1 /* 2 * PS3 address space management. 3 * 4 * Copyright (C) 2006 Sony Computer Entertainment Inc. 5 * Copyright 2006 Sony Corp. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; version 2 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/memory_hotplug.h> 24 25 #include <asm/firmware.h> 26 #include <asm/lmb.h> 27 #include <asm/udbg.h> 28 #include <asm/lv1call.h> 29 30 #include "platform.h" 31 32 #if defined(DEBUG) 33 #define DBG udbg_printf 34 #else 35 #define DBG pr_debug 36 #endif 37 38 enum { 39 #if defined(CONFIG_PS3_USE_LPAR_ADDR) 40 USE_LPAR_ADDR = 1, 41 #else 42 USE_LPAR_ADDR = 0, 43 #endif 44 #if defined(CONFIG_PS3_DYNAMIC_DMA) 45 USE_DYNAMIC_DMA = 1, 46 #else 47 USE_DYNAMIC_DMA = 0, 48 #endif 49 }; 50 51 enum { 52 PAGE_SHIFT_4K = 12U, 53 PAGE_SHIFT_64K = 16U, 54 PAGE_SHIFT_16M = 24U, 55 }; 56 57 static unsigned long make_page_sizes(unsigned long a, unsigned long b) 58 { 59 return (a << 56) | (b << 48); 60 } 61 62 enum { 63 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04, 64 ALLOCATE_MEMORY_ADDR_ZERO = 0X08, 65 }; 66 67 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */ 68 69 enum { 70 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */ 71 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */ 72 }; 73 74 /*============================================================================*/ 75 /* virtual address space routines */ 76 /*============================================================================*/ 77 78 /** 79 * struct mem_region - memory region structure 80 * @base: base address 81 * @size: size in bytes 82 * @offset: difference between base and rm.size 83 */ 84 85 struct mem_region { 86 unsigned long base; 87 unsigned long size; 88 unsigned long offset; 89 }; 90 91 /** 92 * struct map - address space state variables holder 93 * @total: total memory available as reported by HV 94 * @vas_id - HV virtual address space id 95 * @htab_size: htab size in bytes 96 * 97 * The HV virtual address space (vas) allows for hotplug memory regions. 98 * Memory regions can be created and destroyed in the vas at runtime. 99 * @rm: real mode (bootmem) region 100 * @r1: hotplug memory region(s) 101 * 102 * ps3 addresses 103 * virt_addr: a cpu 'translated' effective address 104 * phys_addr: an address in what Linux thinks is the physical address space 105 * lpar_addr: an address in the HV virtual address space 106 * bus_addr: an io controller 'translated' address on a device bus 107 */ 108 109 struct map { 110 unsigned long total; 111 unsigned long vas_id; 112 unsigned long htab_size; 113 struct mem_region rm; 114 struct mem_region r1; 115 }; 116 117 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__) 118 static void __maybe_unused _debug_dump_map(const struct map *m, 119 const char *func, int line) 120 { 121 DBG("%s:%d: map.total = %lxh\n", func, line, m->total); 122 DBG("%s:%d: map.rm.size = %lxh\n", func, line, m->rm.size); 123 DBG("%s:%d: map.vas_id = %lu\n", func, line, m->vas_id); 124 DBG("%s:%d: map.htab_size = %lxh\n", func, line, m->htab_size); 125 DBG("%s:%d: map.r1.base = %lxh\n", func, line, m->r1.base); 126 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset); 127 DBG("%s:%d: map.r1.size = %lxh\n", func, line, m->r1.size); 128 } 129 130 static struct map map; 131 132 /** 133 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address 134 * @phys_addr: linux physical address 135 */ 136 137 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr) 138 { 139 BUG_ON(is_kernel_addr(phys_addr)); 140 if (USE_LPAR_ADDR) 141 return phys_addr; 142 else 143 return (phys_addr < map.rm.size || phys_addr >= map.total) 144 ? phys_addr : phys_addr + map.r1.offset; 145 } 146 147 EXPORT_SYMBOL(ps3_mm_phys_to_lpar); 148 149 /** 150 * ps3_mm_vas_create - create the virtual address space 151 */ 152 153 void __init ps3_mm_vas_create(unsigned long* htab_size) 154 { 155 int result; 156 unsigned long start_address; 157 unsigned long size; 158 unsigned long access_right; 159 unsigned long max_page_size; 160 unsigned long flags; 161 162 result = lv1_query_logical_partition_address_region_info(0, 163 &start_address, &size, &access_right, &max_page_size, 164 &flags); 165 166 if (result) { 167 DBG("%s:%d: lv1_query_logical_partition_address_region_info " 168 "failed: %s\n", __func__, __LINE__, 169 ps3_result(result)); 170 goto fail; 171 } 172 173 if (max_page_size < PAGE_SHIFT_16M) { 174 DBG("%s:%d: bad max_page_size %lxh\n", __func__, __LINE__, 175 max_page_size); 176 goto fail; 177 } 178 179 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX); 180 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN); 181 182 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE, 183 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K), 184 &map.vas_id, &map.htab_size); 185 186 if (result) { 187 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n", 188 __func__, __LINE__, ps3_result(result)); 189 goto fail; 190 } 191 192 result = lv1_select_virtual_address_space(map.vas_id); 193 194 if (result) { 195 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n", 196 __func__, __LINE__, ps3_result(result)); 197 goto fail; 198 } 199 200 *htab_size = map.htab_size; 201 202 debug_dump_map(&map); 203 204 return; 205 206 fail: 207 panic("ps3_mm_vas_create failed"); 208 } 209 210 /** 211 * ps3_mm_vas_destroy - 212 */ 213 214 void ps3_mm_vas_destroy(void) 215 { 216 int result; 217 218 DBG("%s:%d: map.vas_id = %lu\n", __func__, __LINE__, map.vas_id); 219 220 if (map.vas_id) { 221 result = lv1_select_virtual_address_space(0); 222 BUG_ON(result); 223 result = lv1_destruct_virtual_address_space(map.vas_id); 224 BUG_ON(result); 225 map.vas_id = 0; 226 } 227 } 228 229 /*============================================================================*/ 230 /* memory hotplug routines */ 231 /*============================================================================*/ 232 233 /** 234 * ps3_mm_region_create - create a memory region in the vas 235 * @r: pointer to a struct mem_region to accept initialized values 236 * @size: requested region size 237 * 238 * This implementation creates the region with the vas large page size. 239 * @size is rounded down to a multiple of the vas large page size. 240 */ 241 242 static int ps3_mm_region_create(struct mem_region *r, unsigned long size) 243 { 244 int result; 245 unsigned long muid; 246 247 r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M); 248 249 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size); 250 DBG("%s:%d actual %lxh\n", __func__, __LINE__, r->size); 251 DBG("%s:%d difference %lxh (%luMB)\n", __func__, __LINE__, 252 (unsigned long)(size - r->size), 253 (size - r->size) / 1024 / 1024); 254 255 if (r->size == 0) { 256 DBG("%s:%d: size == 0\n", __func__, __LINE__); 257 result = -1; 258 goto zero_region; 259 } 260 261 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0, 262 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid); 263 264 if (result || r->base < map.rm.size) { 265 DBG("%s:%d: lv1_allocate_memory failed: %s\n", 266 __func__, __LINE__, ps3_result(result)); 267 goto zero_region; 268 } 269 270 r->offset = r->base - map.rm.size; 271 return result; 272 273 zero_region: 274 r->size = r->base = r->offset = 0; 275 return result; 276 } 277 278 /** 279 * ps3_mm_region_destroy - destroy a memory region 280 * @r: pointer to struct mem_region 281 */ 282 283 static void ps3_mm_region_destroy(struct mem_region *r) 284 { 285 int result; 286 287 DBG("%s:%d: r->base = %lxh\n", __func__, __LINE__, r->base); 288 if (r->base) { 289 result = lv1_release_memory(r->base); 290 BUG_ON(result); 291 r->size = r->base = r->offset = 0; 292 map.total = map.rm.size; 293 } 294 } 295 296 /** 297 * ps3_mm_add_memory - hot add memory 298 */ 299 300 static int __init ps3_mm_add_memory(void) 301 { 302 int result; 303 unsigned long start_addr; 304 unsigned long start_pfn; 305 unsigned long nr_pages; 306 307 if (!firmware_has_feature(FW_FEATURE_PS3_LV1)) 308 return -ENODEV; 309 310 BUG_ON(!mem_init_done); 311 312 start_addr = USE_LPAR_ADDR ? map.r1.base : map.rm.size; 313 start_pfn = start_addr >> PAGE_SHIFT; 314 nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT; 315 316 DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n", 317 __func__, __LINE__, start_addr, start_pfn, nr_pages); 318 319 result = add_memory(0, start_addr, map.r1.size); 320 321 if (result) { 322 DBG("%s:%d: add_memory failed: (%d)\n", 323 __func__, __LINE__, result); 324 return result; 325 } 326 327 result = online_pages(start_pfn, nr_pages); 328 329 if (result) 330 DBG("%s:%d: online_pages failed: (%d)\n", 331 __func__, __LINE__, result); 332 333 return result; 334 } 335 336 core_initcall(ps3_mm_add_memory); 337 338 /*============================================================================*/ 339 /* dma routines */ 340 /*============================================================================*/ 341 342 /** 343 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address. 344 * @r: pointer to dma region structure 345 * @lpar_addr: HV lpar address 346 */ 347 348 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r, 349 unsigned long lpar_addr) 350 { 351 if (lpar_addr >= map.rm.size) 352 lpar_addr -= map.r1.offset; 353 BUG_ON(lpar_addr < r->offset); 354 BUG_ON(lpar_addr >= r->offset + r->len); 355 return r->bus_addr + lpar_addr - r->offset; 356 } 357 358 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__) 359 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r, 360 const char *func, int line) 361 { 362 DBG("%s:%d: dev %u:%u\n", func, line, r->dev->bus_id, 363 r->dev->dev_id); 364 DBG("%s:%d: page_size %u\n", func, line, r->page_size); 365 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr); 366 DBG("%s:%d: len %lxh\n", func, line, r->len); 367 DBG("%s:%d: offset %lxh\n", func, line, r->offset); 368 } 369 370 /** 371 * dma_chunk - A chunk of dma pages mapped by the io controller. 372 * @region - The dma region that owns this chunk. 373 * @lpar_addr: Starting lpar address of the area to map. 374 * @bus_addr: Starting ioc bus address of the area to map. 375 * @len: Length in bytes of the area to map. 376 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the 377 * list of all chuncks owned by the region. 378 * 379 * This implementation uses a very simple dma page manager 380 * based on the dma_chunk structure. This scheme assumes 381 * that all drivers use very well behaved dma ops. 382 */ 383 384 struct dma_chunk { 385 struct ps3_dma_region *region; 386 unsigned long lpar_addr; 387 unsigned long bus_addr; 388 unsigned long len; 389 struct list_head link; 390 unsigned int usage_count; 391 }; 392 393 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__) 394 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func, 395 int line) 396 { 397 DBG("%s:%d: r.dev %u:%u\n", func, line, 398 c->region->dev->bus_id, c->region->dev->dev_id); 399 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr); 400 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size); 401 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len); 402 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset); 403 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr); 404 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr); 405 DBG("%s:%d: c.len %lxh\n", func, line, c->len); 406 } 407 408 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r, 409 unsigned long bus_addr, unsigned long len) 410 { 411 struct dma_chunk *c; 412 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size); 413 unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus, 414 1 << r->page_size); 415 416 list_for_each_entry(c, &r->chunk_list.head, link) { 417 /* intersection */ 418 if (aligned_bus >= c->bus_addr && 419 aligned_bus + aligned_len <= c->bus_addr + c->len) 420 return c; 421 422 /* below */ 423 if (aligned_bus + aligned_len <= c->bus_addr) 424 continue; 425 426 /* above */ 427 if (aligned_bus >= c->bus_addr + c->len) 428 continue; 429 430 /* we don't handle the multi-chunk case for now */ 431 dma_dump_chunk(c); 432 BUG(); 433 } 434 return NULL; 435 } 436 437 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r, 438 unsigned long lpar_addr, unsigned long len) 439 { 440 struct dma_chunk *c; 441 unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size); 442 unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar, 443 1 << r->page_size); 444 445 list_for_each_entry(c, &r->chunk_list.head, link) { 446 /* intersection */ 447 if (c->lpar_addr <= aligned_lpar && 448 aligned_lpar < c->lpar_addr + c->len) { 449 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len) 450 return c; 451 else { 452 dma_dump_chunk(c); 453 BUG(); 454 } 455 } 456 /* below */ 457 if (aligned_lpar + aligned_len <= c->lpar_addr) { 458 continue; 459 } 460 /* above */ 461 if (c->lpar_addr + c->len <= aligned_lpar) { 462 continue; 463 } 464 } 465 return NULL; 466 } 467 468 static int dma_sb_free_chunk(struct dma_chunk *c) 469 { 470 int result = 0; 471 472 if (c->bus_addr) { 473 result = lv1_unmap_device_dma_region(c->region->dev->bus_id, 474 c->region->dev->dev_id, c->bus_addr, c->len); 475 BUG_ON(result); 476 } 477 478 kfree(c); 479 return result; 480 } 481 482 static int dma_ioc0_free_chunk(struct dma_chunk *c) 483 { 484 int result = 0; 485 int iopage; 486 unsigned long offset; 487 struct ps3_dma_region *r = c->region; 488 489 DBG("%s:start\n", __func__); 490 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) { 491 offset = (1 << r->page_size) * iopage; 492 /* put INVALID entry */ 493 result = lv1_put_iopte(0, 494 c->bus_addr + offset, 495 c->lpar_addr + offset, 496 r->ioid, 497 0); 498 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__, 499 c->bus_addr + offset, 500 c->lpar_addr + offset, 501 r->ioid); 502 503 if (result) { 504 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__, 505 __LINE__, ps3_result(result)); 506 } 507 } 508 kfree(c); 509 DBG("%s:end\n", __func__); 510 return result; 511 } 512 513 /** 514 * dma_sb_map_pages - Maps dma pages into the io controller bus address space. 515 * @r: Pointer to a struct ps3_dma_region. 516 * @phys_addr: Starting physical address of the area to map. 517 * @len: Length in bytes of the area to map. 518 * c_out: A pointer to receive an allocated struct dma_chunk for this area. 519 * 520 * This is the lowest level dma mapping routine, and is the one that will 521 * make the HV call to add the pages into the io controller address space. 522 */ 523 524 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 525 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag) 526 { 527 int result; 528 struct dma_chunk *c; 529 530 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 531 532 if (!c) { 533 result = -ENOMEM; 534 goto fail_alloc; 535 } 536 537 c->region = r; 538 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 539 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr); 540 c->len = len; 541 542 BUG_ON(iopte_flag != 0xf800000000000000UL); 543 result = lv1_map_device_dma_region(c->region->dev->bus_id, 544 c->region->dev->dev_id, c->lpar_addr, 545 c->bus_addr, c->len, iopte_flag); 546 if (result) { 547 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n", 548 __func__, __LINE__, ps3_result(result)); 549 goto fail_map; 550 } 551 552 list_add(&c->link, &r->chunk_list.head); 553 554 *c_out = c; 555 return 0; 556 557 fail_map: 558 kfree(c); 559 fail_alloc: 560 *c_out = NULL; 561 DBG(" <- %s:%d\n", __func__, __LINE__); 562 return result; 563 } 564 565 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 566 unsigned long len, struct dma_chunk **c_out, 567 u64 iopte_flag) 568 { 569 int result; 570 struct dma_chunk *c, *last; 571 int iopage, pages; 572 unsigned long offset; 573 574 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__, 575 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len); 576 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 577 578 if (!c) { 579 result = -ENOMEM; 580 goto fail_alloc; 581 } 582 583 c->region = r; 584 c->len = len; 585 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 586 /* allocate IO address */ 587 if (list_empty(&r->chunk_list.head)) { 588 /* first one */ 589 c->bus_addr = r->bus_addr; 590 } else { 591 /* derive from last bus addr*/ 592 last = list_entry(r->chunk_list.head.next, 593 struct dma_chunk, link); 594 c->bus_addr = last->bus_addr + last->len; 595 DBG("%s: last bus=%#lx, len=%#lx\n", __func__, 596 last->bus_addr, last->len); 597 } 598 599 /* FIXME: check whether length exceeds region size */ 600 601 /* build ioptes for the area */ 602 pages = len >> r->page_size; 603 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#lx\n", __func__, 604 r->page_size, r->len, pages, iopte_flag); 605 for (iopage = 0; iopage < pages; iopage++) { 606 offset = (1 << r->page_size) * iopage; 607 result = lv1_put_iopte(0, 608 c->bus_addr + offset, 609 c->lpar_addr + offset, 610 r->ioid, 611 iopte_flag); 612 if (result) { 613 printk(KERN_WARNING "%s:%d: lv1_map_device_dma_region " 614 "failed: %s\n", __func__, __LINE__, 615 ps3_result(result)); 616 goto fail_map; 617 } 618 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__, 619 iopage, c->bus_addr + offset, c->lpar_addr + offset, 620 r->ioid); 621 } 622 623 /* be sure that last allocated one is inserted at head */ 624 list_add(&c->link, &r->chunk_list.head); 625 626 *c_out = c; 627 DBG("%s: end\n", __func__); 628 return 0; 629 630 fail_map: 631 for (iopage--; 0 <= iopage; iopage--) { 632 lv1_put_iopte(0, 633 c->bus_addr + offset, 634 c->lpar_addr + offset, 635 r->ioid, 636 0); 637 } 638 kfree(c); 639 fail_alloc: 640 *c_out = NULL; 641 return result; 642 } 643 644 /** 645 * dma_sb_region_create - Create a device dma region. 646 * @r: Pointer to a struct ps3_dma_region. 647 * 648 * This is the lowest level dma region create routine, and is the one that 649 * will make the HV call to create the region. 650 */ 651 652 static int dma_sb_region_create(struct ps3_dma_region *r) 653 { 654 int result; 655 656 pr_info(" -> %s:%d:\n", __func__, __LINE__); 657 658 BUG_ON(!r); 659 660 if (!r->dev->bus_id) { 661 pr_info("%s:%d: %u:%u no dma\n", __func__, __LINE__, 662 r->dev->bus_id, r->dev->dev_id); 663 return 0; 664 } 665 666 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__, 667 __LINE__, r->len, r->page_size, r->offset); 668 669 BUG_ON(!r->len); 670 BUG_ON(!r->page_size); 671 BUG_ON(!r->region_ops); 672 673 INIT_LIST_HEAD(&r->chunk_list.head); 674 spin_lock_init(&r->chunk_list.lock); 675 676 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id, 677 roundup_pow_of_two(r->len), r->page_size, r->region_type, 678 &r->bus_addr); 679 680 if (result) { 681 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n", 682 __func__, __LINE__, ps3_result(result)); 683 r->len = r->bus_addr = 0; 684 } 685 686 return result; 687 } 688 689 static int dma_ioc0_region_create(struct ps3_dma_region *r) 690 { 691 int result; 692 693 INIT_LIST_HEAD(&r->chunk_list.head); 694 spin_lock_init(&r->chunk_list.lock); 695 696 result = lv1_allocate_io_segment(0, 697 r->len, 698 r->page_size, 699 &r->bus_addr); 700 if (result) { 701 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n", 702 __func__, __LINE__, ps3_result(result)); 703 r->len = r->bus_addr = 0; 704 } 705 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__, 706 r->len, r->page_size, r->bus_addr); 707 return result; 708 } 709 710 /** 711 * dma_region_free - Free a device dma region. 712 * @r: Pointer to a struct ps3_dma_region. 713 * 714 * This is the lowest level dma region free routine, and is the one that 715 * will make the HV call to free the region. 716 */ 717 718 static int dma_sb_region_free(struct ps3_dma_region *r) 719 { 720 int result; 721 struct dma_chunk *c; 722 struct dma_chunk *tmp; 723 724 BUG_ON(!r); 725 726 if (!r->dev->bus_id) { 727 pr_info("%s:%d: %u:%u no dma\n", __func__, __LINE__, 728 r->dev->bus_id, r->dev->dev_id); 729 return 0; 730 } 731 732 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) { 733 list_del(&c->link); 734 dma_sb_free_chunk(c); 735 } 736 737 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id, 738 r->bus_addr); 739 740 if (result) 741 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 742 __func__, __LINE__, ps3_result(result)); 743 744 r->bus_addr = 0; 745 746 return result; 747 } 748 749 static int dma_ioc0_region_free(struct ps3_dma_region *r) 750 { 751 int result; 752 struct dma_chunk *c, *n; 753 754 DBG("%s: start\n", __func__); 755 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) { 756 list_del(&c->link); 757 dma_ioc0_free_chunk(c); 758 } 759 760 result = lv1_release_io_segment(0, r->bus_addr); 761 762 if (result) 763 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 764 __func__, __LINE__, ps3_result(result)); 765 766 r->bus_addr = 0; 767 DBG("%s: end\n", __func__); 768 769 return result; 770 } 771 772 /** 773 * dma_sb_map_area - Map an area of memory into a device dma region. 774 * @r: Pointer to a struct ps3_dma_region. 775 * @virt_addr: Starting virtual address of the area to map. 776 * @len: Length in bytes of the area to map. 777 * @bus_addr: A pointer to return the starting ioc bus address of the area to 778 * map. 779 * 780 * This is the common dma mapping routine. 781 */ 782 783 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 784 unsigned long len, unsigned long *bus_addr, 785 u64 iopte_flag) 786 { 787 int result; 788 unsigned long flags; 789 struct dma_chunk *c; 790 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 791 : virt_addr; 792 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 793 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 794 1 << r->page_size); 795 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 796 797 if (!USE_DYNAMIC_DMA) { 798 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 799 DBG(" -> %s:%d\n", __func__, __LINE__); 800 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__, 801 virt_addr); 802 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__, 803 phys_addr); 804 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__, 805 lpar_addr); 806 DBG("%s:%d len %lxh\n", __func__, __LINE__, len); 807 DBG("%s:%d bus_addr %lxh (%lxh)\n", __func__, __LINE__, 808 *bus_addr, len); 809 } 810 811 spin_lock_irqsave(&r->chunk_list.lock, flags); 812 c = dma_find_chunk(r, *bus_addr, len); 813 814 if (c) { 815 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__); 816 dma_dump_chunk(c); 817 c->usage_count++; 818 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 819 return 0; 820 } 821 822 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag); 823 824 if (result) { 825 *bus_addr = 0; 826 DBG("%s:%d: dma_sb_map_pages failed (%d)\n", 827 __func__, __LINE__, result); 828 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 829 return result; 830 } 831 832 c->usage_count = 1; 833 834 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 835 return result; 836 } 837 838 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 839 unsigned long len, unsigned long *bus_addr, 840 u64 iopte_flag) 841 { 842 int result; 843 unsigned long flags; 844 struct dma_chunk *c; 845 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 846 : virt_addr; 847 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 848 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 849 1 << r->page_size); 850 851 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__, 852 virt_addr, len); 853 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__, 854 phys_addr, aligned_phys, aligned_len); 855 856 spin_lock_irqsave(&r->chunk_list.lock, flags); 857 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len); 858 859 if (c) { 860 /* FIXME */ 861 BUG(); 862 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 863 c->usage_count++; 864 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 865 return 0; 866 } 867 868 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c, 869 iopte_flag); 870 871 if (result) { 872 *bus_addr = 0; 873 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n", 874 __func__, __LINE__, result); 875 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 876 return result; 877 } 878 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 879 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#lx\n", __func__, 880 virt_addr, phys_addr, aligned_phys, *bus_addr); 881 c->usage_count = 1; 882 883 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 884 return result; 885 } 886 887 /** 888 * dma_sb_unmap_area - Unmap an area of memory from a device dma region. 889 * @r: Pointer to a struct ps3_dma_region. 890 * @bus_addr: The starting ioc bus address of the area to unmap. 891 * @len: Length in bytes of the area to unmap. 892 * 893 * This is the common dma unmap routine. 894 */ 895 896 static int dma_sb_unmap_area(struct ps3_dma_region *r, unsigned long bus_addr, 897 unsigned long len) 898 { 899 unsigned long flags; 900 struct dma_chunk *c; 901 902 spin_lock_irqsave(&r->chunk_list.lock, flags); 903 c = dma_find_chunk(r, bus_addr, len); 904 905 if (!c) { 906 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 907 1 << r->page_size); 908 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 909 - aligned_bus, 1 << r->page_size); 910 DBG("%s:%d: not found: bus_addr %lxh\n", 911 __func__, __LINE__, bus_addr); 912 DBG("%s:%d: not found: len %lxh\n", 913 __func__, __LINE__, len); 914 DBG("%s:%d: not found: aligned_bus %lxh\n", 915 __func__, __LINE__, aligned_bus); 916 DBG("%s:%d: not found: aligned_len %lxh\n", 917 __func__, __LINE__, aligned_len); 918 BUG(); 919 } 920 921 c->usage_count--; 922 923 if (!c->usage_count) { 924 list_del(&c->link); 925 dma_sb_free_chunk(c); 926 } 927 928 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 929 return 0; 930 } 931 932 static int dma_ioc0_unmap_area(struct ps3_dma_region *r, 933 unsigned long bus_addr, unsigned long len) 934 { 935 unsigned long flags; 936 struct dma_chunk *c; 937 938 DBG("%s: start a=%#lx l=%#lx\n", __func__, bus_addr, len); 939 spin_lock_irqsave(&r->chunk_list.lock, flags); 940 c = dma_find_chunk(r, bus_addr, len); 941 942 if (!c) { 943 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 944 1 << r->page_size); 945 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 946 - aligned_bus, 947 1 << r->page_size); 948 DBG("%s:%d: not found: bus_addr %lxh\n", 949 __func__, __LINE__, bus_addr); 950 DBG("%s:%d: not found: len %lxh\n", 951 __func__, __LINE__, len); 952 DBG("%s:%d: not found: aligned_bus %lxh\n", 953 __func__, __LINE__, aligned_bus); 954 DBG("%s:%d: not found: aligned_len %lxh\n", 955 __func__, __LINE__, aligned_len); 956 BUG(); 957 } 958 959 c->usage_count--; 960 961 if (!c->usage_count) { 962 list_del(&c->link); 963 dma_ioc0_free_chunk(c); 964 } 965 966 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 967 DBG("%s: end\n", __func__); 968 return 0; 969 } 970 971 /** 972 * dma_sb_region_create_linear - Setup a linear dma mapping for a device. 973 * @r: Pointer to a struct ps3_dma_region. 974 * 975 * This routine creates an HV dma region for the device and maps all available 976 * ram into the io controller bus address space. 977 */ 978 979 static int dma_sb_region_create_linear(struct ps3_dma_region *r) 980 { 981 int result; 982 unsigned long virt_addr, len, tmp; 983 984 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */ 985 /* force 16M dma pages for linear mapping */ 986 if (r->page_size != PS3_DMA_16M) { 987 pr_info("%s:%d: forcing 16M pages for linear map\n", 988 __func__, __LINE__); 989 r->page_size = PS3_DMA_16M; 990 r->len = _ALIGN_UP(r->len, 1 << r->page_size); 991 } 992 } 993 994 result = dma_sb_region_create(r); 995 BUG_ON(result); 996 997 if (r->offset < map.rm.size) { 998 /* Map (part of) 1st RAM chunk */ 999 virt_addr = map.rm.base + r->offset; 1000 len = map.rm.size - r->offset; 1001 if (len > r->len) 1002 len = r->len; 1003 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1004 IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M); 1005 BUG_ON(result); 1006 } 1007 1008 if (r->offset + r->len > map.rm.size) { 1009 /* Map (part of) 2nd RAM chunk */ 1010 virt_addr = USE_LPAR_ADDR ? map.r1.base : map.rm.size; 1011 len = r->len; 1012 if (r->offset >= map.rm.size) 1013 virt_addr += r->offset - map.rm.size; 1014 else 1015 len -= map.rm.size - r->offset; 1016 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1017 IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M); 1018 BUG_ON(result); 1019 } 1020 1021 return result; 1022 } 1023 1024 /** 1025 * dma_sb_region_free_linear - Free a linear dma mapping for a device. 1026 * @r: Pointer to a struct ps3_dma_region. 1027 * 1028 * This routine will unmap all mapped areas and free the HV dma region. 1029 */ 1030 1031 static int dma_sb_region_free_linear(struct ps3_dma_region *r) 1032 { 1033 int result; 1034 unsigned long bus_addr, len, lpar_addr; 1035 1036 if (r->offset < map.rm.size) { 1037 /* Unmap (part of) 1st RAM chunk */ 1038 lpar_addr = map.rm.base + r->offset; 1039 len = map.rm.size - r->offset; 1040 if (len > r->len) 1041 len = r->len; 1042 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1043 result = dma_sb_unmap_area(r, bus_addr, len); 1044 BUG_ON(result); 1045 } 1046 1047 if (r->offset + r->len > map.rm.size) { 1048 /* Unmap (part of) 2nd RAM chunk */ 1049 lpar_addr = map.r1.base; 1050 len = r->len; 1051 if (r->offset >= map.rm.size) 1052 lpar_addr += r->offset - map.rm.size; 1053 else 1054 len -= map.rm.size - r->offset; 1055 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1056 result = dma_sb_unmap_area(r, bus_addr, len); 1057 BUG_ON(result); 1058 } 1059 1060 result = dma_sb_region_free(r); 1061 BUG_ON(result); 1062 1063 return result; 1064 } 1065 1066 /** 1067 * dma_sb_map_area_linear - Map an area of memory into a device dma region. 1068 * @r: Pointer to a struct ps3_dma_region. 1069 * @virt_addr: Starting virtual address of the area to map. 1070 * @len: Length in bytes of the area to map. 1071 * @bus_addr: A pointer to return the starting ioc bus address of the area to 1072 * map. 1073 * 1074 * This routine just returns the corresponding bus address. Actual mapping 1075 * occurs in dma_region_create_linear(). 1076 */ 1077 1078 static int dma_sb_map_area_linear(struct ps3_dma_region *r, 1079 unsigned long virt_addr, unsigned long len, unsigned long *bus_addr, 1080 u64 iopte_flag) 1081 { 1082 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 1083 : virt_addr; 1084 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 1085 return 0; 1086 } 1087 1088 /** 1089 * dma_unmap_area_linear - Unmap an area of memory from a device dma region. 1090 * @r: Pointer to a struct ps3_dma_region. 1091 * @bus_addr: The starting ioc bus address of the area to unmap. 1092 * @len: Length in bytes of the area to unmap. 1093 * 1094 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear(). 1095 */ 1096 1097 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r, 1098 unsigned long bus_addr, unsigned long len) 1099 { 1100 return 0; 1101 }; 1102 1103 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = { 1104 .create = dma_sb_region_create, 1105 .free = dma_sb_region_free, 1106 .map = dma_sb_map_area, 1107 .unmap = dma_sb_unmap_area 1108 }; 1109 1110 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = { 1111 .create = dma_sb_region_create_linear, 1112 .free = dma_sb_region_free_linear, 1113 .map = dma_sb_map_area_linear, 1114 .unmap = dma_sb_unmap_area_linear 1115 }; 1116 1117 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = { 1118 .create = dma_ioc0_region_create, 1119 .free = dma_ioc0_region_free, 1120 .map = dma_ioc0_map_area, 1121 .unmap = dma_ioc0_unmap_area 1122 }; 1123 1124 int ps3_dma_region_init(struct ps3_system_bus_device *dev, 1125 struct ps3_dma_region *r, enum ps3_dma_page_size page_size, 1126 enum ps3_dma_region_type region_type, void *addr, unsigned long len) 1127 { 1128 unsigned long lpar_addr; 1129 1130 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0; 1131 1132 r->dev = dev; 1133 r->page_size = page_size; 1134 r->region_type = region_type; 1135 r->offset = lpar_addr; 1136 if (r->offset >= map.rm.size) 1137 r->offset -= map.r1.offset; 1138 r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size); 1139 1140 switch (dev->dev_type) { 1141 case PS3_DEVICE_TYPE_SB: 1142 r->region_ops = (USE_DYNAMIC_DMA) 1143 ? &ps3_dma_sb_region_ops 1144 : &ps3_dma_sb_region_linear_ops; 1145 break; 1146 case PS3_DEVICE_TYPE_IOC0: 1147 r->region_ops = &ps3_dma_ioc0_region_ops; 1148 break; 1149 default: 1150 BUG(); 1151 return -EINVAL; 1152 } 1153 return 0; 1154 } 1155 EXPORT_SYMBOL(ps3_dma_region_init); 1156 1157 int ps3_dma_region_create(struct ps3_dma_region *r) 1158 { 1159 BUG_ON(!r); 1160 BUG_ON(!r->region_ops); 1161 BUG_ON(!r->region_ops->create); 1162 return r->region_ops->create(r); 1163 } 1164 EXPORT_SYMBOL(ps3_dma_region_create); 1165 1166 int ps3_dma_region_free(struct ps3_dma_region *r) 1167 { 1168 BUG_ON(!r); 1169 BUG_ON(!r->region_ops); 1170 BUG_ON(!r->region_ops->free); 1171 return r->region_ops->free(r); 1172 } 1173 EXPORT_SYMBOL(ps3_dma_region_free); 1174 1175 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr, 1176 unsigned long len, unsigned long *bus_addr, 1177 u64 iopte_flag) 1178 { 1179 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag); 1180 } 1181 1182 int ps3_dma_unmap(struct ps3_dma_region *r, unsigned long bus_addr, 1183 unsigned long len) 1184 { 1185 return r->region_ops->unmap(r, bus_addr, len); 1186 } 1187 1188 /*============================================================================*/ 1189 /* system startup routines */ 1190 /*============================================================================*/ 1191 1192 /** 1193 * ps3_mm_init - initialize the address space state variables 1194 */ 1195 1196 void __init ps3_mm_init(void) 1197 { 1198 int result; 1199 1200 DBG(" -> %s:%d\n", __func__, __LINE__); 1201 1202 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size, 1203 &map.total); 1204 1205 if (result) 1206 panic("ps3_repository_read_mm_info() failed"); 1207 1208 map.rm.offset = map.rm.base; 1209 map.vas_id = map.htab_size = 0; 1210 1211 /* this implementation assumes map.rm.base is zero */ 1212 1213 BUG_ON(map.rm.base); 1214 BUG_ON(!map.rm.size); 1215 1216 1217 /* arrange to do this in ps3_mm_add_memory */ 1218 ps3_mm_region_create(&map.r1, map.total - map.rm.size); 1219 1220 /* correct map.total for the real total amount of memory we use */ 1221 map.total = map.rm.size + map.r1.size; 1222 1223 DBG(" <- %s:%d\n", __func__, __LINE__); 1224 } 1225 1226 /** 1227 * ps3_mm_shutdown - final cleanup of address space 1228 */ 1229 1230 void ps3_mm_shutdown(void) 1231 { 1232 ps3_mm_region_destroy(&map.r1); 1233 } 1234