_priv1_ps3_ops;
634 	spu_management_ops = &spu_management_ps3_ops;
635 }
636