1 /* 2 * PS3 address space management. 3 * 4 * Copyright (C) 2006 Sony Computer Entertainment Inc. 5 * Copyright 2006 Sony Corp. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; version 2 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/lmb.h> 25 26 #include <asm/firmware.h> 27 #include <asm/prom.h> 28 #include <asm/udbg.h> 29 #include <asm/lv1call.h> 30 31 #include "platform.h" 32 33 #if defined(DEBUG) 34 #define DBG udbg_printf 35 #else 36 #define DBG pr_debug 37 #endif 38 39 enum { 40 #if defined(CONFIG_PS3_DYNAMIC_DMA) 41 USE_DYNAMIC_DMA = 1, 42 #else 43 USE_DYNAMIC_DMA = 0, 44 #endif 45 }; 46 47 enum { 48 PAGE_SHIFT_4K = 12U, 49 PAGE_SHIFT_64K = 16U, 50 PAGE_SHIFT_16M = 24U, 51 }; 52 53 static unsigned long make_page_sizes(unsigned long a, unsigned long b) 54 { 55 return (a << 56) | (b << 48); 56 } 57 58 enum { 59 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04, 60 ALLOCATE_MEMORY_ADDR_ZERO = 0X08, 61 }; 62 63 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */ 64 65 enum { 66 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */ 67 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */ 68 }; 69 70 /*============================================================================*/ 71 /* virtual address space routines */ 72 /*============================================================================*/ 73 74 /** 75 * struct mem_region - memory region structure 76 * @base: base address 77 * @size: size in bytes 78 * @offset: difference between base and rm.size 79 */ 80 81 struct mem_region { 82 u64 base; 83 u64 size; 84 unsigned long offset; 85 }; 86 87 /** 88 * struct map - address space state variables holder 89 * @total: total memory available as reported by HV 90 * @vas_id - HV virtual address space id 91 * @htab_size: htab size in bytes 92 * 93 * The HV virtual address space (vas) allows for hotplug memory regions. 94 * Memory regions can be created and destroyed in the vas at runtime. 95 * @rm: real mode (bootmem) region 96 * @r1: hotplug memory region(s) 97 * 98 * ps3 addresses 99 * virt_addr: a cpu 'translated' effective address 100 * phys_addr: an address in what Linux thinks is the physical address space 101 * lpar_addr: an address in the HV virtual address space 102 * bus_addr: an io controller 'translated' address on a device bus 103 */ 104 105 struct map { 106 u64 total; 107 u64 vas_id; 108 u64 htab_size; 109 struct mem_region rm; 110 struct mem_region r1; 111 }; 112 113 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__) 114 static void __maybe_unused _debug_dump_map(const struct map *m, 115 const char *func, int line) 116 { 117 DBG("%s:%d: map.total = %llxh\n", func, line, m->total); 118 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size); 119 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id); 120 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size); 121 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base); 122 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset); 123 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size); 124 } 125 126 static struct map map; 127 128 /** 129 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address 130 * @phys_addr: linux physical address 131 */ 132 133 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr) 134 { 135 BUG_ON(is_kernel_addr(phys_addr)); 136 return (phys_addr < map.rm.size || phys_addr >= map.total) 137 ? phys_addr : phys_addr + map.r1.offset; 138 } 139 140 EXPORT_SYMBOL(ps3_mm_phys_to_lpar); 141 142 /** 143 * ps3_mm_vas_create - create the virtual address space 144 */ 145 146 void __init ps3_mm_vas_create(unsigned long* htab_size) 147 { 148 int result; 149 u64 start_address; 150 u64 size; 151 u64 access_right; 152 u64 max_page_size; 153 u64 flags; 154 155 result = lv1_query_logical_partition_address_region_info(0, 156 &start_address, &size, &access_right, &max_page_size, 157 &flags); 158 159 if (result) { 160 DBG("%s:%d: lv1_query_logical_partition_address_region_info " 161 "failed: %s\n", __func__, __LINE__, 162 ps3_result(result)); 163 goto fail; 164 } 165 166 if (max_page_size < PAGE_SHIFT_16M) { 167 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__, 168 max_page_size); 169 goto fail; 170 } 171 172 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX); 173 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN); 174 175 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE, 176 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K), 177 &map.vas_id, &map.htab_size); 178 179 if (result) { 180 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n", 181 __func__, __LINE__, ps3_result(result)); 182 goto fail; 183 } 184 185 result = lv1_select_virtual_address_space(map.vas_id); 186 187 if (result) { 188 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n", 189 __func__, __LINE__, ps3_result(result)); 190 goto fail; 191 } 192 193 *htab_size = map.htab_size; 194 195 debug_dump_map(&map); 196 197 return; 198 199 fail: 200 panic("ps3_mm_vas_create failed"); 201 } 202 203 /** 204 * ps3_mm_vas_destroy - 205 */ 206 207 void ps3_mm_vas_destroy(void) 208 { 209 int result; 210 211 DBG("%s:%d: map.vas_id = %llu\n", __func__, __LINE__, map.vas_id); 212 213 if (map.vas_id) { 214 result = lv1_select_virtual_address_space(0); 215 BUG_ON(result); 216 result = lv1_destruct_virtual_address_space(map.vas_id); 217 BUG_ON(result); 218 map.vas_id = 0; 219 } 220 } 221 222 /*============================================================================*/ 223 /* memory hotplug routines */ 224 /*============================================================================*/ 225 226 /** 227 * ps3_mm_region_create - create a memory region in the vas 228 * @r: pointer to a struct mem_region to accept initialized values 229 * @size: requested region size 230 * 231 * This implementation creates the region with the vas large page size. 232 * @size is rounded down to a multiple of the vas large page size. 233 */ 234 235 static int ps3_mm_region_create(struct mem_region *r, unsigned long size) 236 { 237 int result; 238 u64 muid; 239 240 r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M); 241 242 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size); 243 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size); 244 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__, 245 size - r->size, (size - r->size) / 1024 / 1024); 246 247 if (r->size == 0) { 248 DBG("%s:%d: size == 0\n", __func__, __LINE__); 249 result = -1; 250 goto zero_region; 251 } 252 253 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0, 254 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid); 255 256 if (result || r->base < map.rm.size) { 257 DBG("%s:%d: lv1_allocate_memory failed: %s\n", 258 __func__, __LINE__, ps3_result(result)); 259 goto zero_region; 260 } 261 262 r->offset = r->base - map.rm.size; 263 return result; 264 265 zero_region: 266 r->size = r->base = r->offset = 0; 267 return result; 268 } 269 270 /** 271 * ps3_mm_region_destroy - destroy a memory region 272 * @r: pointer to struct mem_region 273 */ 274 275 static void ps3_mm_region_destroy(struct mem_region *r) 276 { 277 int result; 278 279 DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base); 280 if (r->base) { 281 result = lv1_release_memory(r->base); 282 BUG_ON(result); 283 r->size = r->base = r->offset = 0; 284 map.total = map.rm.size; 285 } 286 } 287 288 /** 289 * ps3_mm_add_memory - hot add memory 290 */ 291 292 static int __init ps3_mm_add_memory(void) 293 { 294 int result; 295 unsigned long start_addr; 296 unsigned long start_pfn; 297 unsigned long nr_pages; 298 299 if (!firmware_has_feature(FW_FEATURE_PS3_LV1)) 300 return -ENODEV; 301 302 BUG_ON(!mem_init_done); 303 304 start_addr = map.rm.size; 305 start_pfn = start_addr >> PAGE_SHIFT; 306 nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT; 307 308 DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n", 309 __func__, __LINE__, start_addr, start_pfn, nr_pages); 310 311 result = add_memory(0, start_addr, map.r1.size); 312 313 if (result) { 314 pr_err("%s:%d: add_memory failed: (%d)\n", 315 __func__, __LINE__, result); 316 return result; 317 } 318 319 lmb_add(start_addr, map.r1.size); 320 lmb_analyze(); 321 322 result = online_pages(start_pfn, nr_pages); 323 324 if (result) 325 pr_err("%s:%d: online_pages failed: (%d)\n", 326 __func__, __LINE__, result); 327 328 return result; 329 } 330 331 device_initcall(ps3_mm_add_memory); 332 333 /*============================================================================*/ 334 /* dma routines */ 335 /*============================================================================*/ 336 337 /** 338 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address. 339 * @r: pointer to dma region structure 340 * @lpar_addr: HV lpar address 341 */ 342 343 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r, 344 unsigned long lpar_addr) 345 { 346 if (lpar_addr >= map.rm.size) 347 lpar_addr -= map.r1.offset; 348 BUG_ON(lpar_addr < r->offset); 349 BUG_ON(lpar_addr >= r->offset + r->len); 350 return r->bus_addr + lpar_addr - r->offset; 351 } 352 353 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__) 354 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r, 355 const char *func, int line) 356 { 357 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id, 358 r->dev->dev_id); 359 DBG("%s:%d: page_size %u\n", func, line, r->page_size); 360 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr); 361 DBG("%s:%d: len %lxh\n", func, line, r->len); 362 DBG("%s:%d: offset %lxh\n", func, line, r->offset); 363 } 364 365 /** 366 * dma_chunk - A chunk of dma pages mapped by the io controller. 367 * @region - The dma region that owns this chunk. 368 * @lpar_addr: Starting lpar address of the area to map. 369 * @bus_addr: Starting ioc bus address of the area to map. 370 * @len: Length in bytes of the area to map. 371 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the 372 * list of all chuncks owned by the region. 373 * 374 * This implementation uses a very simple dma page manager 375 * based on the dma_chunk structure. This scheme assumes 376 * that all drivers use very well behaved dma ops. 377 */ 378 379 struct dma_chunk { 380 struct ps3_dma_region *region; 381 unsigned long lpar_addr; 382 unsigned long bus_addr; 383 unsigned long len; 384 struct list_head link; 385 unsigned int usage_count; 386 }; 387 388 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__) 389 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func, 390 int line) 391 { 392 DBG("%s:%d: r.dev %llu:%llu\n", func, line, 393 c->region->dev->bus_id, c->region->dev->dev_id); 394 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr); 395 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size); 396 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len); 397 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset); 398 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr); 399 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr); 400 DBG("%s:%d: c.len %lxh\n", func, line, c->len); 401 } 402 403 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r, 404 unsigned long bus_addr, unsigned long len) 405 { 406 struct dma_chunk *c; 407 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size); 408 unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus, 409 1 << r->page_size); 410 411 list_for_each_entry(c, &r->chunk_list.head, link) { 412 /* intersection */ 413 if (aligned_bus >= c->bus_addr && 414 aligned_bus + aligned_len <= c->bus_addr + c->len) 415 return c; 416 417 /* below */ 418 if (aligned_bus + aligned_len <= c->bus_addr) 419 continue; 420 421 /* above */ 422 if (aligned_bus >= c->bus_addr + c->len) 423 continue; 424 425 /* we don't handle the multi-chunk case for now */ 426 dma_dump_chunk(c); 427 BUG(); 428 } 429 return NULL; 430 } 431 432 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r, 433 unsigned long lpar_addr, unsigned long len) 434 { 435 struct dma_chunk *c; 436 unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size); 437 unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar, 438 1 << r->page_size); 439 440 list_for_each_entry(c, &r->chunk_list.head, link) { 441 /* intersection */ 442 if (c->lpar_addr <= aligned_lpar && 443 aligned_lpar < c->lpar_addr + c->len) { 444 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len) 445 return c; 446 else { 447 dma_dump_chunk(c); 448 BUG(); 449 } 450 } 451 /* below */ 452 if (aligned_lpar + aligned_len <= c->lpar_addr) { 453 continue; 454 } 455 /* above */ 456 if (c->lpar_addr + c->len <= aligned_lpar) { 457 continue; 458 } 459 } 460 return NULL; 461 } 462 463 static int dma_sb_free_chunk(struct dma_chunk *c) 464 { 465 int result = 0; 466 467 if (c->bus_addr) { 468 result = lv1_unmap_device_dma_region(c->region->dev->bus_id, 469 c->region->dev->dev_id, c->bus_addr, c->len); 470 BUG_ON(result); 471 } 472 473 kfree(c); 474 return result; 475 } 476 477 static int dma_ioc0_free_chunk(struct dma_chunk *c) 478 { 479 int result = 0; 480 int iopage; 481 unsigned long offset; 482 struct ps3_dma_region *r = c->region; 483 484 DBG("%s:start\n", __func__); 485 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) { 486 offset = (1 << r->page_size) * iopage; 487 /* put INVALID entry */ 488 result = lv1_put_iopte(0, 489 c->bus_addr + offset, 490 c->lpar_addr + offset, 491 r->ioid, 492 0); 493 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__, 494 c->bus_addr + offset, 495 c->lpar_addr + offset, 496 r->ioid); 497 498 if (result) { 499 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__, 500 __LINE__, ps3_result(result)); 501 } 502 } 503 kfree(c); 504 DBG("%s:end\n", __func__); 505 return result; 506 } 507 508 /** 509 * dma_sb_map_pages - Maps dma pages into the io controller bus address space. 510 * @r: Pointer to a struct ps3_dma_region. 511 * @phys_addr: Starting physical address of the area to map. 512 * @len: Length in bytes of the area to map. 513 * c_out: A pointer to receive an allocated struct dma_chunk for this area. 514 * 515 * This is the lowest level dma mapping routine, and is the one that will 516 * make the HV call to add the pages into the io controller address space. 517 */ 518 519 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 520 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag) 521 { 522 int result; 523 struct dma_chunk *c; 524 525 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 526 527 if (!c) { 528 result = -ENOMEM; 529 goto fail_alloc; 530 } 531 532 c->region = r; 533 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 534 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr); 535 c->len = len; 536 537 BUG_ON(iopte_flag != 0xf800000000000000UL); 538 result = lv1_map_device_dma_region(c->region->dev->bus_id, 539 c->region->dev->dev_id, c->lpar_addr, 540 c->bus_addr, c->len, iopte_flag); 541 if (result) { 542 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n", 543 __func__, __LINE__, ps3_result(result)); 544 goto fail_map; 545 } 546 547 list_add(&c->link, &r->chunk_list.head); 548 549 *c_out = c; 550 return 0; 551 552 fail_map: 553 kfree(c); 554 fail_alloc: 555 *c_out = NULL; 556 DBG(" <- %s:%d\n", __func__, __LINE__); 557 return result; 558 } 559 560 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 561 unsigned long len, struct dma_chunk **c_out, 562 u64 iopte_flag) 563 { 564 int result; 565 struct dma_chunk *c, *last; 566 int iopage, pages; 567 unsigned long offset; 568 569 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__, 570 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len); 571 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 572 573 if (!c) { 574 result = -ENOMEM; 575 goto fail_alloc; 576 } 577 578 c->region = r; 579 c->len = len; 580 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 581 /* allocate IO address */ 582 if (list_empty(&r->chunk_list.head)) { 583 /* first one */ 584 c->bus_addr = r->bus_addr; 585 } else { 586 /* derive from last bus addr*/ 587 last = list_entry(r->chunk_list.head.next, 588 struct dma_chunk, link); 589 c->bus_addr = last->bus_addr + last->len; 590 DBG("%s: last bus=%#lx, len=%#lx\n", __func__, 591 last->bus_addr, last->len); 592 } 593 594 /* FIXME: check whether length exceeds region size */ 595 596 /* build ioptes for the area */ 597 pages = len >> r->page_size; 598 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__, 599 r->page_size, r->len, pages, iopte_flag); 600 for (iopage = 0; iopage < pages; iopage++) { 601 offset = (1 << r->page_size) * iopage; 602 result = lv1_put_iopte(0, 603 c->bus_addr + offset, 604 c->lpar_addr + offset, 605 r->ioid, 606 iopte_flag); 607 if (result) { 608 printk(KERN_WARNING "%s:%d: lv1_map_device_dma_region " 609 "failed: %s\n", __func__, __LINE__, 610 ps3_result(result)); 611 goto fail_map; 612 } 613 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__, 614 iopage, c->bus_addr + offset, c->lpar_addr + offset, 615 r->ioid); 616 } 617 618 /* be sure that last allocated one is inserted at head */ 619 list_add(&c->link, &r->chunk_list.head); 620 621 *c_out = c; 622 DBG("%s: end\n", __func__); 623 return 0; 624 625 fail_map: 626 for (iopage--; 0 <= iopage; iopage--) { 627 lv1_put_iopte(0, 628 c->bus_addr + offset, 629 c->lpar_addr + offset, 630 r->ioid, 631 0); 632 } 633 kfree(c); 634 fail_alloc: 635 *c_out = NULL; 636 return result; 637 } 638 639 /** 640 * dma_sb_region_create - Create a device dma region. 641 * @r: Pointer to a struct ps3_dma_region. 642 * 643 * This is the lowest level dma region create routine, and is the one that 644 * will make the HV call to create the region. 645 */ 646 647 static int dma_sb_region_create(struct ps3_dma_region *r) 648 { 649 int result; 650 u64 bus_addr; 651 652 DBG(" -> %s:%d:\n", __func__, __LINE__); 653 654 BUG_ON(!r); 655 656 if (!r->dev->bus_id) { 657 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, 658 r->dev->bus_id, r->dev->dev_id); 659 return 0; 660 } 661 662 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__, 663 __LINE__, r->len, r->page_size, r->offset); 664 665 BUG_ON(!r->len); 666 BUG_ON(!r->page_size); 667 BUG_ON(!r->region_ops); 668 669 INIT_LIST_HEAD(&r->chunk_list.head); 670 spin_lock_init(&r->chunk_list.lock); 671 672 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id, 673 roundup_pow_of_two(r->len), r->page_size, r->region_type, 674 &bus_addr); 675 r->bus_addr = bus_addr; 676 677 if (result) { 678 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n", 679 __func__, __LINE__, ps3_result(result)); 680 r->len = r->bus_addr = 0; 681 } 682 683 return result; 684 } 685 686 static int dma_ioc0_region_create(struct ps3_dma_region *r) 687 { 688 int result; 689 u64 bus_addr; 690 691 INIT_LIST_HEAD(&r->chunk_list.head); 692 spin_lock_init(&r->chunk_list.lock); 693 694 result = lv1_allocate_io_segment(0, 695 r->len, 696 r->page_size, 697 &bus_addr); 698 r->bus_addr = bus_addr; 699 if (result) { 700 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n", 701 __func__, __LINE__, ps3_result(result)); 702 r->len = r->bus_addr = 0; 703 } 704 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__, 705 r->len, r->page_size, r->bus_addr); 706 return result; 707 } 708 709 /** 710 * dma_region_free - Free a device dma region. 711 * @r: Pointer to a struct ps3_dma_region. 712 * 713 * This is the lowest level dma region free routine, and is the one that 714 * will make the HV call to free the region. 715 */ 716 717 static int dma_sb_region_free(struct ps3_dma_region *r) 718 { 719 int result; 720 struct dma_chunk *c; 721 struct dma_chunk *tmp; 722 723 BUG_ON(!r); 724 725 if (!r->dev->bus_id) { 726 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, 727 r->dev->bus_id, r->dev->dev_id); 728 return 0; 729 } 730 731 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) { 732 list_del(&c->link); 733 dma_sb_free_chunk(c); 734 } 735 736 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id, 737 r->bus_addr); 738 739 if (result) 740 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 741 __func__, __LINE__, ps3_result(result)); 742 743 r->bus_addr = 0; 744 745 return result; 746 } 747 748 static int dma_ioc0_region_free(struct ps3_dma_region *r) 749 { 750 int result; 751 struct dma_chunk *c, *n; 752 753 DBG("%s: start\n", __func__); 754 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) { 755 list_del(&c->link); 756 dma_ioc0_free_chunk(c); 757 } 758 759 result = lv1_release_io_segment(0, r->bus_addr); 760 761 if (result) 762 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 763 __func__, __LINE__, ps3_result(result)); 764 765 r->bus_addr = 0; 766 DBG("%s: end\n", __func__); 767 768 return result; 769 } 770 771 /** 772 * dma_sb_map_area - Map an area of memory into a device dma region. 773 * @r: Pointer to a struct ps3_dma_region. 774 * @virt_addr: Starting virtual address of the area to map. 775 * @len: Length in bytes of the area to map. 776 * @bus_addr: A pointer to return the starting ioc bus address of the area to 777 * map. 778 * 779 * This is the common dma mapping routine. 780 */ 781 782 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 783 unsigned long len, dma_addr_t *bus_addr, 784 u64 iopte_flag) 785 { 786 int result; 787 unsigned long flags; 788 struct dma_chunk *c; 789 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 790 : virt_addr; 791 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 792 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 793 1 << r->page_size); 794 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 795 796 if (!USE_DYNAMIC_DMA) { 797 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 798 DBG(" -> %s:%d\n", __func__, __LINE__); 799 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__, 800 virt_addr); 801 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__, 802 phys_addr); 803 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__, 804 lpar_addr); 805 DBG("%s:%d len %lxh\n", __func__, __LINE__, len); 806 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__, 807 *bus_addr, len); 808 } 809 810 spin_lock_irqsave(&r->chunk_list.lock, flags); 811 c = dma_find_chunk(r, *bus_addr, len); 812 813 if (c) { 814 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__); 815 dma_dump_chunk(c); 816 c->usage_count++; 817 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 818 return 0; 819 } 820 821 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag); 822 823 if (result) { 824 *bus_addr = 0; 825 DBG("%s:%d: dma_sb_map_pages failed (%d)\n", 826 __func__, __LINE__, result); 827 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 828 return result; 829 } 830 831 c->usage_count = 1; 832 833 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 834 return result; 835 } 836 837 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 838 unsigned long len, dma_addr_t *bus_addr, 839 u64 iopte_flag) 840 { 841 int result; 842 unsigned long flags; 843 struct dma_chunk *c; 844 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 845 : virt_addr; 846 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 847 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 848 1 << r->page_size); 849 850 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__, 851 virt_addr, len); 852 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__, 853 phys_addr, aligned_phys, aligned_len); 854 855 spin_lock_irqsave(&r->chunk_list.lock, flags); 856 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len); 857 858 if (c) { 859 /* FIXME */ 860 BUG(); 861 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 862 c->usage_count++; 863 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 864 return 0; 865 } 866 867 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c, 868 iopte_flag); 869 870 if (result) { 871 *bus_addr = 0; 872 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n", 873 __func__, __LINE__, result); 874 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 875 return result; 876 } 877 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 878 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__, 879 virt_addr, phys_addr, aligned_phys, *bus_addr); 880 c->usage_count = 1; 881 882 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 883 return result; 884 } 885 886 /** 887 * dma_sb_unmap_area - Unmap an area of memory from a device dma region. 888 * @r: Pointer to a struct ps3_dma_region. 889 * @bus_addr: The starting ioc bus address of the area to unmap. 890 * @len: Length in bytes of the area to unmap. 891 * 892 * This is the common dma unmap routine. 893 */ 894 895 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr, 896 unsigned long len) 897 { 898 unsigned long flags; 899 struct dma_chunk *c; 900 901 spin_lock_irqsave(&r->chunk_list.lock, flags); 902 c = dma_find_chunk(r, bus_addr, len); 903 904 if (!c) { 905 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 906 1 << r->page_size); 907 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 908 - aligned_bus, 1 << r->page_size); 909 DBG("%s:%d: not found: bus_addr %llxh\n", 910 __func__, __LINE__, bus_addr); 911 DBG("%s:%d: not found: len %lxh\n", 912 __func__, __LINE__, len); 913 DBG("%s:%d: not found: aligned_bus %lxh\n", 914 __func__, __LINE__, aligned_bus); 915 DBG("%s:%d: not found: aligned_len %lxh\n", 916 __func__, __LINE__, aligned_len); 917 BUG(); 918 } 919 920 c->usage_count--; 921 922 if (!c->usage_count) { 923 list_del(&c->link); 924 dma_sb_free_chunk(c); 925 } 926 927 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 928 return 0; 929 } 930 931 static int dma_ioc0_unmap_area(struct ps3_dma_region *r, 932 dma_addr_t bus_addr, unsigned long len) 933 { 934 unsigned long flags; 935 struct dma_chunk *c; 936 937 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len); 938 spin_lock_irqsave(&r->chunk_list.lock, flags); 939 c = dma_find_chunk(r, bus_addr, len); 940 941 if (!c) { 942 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 943 1 << r->page_size); 944 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 945 - aligned_bus, 946 1 << r->page_size); 947 DBG("%s:%d: not found: bus_addr %llxh\n", 948 __func__, __LINE__, bus_addr); 949 DBG("%s:%d: not found: len %lxh\n", 950 __func__, __LINE__, len); 951 DBG("%s:%d: not found: aligned_bus %lxh\n", 952 __func__, __LINE__, aligned_bus); 953 DBG("%s:%d: not found: aligned_len %lxh\n", 954 __func__, __LINE__, aligned_len); 955 BUG(); 956 } 957 958 c->usage_count--; 959 960 if (!c->usage_count) { 961 list_del(&c->link); 962 dma_ioc0_free_chunk(c); 963 } 964 965 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 966 DBG("%s: end\n", __func__); 967 return 0; 968 } 969 970 /** 971 * dma_sb_region_create_linear - Setup a linear dma mapping for a device. 972 * @r: Pointer to a struct ps3_dma_region. 973 * 974 * This routine creates an HV dma region for the device and maps all available 975 * ram into the io controller bus address space. 976 */ 977 978 static int dma_sb_region_create_linear(struct ps3_dma_region *r) 979 { 980 int result; 981 unsigned long virt_addr, len; 982 dma_addr_t tmp; 983 984 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */ 985 /* force 16M dma pages for linear mapping */ 986 if (r->page_size != PS3_DMA_16M) { 987 pr_info("%s:%d: forcing 16M pages for linear map\n", 988 __func__, __LINE__); 989 r->page_size = PS3_DMA_16M; 990 r->len = _ALIGN_UP(r->len, 1 << r->page_size); 991 } 992 } 993 994 result = dma_sb_region_create(r); 995 BUG_ON(result); 996 997 if (r->offset < map.rm.size) { 998 /* Map (part of) 1st RAM chunk */ 999 virt_addr = map.rm.base + r->offset; 1000 len = map.rm.size - r->offset; 1001 if (len > r->len) 1002 len = r->len; 1003 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1004 IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M); 1005 BUG_ON(result); 1006 } 1007 1008 if (r->offset + r->len > map.rm.size) { 1009 /* Map (part of) 2nd RAM chunk */ 1010 virt_addr = map.rm.size; 1011 len = r->len; 1012 if (r->offset >= map.rm.size) 1013 virt_addr += r->offset - map.rm.size; 1014 else 1015 len -= map.rm.size - r->offset; 1016 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1017 IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M); 1018 BUG_ON(result); 1019 } 1020 1021 return result; 1022 } 1023 1024 /** 1025 * dma_sb_region_free_linear - Free a linear dma mapping for a device. 1026 * @r: Pointer to a struct ps3_dma_region. 1027 * 1028 * This routine will unmap all mapped areas and free the HV dma region. 1029 */ 1030 1031 static int dma_sb_region_free_linear(struct ps3_dma_region *r) 1032 { 1033 int result; 1034 dma_addr_t bus_addr; 1035 unsigned long len, lpar_addr; 1036 1037 if (r->offset < map.rm.size) { 1038 /* Unmap (part of) 1st RAM chunk */ 1039 lpar_addr = map.rm.base + r->offset; 1040 len = map.rm.size - r->offset; 1041 if (len > r->len) 1042 len = r->len; 1043 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1044 result = dma_sb_unmap_area(r, bus_addr, len); 1045 BUG_ON(result); 1046 } 1047 1048 if (r->offset + r->len > map.rm.size) { 1049 /* Unmap (part of) 2nd RAM chunk */ 1050 lpar_addr = map.r1.base; 1051 len = r->len; 1052 if (r->offset >= map.rm.size) 1053 lpar_addr += r->offset - map.rm.size; 1054 else 1055 len -= map.rm.size - r->offset; 1056 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1057 result = dma_sb_unmap_area(r, bus_addr, len); 1058 BUG_ON(result); 1059 } 1060 1061 result = dma_sb_region_free(r); 1062 BUG_ON(result); 1063 1064 return result; 1065 } 1066 1067 /** 1068 * dma_sb_map_area_linear - Map an area of memory into a device dma region. 1069 * @r: Pointer to a struct ps3_dma_region. 1070 * @virt_addr: Starting virtual address of the area to map. 1071 * @len: Length in bytes of the area to map. 1072 * @bus_addr: A pointer to return the starting ioc bus address of the area to 1073 * map. 1074 * 1075 * This routine just returns the corresponding bus address. Actual mapping 1076 * occurs in dma_region_create_linear(). 1077 */ 1078 1079 static int dma_sb_map_area_linear(struct ps3_dma_region *r, 1080 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr, 1081 u64 iopte_flag) 1082 { 1083 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 1084 : virt_addr; 1085 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 1086 return 0; 1087 } 1088 1089 /** 1090 * dma_unmap_area_linear - Unmap an area of memory from a device dma region. 1091 * @r: Pointer to a struct ps3_dma_region. 1092 * @bus_addr: The starting ioc bus address of the area to unmap. 1093 * @len: Length in bytes of the area to unmap. 1094 * 1095 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear(). 1096 */ 1097 1098 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r, 1099 dma_addr_t bus_addr, unsigned long len) 1100 { 1101 return 0; 1102 }; 1103 1104 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = { 1105 .create = dma_sb_region_create, 1106 .free = dma_sb_region_free, 1107 .map = dma_sb_map_area, 1108 .unmap = dma_sb_unmap_area 1109 }; 1110 1111 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = { 1112 .create = dma_sb_region_create_linear, 1113 .free = dma_sb_region_free_linear, 1114 .map = dma_sb_map_area_linear, 1115 .unmap = dma_sb_unmap_area_linear 1116 }; 1117 1118 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = { 1119 .create = dma_ioc0_region_create, 1120 .free = dma_ioc0_region_free, 1121 .map = dma_ioc0_map_area, 1122 .unmap = dma_ioc0_unmap_area 1123 }; 1124 1125 int ps3_dma_region_init(struct ps3_system_bus_device *dev, 1126 struct ps3_dma_region *r, enum ps3_dma_page_size page_size, 1127 enum ps3_dma_region_type region_type, void *addr, unsigned long len) 1128 { 1129 unsigned long lpar_addr; 1130 1131 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0; 1132 1133 r->dev = dev; 1134 r->page_size = page_size; 1135 r->region_type = region_type; 1136 r->offset = lpar_addr; 1137 if (r->offset >= map.rm.size) 1138 r->offset -= map.r1.offset; 1139 r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size); 1140 1141 switch (dev->dev_type) { 1142 case PS3_DEVICE_TYPE_SB: 1143 r->region_ops = (USE_DYNAMIC_DMA) 1144 ? &ps3_dma_sb_region_ops 1145 : &ps3_dma_sb_region_linear_ops; 1146 break; 1147 case PS3_DEVICE_TYPE_IOC0: 1148 r->region_ops = &ps3_dma_ioc0_region_ops; 1149 break; 1150 default: 1151 BUG(); 1152 return -EINVAL; 1153 } 1154 return 0; 1155 } 1156 EXPORT_SYMBOL(ps3_dma_region_init); 1157 1158 int ps3_dma_region_create(struct ps3_dma_region *r) 1159 { 1160 BUG_ON(!r); 1161 BUG_ON(!r->region_ops); 1162 BUG_ON(!r->region_ops->create); 1163 return r->region_ops->create(r); 1164 } 1165 EXPORT_SYMBOL(ps3_dma_region_create); 1166 1167 int ps3_dma_region_free(struct ps3_dma_region *r) 1168 { 1169 BUG_ON(!r); 1170 BUG_ON(!r->region_ops); 1171 BUG_ON(!r->region_ops->free); 1172 return r->region_ops->free(r); 1173 } 1174 EXPORT_SYMBOL(ps3_dma_region_free); 1175 1176 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr, 1177 unsigned long len, dma_addr_t *bus_addr, 1178 u64 iopte_flag) 1179 { 1180 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag); 1181 } 1182 1183 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr, 1184 unsigned long len) 1185 { 1186 return r->region_ops->unmap(r, bus_addr, len); 1187 } 1188 1189 /*============================================================================*/ 1190 /* system startup routines */ 1191 /*============================================================================*/ 1192 1193 /** 1194 * ps3_mm_init - initialize the address space state variables 1195 */ 1196 1197 void __init ps3_mm_init(void) 1198 { 1199 int result; 1200 1201 DBG(" -> %s:%d\n", __func__, __LINE__); 1202 1203 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size, 1204 &map.total); 1205 1206 if (result) 1207 panic("ps3_repository_read_mm_info() failed"); 1208 1209 map.rm.offset = map.rm.base; 1210 map.vas_id = map.htab_size = 0; 1211 1212 /* this implementation assumes map.rm.base is zero */ 1213 1214 BUG_ON(map.rm.base); 1215 BUG_ON(!map.rm.size); 1216 1217 1218 /* arrange to do this in ps3_mm_add_memory */ 1219 ps3_mm_region_create(&map.r1, map.total - map.rm.size); 1220 1221 /* correct map.total for the real total amount of memory we use */ 1222 map.total = map.rm.size + map.r1.size; 1223 1224 DBG(" <- %s:%d\n", __func__, __LINE__); 1225 } 1226 1227 /** 1228 * ps3_mm_shutdown - final cleanup of address space 1229 */ 1230 1231 void ps3_mm_shutdown(void) 1232 { 1233 ps3_mm_region_destroy(&map.r1); 1234 } 1235