xref: /openbmc/linux/arch/powerpc/platforms/ps3/mm.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  PS3 address space management.
3  *
4  *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5  *  Copyright 2006 Sony Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; version 2 of the License.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/lmb.h>
25 
26 #include <asm/firmware.h>
27 #include <asm/prom.h>
28 #include <asm/udbg.h>
29 #include <asm/lv1call.h>
30 
31 #include "platform.h"
32 
33 #if defined(DEBUG)
34 #define DBG udbg_printf
35 #else
36 #define DBG pr_debug
37 #endif
38 
39 enum {
40 #if defined(CONFIG_PS3_DYNAMIC_DMA)
41 	USE_DYNAMIC_DMA = 1,
42 #else
43 	USE_DYNAMIC_DMA = 0,
44 #endif
45 };
46 
47 enum {
48 	PAGE_SHIFT_4K = 12U,
49 	PAGE_SHIFT_64K = 16U,
50 	PAGE_SHIFT_16M = 24U,
51 };
52 
53 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
54 {
55 	return (a << 56) | (b << 48);
56 }
57 
58 enum {
59 	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
60 	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
61 };
62 
63 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
64 
65 enum {
66 	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
67 	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
68 };
69 
70 /*============================================================================*/
71 /* virtual address space routines                                             */
72 /*============================================================================*/
73 
74 /**
75  * struct mem_region - memory region structure
76  * @base: base address
77  * @size: size in bytes
78  * @offset: difference between base and rm.size
79  */
80 
81 struct mem_region {
82 	unsigned long base;
83 	unsigned long size;
84 	unsigned long offset;
85 };
86 
87 /**
88  * struct map - address space state variables holder
89  * @total: total memory available as reported by HV
90  * @vas_id - HV virtual address space id
91  * @htab_size: htab size in bytes
92  *
93  * The HV virtual address space (vas) allows for hotplug memory regions.
94  * Memory regions can be created and destroyed in the vas at runtime.
95  * @rm: real mode (bootmem) region
96  * @r1: hotplug memory region(s)
97  *
98  * ps3 addresses
99  * virt_addr: a cpu 'translated' effective address
100  * phys_addr: an address in what Linux thinks is the physical address space
101  * lpar_addr: an address in the HV virtual address space
102  * bus_addr: an io controller 'translated' address on a device bus
103  */
104 
105 struct map {
106 	unsigned long total;
107 	unsigned long vas_id;
108 	unsigned long htab_size;
109 	struct mem_region rm;
110 	struct mem_region r1;
111 };
112 
113 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
114 static void __maybe_unused _debug_dump_map(const struct map *m,
115 	const char *func, int line)
116 {
117 	DBG("%s:%d: map.total     = %lxh\n", func, line, m->total);
118 	DBG("%s:%d: map.rm.size   = %lxh\n", func, line, m->rm.size);
119 	DBG("%s:%d: map.vas_id    = %lu\n", func, line, m->vas_id);
120 	DBG("%s:%d: map.htab_size = %lxh\n", func, line, m->htab_size);
121 	DBG("%s:%d: map.r1.base   = %lxh\n", func, line, m->r1.base);
122 	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
123 	DBG("%s:%d: map.r1.size   = %lxh\n", func, line, m->r1.size);
124 }
125 
126 static struct map map;
127 
128 /**
129  * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
130  * @phys_addr: linux physical address
131  */
132 
133 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
134 {
135 	BUG_ON(is_kernel_addr(phys_addr));
136 	return (phys_addr < map.rm.size || phys_addr >= map.total)
137 		? phys_addr : phys_addr + map.r1.offset;
138 }
139 
140 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
141 
142 /**
143  * ps3_mm_vas_create - create the virtual address space
144  */
145 
146 void __init ps3_mm_vas_create(unsigned long* htab_size)
147 {
148 	int result;
149 	unsigned long start_address;
150 	unsigned long size;
151 	unsigned long access_right;
152 	unsigned long max_page_size;
153 	unsigned long flags;
154 
155 	result = lv1_query_logical_partition_address_region_info(0,
156 		&start_address, &size, &access_right, &max_page_size,
157 		&flags);
158 
159 	if (result) {
160 		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
161 			"failed: %s\n", __func__, __LINE__,
162 			ps3_result(result));
163 		goto fail;
164 	}
165 
166 	if (max_page_size < PAGE_SHIFT_16M) {
167 		DBG("%s:%d: bad max_page_size %lxh\n", __func__, __LINE__,
168 			max_page_size);
169 		goto fail;
170 	}
171 
172 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
173 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
174 
175 	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
176 			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
177 			&map.vas_id, &map.htab_size);
178 
179 	if (result) {
180 		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
181 			__func__, __LINE__, ps3_result(result));
182 		goto fail;
183 	}
184 
185 	result = lv1_select_virtual_address_space(map.vas_id);
186 
187 	if (result) {
188 		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
189 			__func__, __LINE__, ps3_result(result));
190 		goto fail;
191 	}
192 
193 	*htab_size = map.htab_size;
194 
195 	debug_dump_map(&map);
196 
197 	return;
198 
199 fail:
200 	panic("ps3_mm_vas_create failed");
201 }
202 
203 /**
204  * ps3_mm_vas_destroy -
205  */
206 
207 void ps3_mm_vas_destroy(void)
208 {
209 	int result;
210 
211 	DBG("%s:%d: map.vas_id    = %lu\n", __func__, __LINE__, map.vas_id);
212 
213 	if (map.vas_id) {
214 		result = lv1_select_virtual_address_space(0);
215 		BUG_ON(result);
216 		result = lv1_destruct_virtual_address_space(map.vas_id);
217 		BUG_ON(result);
218 		map.vas_id = 0;
219 	}
220 }
221 
222 /*============================================================================*/
223 /* memory hotplug routines                                                    */
224 /*============================================================================*/
225 
226 /**
227  * ps3_mm_region_create - create a memory region in the vas
228  * @r: pointer to a struct mem_region to accept initialized values
229  * @size: requested region size
230  *
231  * This implementation creates the region with the vas large page size.
232  * @size is rounded down to a multiple of the vas large page size.
233  */
234 
235 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
236 {
237 	int result;
238 	unsigned long muid;
239 
240 	r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
241 
242 	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
243 	DBG("%s:%d actual     %lxh\n", __func__, __LINE__, r->size);
244 	DBG("%s:%d difference %lxh (%luMB)\n", __func__, __LINE__,
245 		(unsigned long)(size - r->size),
246 		(size - r->size) / 1024 / 1024);
247 
248 	if (r->size == 0) {
249 		DBG("%s:%d: size == 0\n", __func__, __LINE__);
250 		result = -1;
251 		goto zero_region;
252 	}
253 
254 	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
255 		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
256 
257 	if (result || r->base < map.rm.size) {
258 		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
259 			__func__, __LINE__, ps3_result(result));
260 		goto zero_region;
261 	}
262 
263 	r->offset = r->base - map.rm.size;
264 	return result;
265 
266 zero_region:
267 	r->size = r->base = r->offset = 0;
268 	return result;
269 }
270 
271 /**
272  * ps3_mm_region_destroy - destroy a memory region
273  * @r: pointer to struct mem_region
274  */
275 
276 static void ps3_mm_region_destroy(struct mem_region *r)
277 {
278 	int result;
279 
280 	DBG("%s:%d: r->base = %lxh\n", __func__, __LINE__, r->base);
281 	if (r->base) {
282 		result = lv1_release_memory(r->base);
283 		BUG_ON(result);
284 		r->size = r->base = r->offset = 0;
285 		map.total = map.rm.size;
286 	}
287 }
288 
289 /**
290  * ps3_mm_add_memory - hot add memory
291  */
292 
293 static int __init ps3_mm_add_memory(void)
294 {
295 	int result;
296 	unsigned long start_addr;
297 	unsigned long start_pfn;
298 	unsigned long nr_pages;
299 
300 	if (!firmware_has_feature(FW_FEATURE_PS3_LV1))
301 		return -ENODEV;
302 
303 	BUG_ON(!mem_init_done);
304 
305 	start_addr = map.rm.size;
306 	start_pfn = start_addr >> PAGE_SHIFT;
307 	nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT;
308 
309 	DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n",
310 		__func__, __LINE__, start_addr, start_pfn, nr_pages);
311 
312 	result = add_memory(0, start_addr, map.r1.size);
313 
314 	if (result) {
315 		DBG("%s:%d: add_memory failed: (%d)\n",
316 			__func__, __LINE__, result);
317 		return result;
318 	}
319 
320 	lmb_add(start_addr, map.r1.size);
321 	lmb_analyze();
322 
323 	result = online_pages(start_pfn, nr_pages);
324 
325 	if (result)
326 		DBG("%s:%d: online_pages failed: (%d)\n",
327 			__func__, __LINE__, result);
328 
329 	return result;
330 }
331 
332 core_initcall(ps3_mm_add_memory);
333 
334 /*============================================================================*/
335 /* dma routines                                                               */
336 /*============================================================================*/
337 
338 /**
339  * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
340  * @r: pointer to dma region structure
341  * @lpar_addr: HV lpar address
342  */
343 
344 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
345 	unsigned long lpar_addr)
346 {
347 	if (lpar_addr >= map.rm.size)
348 		lpar_addr -= map.r1.offset;
349 	BUG_ON(lpar_addr < r->offset);
350 	BUG_ON(lpar_addr >= r->offset + r->len);
351 	return r->bus_addr + lpar_addr - r->offset;
352 }
353 
354 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
355 static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
356 	const char *func, int line)
357 {
358 	DBG("%s:%d: dev        %lu:%lu\n", func, line, r->dev->bus_id,
359 		r->dev->dev_id);
360 	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
361 	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
362 	DBG("%s:%d: len        %lxh\n", func, line, r->len);
363 	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
364 }
365 
366   /**
367  * dma_chunk - A chunk of dma pages mapped by the io controller.
368  * @region - The dma region that owns this chunk.
369  * @lpar_addr: Starting lpar address of the area to map.
370  * @bus_addr: Starting ioc bus address of the area to map.
371  * @len: Length in bytes of the area to map.
372  * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
373  * list of all chuncks owned by the region.
374  *
375  * This implementation uses a very simple dma page manager
376  * based on the dma_chunk structure.  This scheme assumes
377  * that all drivers use very well behaved dma ops.
378  */
379 
380 struct dma_chunk {
381 	struct ps3_dma_region *region;
382 	unsigned long lpar_addr;
383 	unsigned long bus_addr;
384 	unsigned long len;
385 	struct list_head link;
386 	unsigned int usage_count;
387 };
388 
389 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
390 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
391 	int line)
392 {
393 	DBG("%s:%d: r.dev        %lu:%lu\n", func, line,
394 		c->region->dev->bus_id, c->region->dev->dev_id);
395 	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
396 	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
397 	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
398 	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
399 	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
400 	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
401 	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
402 }
403 
404 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
405 	unsigned long bus_addr, unsigned long len)
406 {
407 	struct dma_chunk *c;
408 	unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
409 	unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
410 					      1 << r->page_size);
411 
412 	list_for_each_entry(c, &r->chunk_list.head, link) {
413 		/* intersection */
414 		if (aligned_bus >= c->bus_addr &&
415 		    aligned_bus + aligned_len <= c->bus_addr + c->len)
416 			return c;
417 
418 		/* below */
419 		if (aligned_bus + aligned_len <= c->bus_addr)
420 			continue;
421 
422 		/* above */
423 		if (aligned_bus >= c->bus_addr + c->len)
424 			continue;
425 
426 		/* we don't handle the multi-chunk case for now */
427 		dma_dump_chunk(c);
428 		BUG();
429 	}
430 	return NULL;
431 }
432 
433 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
434 	unsigned long lpar_addr, unsigned long len)
435 {
436 	struct dma_chunk *c;
437 	unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
438 	unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
439 					      1 << r->page_size);
440 
441 	list_for_each_entry(c, &r->chunk_list.head, link) {
442 		/* intersection */
443 		if (c->lpar_addr <= aligned_lpar &&
444 		    aligned_lpar < c->lpar_addr + c->len) {
445 			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
446 				return c;
447 			else {
448 				dma_dump_chunk(c);
449 				BUG();
450 			}
451 		}
452 		/* below */
453 		if (aligned_lpar + aligned_len <= c->lpar_addr) {
454 			continue;
455 		}
456 		/* above */
457 		if (c->lpar_addr + c->len <= aligned_lpar) {
458 			continue;
459 		}
460 	}
461 	return NULL;
462 }
463 
464 static int dma_sb_free_chunk(struct dma_chunk *c)
465 {
466 	int result = 0;
467 
468 	if (c->bus_addr) {
469 		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
470 			c->region->dev->dev_id, c->bus_addr, c->len);
471 		BUG_ON(result);
472 	}
473 
474 	kfree(c);
475 	return result;
476 }
477 
478 static int dma_ioc0_free_chunk(struct dma_chunk *c)
479 {
480 	int result = 0;
481 	int iopage;
482 	unsigned long offset;
483 	struct ps3_dma_region *r = c->region;
484 
485 	DBG("%s:start\n", __func__);
486 	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
487 		offset = (1 << r->page_size) * iopage;
488 		/* put INVALID entry */
489 		result = lv1_put_iopte(0,
490 				       c->bus_addr + offset,
491 				       c->lpar_addr + offset,
492 				       r->ioid,
493 				       0);
494 		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
495 		    c->bus_addr + offset,
496 		    c->lpar_addr + offset,
497 		    r->ioid);
498 
499 		if (result) {
500 			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
501 			    __LINE__, ps3_result(result));
502 		}
503 	}
504 	kfree(c);
505 	DBG("%s:end\n", __func__);
506 	return result;
507 }
508 
509 /**
510  * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
511  * @r: Pointer to a struct ps3_dma_region.
512  * @phys_addr: Starting physical address of the area to map.
513  * @len: Length in bytes of the area to map.
514  * c_out: A pointer to receive an allocated struct dma_chunk for this area.
515  *
516  * This is the lowest level dma mapping routine, and is the one that will
517  * make the HV call to add the pages into the io controller address space.
518  */
519 
520 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
521 	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
522 {
523 	int result;
524 	struct dma_chunk *c;
525 
526 	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
527 
528 	if (!c) {
529 		result = -ENOMEM;
530 		goto fail_alloc;
531 	}
532 
533 	c->region = r;
534 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
535 	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
536 	c->len = len;
537 
538 	BUG_ON(iopte_flag != 0xf800000000000000UL);
539 	result = lv1_map_device_dma_region(c->region->dev->bus_id,
540 					   c->region->dev->dev_id, c->lpar_addr,
541 					   c->bus_addr, c->len, iopte_flag);
542 	if (result) {
543 		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
544 			__func__, __LINE__, ps3_result(result));
545 		goto fail_map;
546 	}
547 
548 	list_add(&c->link, &r->chunk_list.head);
549 
550 	*c_out = c;
551 	return 0;
552 
553 fail_map:
554 	kfree(c);
555 fail_alloc:
556 	*c_out = NULL;
557 	DBG(" <- %s:%d\n", __func__, __LINE__);
558 	return result;
559 }
560 
561 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
562 			      unsigned long len, struct dma_chunk **c_out,
563 			      u64 iopte_flag)
564 {
565 	int result;
566 	struct dma_chunk *c, *last;
567 	int iopage, pages;
568 	unsigned long offset;
569 
570 	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
571 	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
572 	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
573 
574 	if (!c) {
575 		result = -ENOMEM;
576 		goto fail_alloc;
577 	}
578 
579 	c->region = r;
580 	c->len = len;
581 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
582 	/* allocate IO address */
583 	if (list_empty(&r->chunk_list.head)) {
584 		/* first one */
585 		c->bus_addr = r->bus_addr;
586 	} else {
587 		/* derive from last bus addr*/
588 		last  = list_entry(r->chunk_list.head.next,
589 				   struct dma_chunk, link);
590 		c->bus_addr = last->bus_addr + last->len;
591 		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
592 		    last->bus_addr, last->len);
593 	}
594 
595 	/* FIXME: check whether length exceeds region size */
596 
597 	/* build ioptes for the area */
598 	pages = len >> r->page_size;
599 	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#lx\n", __func__,
600 	    r->page_size, r->len, pages, iopte_flag);
601 	for (iopage = 0; iopage < pages; iopage++) {
602 		offset = (1 << r->page_size) * iopage;
603 		result = lv1_put_iopte(0,
604 				       c->bus_addr + offset,
605 				       c->lpar_addr + offset,
606 				       r->ioid,
607 				       iopte_flag);
608 		if (result) {
609 			printk(KERN_WARNING "%s:%d: lv1_map_device_dma_region "
610 				"failed: %s\n", __func__, __LINE__,
611 				ps3_result(result));
612 			goto fail_map;
613 		}
614 		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
615 		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
616 		    r->ioid);
617 	}
618 
619 	/* be sure that last allocated one is inserted at head */
620 	list_add(&c->link, &r->chunk_list.head);
621 
622 	*c_out = c;
623 	DBG("%s: end\n", __func__);
624 	return 0;
625 
626 fail_map:
627 	for (iopage--; 0 <= iopage; iopage--) {
628 		lv1_put_iopte(0,
629 			      c->bus_addr + offset,
630 			      c->lpar_addr + offset,
631 			      r->ioid,
632 			      0);
633 	}
634 	kfree(c);
635 fail_alloc:
636 	*c_out = NULL;
637 	return result;
638 }
639 
640 /**
641  * dma_sb_region_create - Create a device dma region.
642  * @r: Pointer to a struct ps3_dma_region.
643  *
644  * This is the lowest level dma region create routine, and is the one that
645  * will make the HV call to create the region.
646  */
647 
648 static int dma_sb_region_create(struct ps3_dma_region *r)
649 {
650 	int result;
651 
652 	pr_info(" -> %s:%d:\n", __func__, __LINE__);
653 
654 	BUG_ON(!r);
655 
656 	if (!r->dev->bus_id) {
657 		pr_info("%s:%d: %lu:%lu no dma\n", __func__, __LINE__,
658 			r->dev->bus_id, r->dev->dev_id);
659 		return 0;
660 	}
661 
662 	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
663 	    __LINE__, r->len, r->page_size, r->offset);
664 
665 	BUG_ON(!r->len);
666 	BUG_ON(!r->page_size);
667 	BUG_ON(!r->region_ops);
668 
669 	INIT_LIST_HEAD(&r->chunk_list.head);
670 	spin_lock_init(&r->chunk_list.lock);
671 
672 	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
673 		roundup_pow_of_two(r->len), r->page_size, r->region_type,
674 		&r->bus_addr);
675 
676 	if (result) {
677 		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
678 			__func__, __LINE__, ps3_result(result));
679 		r->len = r->bus_addr = 0;
680 	}
681 
682 	return result;
683 }
684 
685 static int dma_ioc0_region_create(struct ps3_dma_region *r)
686 {
687 	int result;
688 
689 	INIT_LIST_HEAD(&r->chunk_list.head);
690 	spin_lock_init(&r->chunk_list.lock);
691 
692 	result = lv1_allocate_io_segment(0,
693 					 r->len,
694 					 r->page_size,
695 					 &r->bus_addr);
696 	if (result) {
697 		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
698 			__func__, __LINE__, ps3_result(result));
699 		r->len = r->bus_addr = 0;
700 	}
701 	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
702 	    r->len, r->page_size, r->bus_addr);
703 	return result;
704 }
705 
706 /**
707  * dma_region_free - Free a device dma region.
708  * @r: Pointer to a struct ps3_dma_region.
709  *
710  * This is the lowest level dma region free routine, and is the one that
711  * will make the HV call to free the region.
712  */
713 
714 static int dma_sb_region_free(struct ps3_dma_region *r)
715 {
716 	int result;
717 	struct dma_chunk *c;
718 	struct dma_chunk *tmp;
719 
720 	BUG_ON(!r);
721 
722 	if (!r->dev->bus_id) {
723 		pr_info("%s:%d: %lu:%lu no dma\n", __func__, __LINE__,
724 			r->dev->bus_id, r->dev->dev_id);
725 		return 0;
726 	}
727 
728 	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
729 		list_del(&c->link);
730 		dma_sb_free_chunk(c);
731 	}
732 
733 	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
734 		r->bus_addr);
735 
736 	if (result)
737 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
738 			__func__, __LINE__, ps3_result(result));
739 
740 	r->bus_addr = 0;
741 
742 	return result;
743 }
744 
745 static int dma_ioc0_region_free(struct ps3_dma_region *r)
746 {
747 	int result;
748 	struct dma_chunk *c, *n;
749 
750 	DBG("%s: start\n", __func__);
751 	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
752 		list_del(&c->link);
753 		dma_ioc0_free_chunk(c);
754 	}
755 
756 	result = lv1_release_io_segment(0, r->bus_addr);
757 
758 	if (result)
759 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
760 			__func__, __LINE__, ps3_result(result));
761 
762 	r->bus_addr = 0;
763 	DBG("%s: end\n", __func__);
764 
765 	return result;
766 }
767 
768 /**
769  * dma_sb_map_area - Map an area of memory into a device dma region.
770  * @r: Pointer to a struct ps3_dma_region.
771  * @virt_addr: Starting virtual address of the area to map.
772  * @len: Length in bytes of the area to map.
773  * @bus_addr: A pointer to return the starting ioc bus address of the area to
774  * map.
775  *
776  * This is the common dma mapping routine.
777  */
778 
779 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
780 	   unsigned long len, unsigned long *bus_addr,
781 	   u64 iopte_flag)
782 {
783 	int result;
784 	unsigned long flags;
785 	struct dma_chunk *c;
786 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
787 		: virt_addr;
788 	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
789 	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
790 					      1 << r->page_size);
791 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
792 
793 	if (!USE_DYNAMIC_DMA) {
794 		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
795 		DBG(" -> %s:%d\n", __func__, __LINE__);
796 		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
797 			virt_addr);
798 		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
799 			phys_addr);
800 		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
801 			lpar_addr);
802 		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
803 		DBG("%s:%d bus_addr  %lxh (%lxh)\n", __func__, __LINE__,
804 		*bus_addr, len);
805 	}
806 
807 	spin_lock_irqsave(&r->chunk_list.lock, flags);
808 	c = dma_find_chunk(r, *bus_addr, len);
809 
810 	if (c) {
811 		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
812 		dma_dump_chunk(c);
813 		c->usage_count++;
814 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
815 		return 0;
816 	}
817 
818 	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
819 
820 	if (result) {
821 		*bus_addr = 0;
822 		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
823 			__func__, __LINE__, result);
824 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
825 		return result;
826 	}
827 
828 	c->usage_count = 1;
829 
830 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
831 	return result;
832 }
833 
834 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
835 	     unsigned long len, unsigned long *bus_addr,
836 	     u64 iopte_flag)
837 {
838 	int result;
839 	unsigned long flags;
840 	struct dma_chunk *c;
841 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
842 		: virt_addr;
843 	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
844 	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
845 					      1 << r->page_size);
846 
847 	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
848 	    virt_addr, len);
849 	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
850 	    phys_addr, aligned_phys, aligned_len);
851 
852 	spin_lock_irqsave(&r->chunk_list.lock, flags);
853 	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
854 
855 	if (c) {
856 		/* FIXME */
857 		BUG();
858 		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
859 		c->usage_count++;
860 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
861 		return 0;
862 	}
863 
864 	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
865 				    iopte_flag);
866 
867 	if (result) {
868 		*bus_addr = 0;
869 		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
870 			__func__, __LINE__, result);
871 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
872 		return result;
873 	}
874 	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
875 	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#lx\n", __func__,
876 	    virt_addr, phys_addr, aligned_phys, *bus_addr);
877 	c->usage_count = 1;
878 
879 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
880 	return result;
881 }
882 
883 /**
884  * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
885  * @r: Pointer to a struct ps3_dma_region.
886  * @bus_addr: The starting ioc bus address of the area to unmap.
887  * @len: Length in bytes of the area to unmap.
888  *
889  * This is the common dma unmap routine.
890  */
891 
892 static int dma_sb_unmap_area(struct ps3_dma_region *r, unsigned long bus_addr,
893 	unsigned long len)
894 {
895 	unsigned long flags;
896 	struct dma_chunk *c;
897 
898 	spin_lock_irqsave(&r->chunk_list.lock, flags);
899 	c = dma_find_chunk(r, bus_addr, len);
900 
901 	if (!c) {
902 		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
903 			1 << r->page_size);
904 		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
905 			- aligned_bus, 1 << r->page_size);
906 		DBG("%s:%d: not found: bus_addr %lxh\n",
907 			__func__, __LINE__, bus_addr);
908 		DBG("%s:%d: not found: len %lxh\n",
909 			__func__, __LINE__, len);
910 		DBG("%s:%d: not found: aligned_bus %lxh\n",
911 			__func__, __LINE__, aligned_bus);
912 		DBG("%s:%d: not found: aligned_len %lxh\n",
913 			__func__, __LINE__, aligned_len);
914 		BUG();
915 	}
916 
917 	c->usage_count--;
918 
919 	if (!c->usage_count) {
920 		list_del(&c->link);
921 		dma_sb_free_chunk(c);
922 	}
923 
924 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
925 	return 0;
926 }
927 
928 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
929 			unsigned long bus_addr, unsigned long len)
930 {
931 	unsigned long flags;
932 	struct dma_chunk *c;
933 
934 	DBG("%s: start a=%#lx l=%#lx\n", __func__, bus_addr, len);
935 	spin_lock_irqsave(&r->chunk_list.lock, flags);
936 	c = dma_find_chunk(r, bus_addr, len);
937 
938 	if (!c) {
939 		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
940 							1 << r->page_size);
941 		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
942 						      - aligned_bus,
943 						      1 << r->page_size);
944 		DBG("%s:%d: not found: bus_addr %lxh\n",
945 		    __func__, __LINE__, bus_addr);
946 		DBG("%s:%d: not found: len %lxh\n",
947 		    __func__, __LINE__, len);
948 		DBG("%s:%d: not found: aligned_bus %lxh\n",
949 		    __func__, __LINE__, aligned_bus);
950 		DBG("%s:%d: not found: aligned_len %lxh\n",
951 		    __func__, __LINE__, aligned_len);
952 		BUG();
953 	}
954 
955 	c->usage_count--;
956 
957 	if (!c->usage_count) {
958 		list_del(&c->link);
959 		dma_ioc0_free_chunk(c);
960 	}
961 
962 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
963 	DBG("%s: end\n", __func__);
964 	return 0;
965 }
966 
967 /**
968  * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
969  * @r: Pointer to a struct ps3_dma_region.
970  *
971  * This routine creates an HV dma region for the device and maps all available
972  * ram into the io controller bus address space.
973  */
974 
975 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
976 {
977 	int result;
978 	unsigned long virt_addr, len, tmp;
979 
980 	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
981 		/* force 16M dma pages for linear mapping */
982 		if (r->page_size != PS3_DMA_16M) {
983 			pr_info("%s:%d: forcing 16M pages for linear map\n",
984 				__func__, __LINE__);
985 			r->page_size = PS3_DMA_16M;
986 			r->len = _ALIGN_UP(r->len, 1 << r->page_size);
987 		}
988 	}
989 
990 	result = dma_sb_region_create(r);
991 	BUG_ON(result);
992 
993 	if (r->offset < map.rm.size) {
994 		/* Map (part of) 1st RAM chunk */
995 		virt_addr = map.rm.base + r->offset;
996 		len = map.rm.size - r->offset;
997 		if (len > r->len)
998 			len = r->len;
999 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1000 			IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M);
1001 		BUG_ON(result);
1002 	}
1003 
1004 	if (r->offset + r->len > map.rm.size) {
1005 		/* Map (part of) 2nd RAM chunk */
1006 		virt_addr = map.rm.size;
1007 		len = r->len;
1008 		if (r->offset >= map.rm.size)
1009 			virt_addr += r->offset - map.rm.size;
1010 		else
1011 			len -= map.rm.size - r->offset;
1012 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1013 			IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M);
1014 		BUG_ON(result);
1015 	}
1016 
1017 	return result;
1018 }
1019 
1020 /**
1021  * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1022  * @r: Pointer to a struct ps3_dma_region.
1023  *
1024  * This routine will unmap all mapped areas and free the HV dma region.
1025  */
1026 
1027 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1028 {
1029 	int result;
1030 	unsigned long bus_addr, len, lpar_addr;
1031 
1032 	if (r->offset < map.rm.size) {
1033 		/* Unmap (part of) 1st RAM chunk */
1034 		lpar_addr = map.rm.base + r->offset;
1035 		len = map.rm.size - r->offset;
1036 		if (len > r->len)
1037 			len = r->len;
1038 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1039 		result = dma_sb_unmap_area(r, bus_addr, len);
1040 		BUG_ON(result);
1041 	}
1042 
1043 	if (r->offset + r->len > map.rm.size) {
1044 		/* Unmap (part of) 2nd RAM chunk */
1045 		lpar_addr = map.r1.base;
1046 		len = r->len;
1047 		if (r->offset >= map.rm.size)
1048 			lpar_addr += r->offset - map.rm.size;
1049 		else
1050 			len -= map.rm.size - r->offset;
1051 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1052 		result = dma_sb_unmap_area(r, bus_addr, len);
1053 		BUG_ON(result);
1054 	}
1055 
1056 	result = dma_sb_region_free(r);
1057 	BUG_ON(result);
1058 
1059 	return result;
1060 }
1061 
1062 /**
1063  * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1064  * @r: Pointer to a struct ps3_dma_region.
1065  * @virt_addr: Starting virtual address of the area to map.
1066  * @len: Length in bytes of the area to map.
1067  * @bus_addr: A pointer to return the starting ioc bus address of the area to
1068  * map.
1069  *
1070  * This routine just returns the corresponding bus address.  Actual mapping
1071  * occurs in dma_region_create_linear().
1072  */
1073 
1074 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1075 	unsigned long virt_addr, unsigned long len, unsigned long *bus_addr,
1076 	u64 iopte_flag)
1077 {
1078 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1079 		: virt_addr;
1080 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1081 	return 0;
1082 }
1083 
1084 /**
1085  * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1086  * @r: Pointer to a struct ps3_dma_region.
1087  * @bus_addr: The starting ioc bus address of the area to unmap.
1088  * @len: Length in bytes of the area to unmap.
1089  *
1090  * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1091  */
1092 
1093 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1094 	unsigned long bus_addr, unsigned long len)
1095 {
1096 	return 0;
1097 };
1098 
1099 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1100 	.create = dma_sb_region_create,
1101 	.free = dma_sb_region_free,
1102 	.map = dma_sb_map_area,
1103 	.unmap = dma_sb_unmap_area
1104 };
1105 
1106 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1107 	.create = dma_sb_region_create_linear,
1108 	.free = dma_sb_region_free_linear,
1109 	.map = dma_sb_map_area_linear,
1110 	.unmap = dma_sb_unmap_area_linear
1111 };
1112 
1113 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1114 	.create = dma_ioc0_region_create,
1115 	.free = dma_ioc0_region_free,
1116 	.map = dma_ioc0_map_area,
1117 	.unmap = dma_ioc0_unmap_area
1118 };
1119 
1120 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1121 	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1122 	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1123 {
1124 	unsigned long lpar_addr;
1125 
1126 	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1127 
1128 	r->dev = dev;
1129 	r->page_size = page_size;
1130 	r->region_type = region_type;
1131 	r->offset = lpar_addr;
1132 	if (r->offset >= map.rm.size)
1133 		r->offset -= map.r1.offset;
1134 	r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
1135 
1136 	switch (dev->dev_type) {
1137 	case PS3_DEVICE_TYPE_SB:
1138 		r->region_ops =  (USE_DYNAMIC_DMA)
1139 			? &ps3_dma_sb_region_ops
1140 			: &ps3_dma_sb_region_linear_ops;
1141 		break;
1142 	case PS3_DEVICE_TYPE_IOC0:
1143 		r->region_ops = &ps3_dma_ioc0_region_ops;
1144 		break;
1145 	default:
1146 		BUG();
1147 		return -EINVAL;
1148 	}
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL(ps3_dma_region_init);
1152 
1153 int ps3_dma_region_create(struct ps3_dma_region *r)
1154 {
1155 	BUG_ON(!r);
1156 	BUG_ON(!r->region_ops);
1157 	BUG_ON(!r->region_ops->create);
1158 	return r->region_ops->create(r);
1159 }
1160 EXPORT_SYMBOL(ps3_dma_region_create);
1161 
1162 int ps3_dma_region_free(struct ps3_dma_region *r)
1163 {
1164 	BUG_ON(!r);
1165 	BUG_ON(!r->region_ops);
1166 	BUG_ON(!r->region_ops->free);
1167 	return r->region_ops->free(r);
1168 }
1169 EXPORT_SYMBOL(ps3_dma_region_free);
1170 
1171 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1172 	unsigned long len, unsigned long *bus_addr,
1173 	u64 iopte_flag)
1174 {
1175 	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1176 }
1177 
1178 int ps3_dma_unmap(struct ps3_dma_region *r, unsigned long bus_addr,
1179 	unsigned long len)
1180 {
1181 	return r->region_ops->unmap(r, bus_addr, len);
1182 }
1183 
1184 /*============================================================================*/
1185 /* system startup routines                                                    */
1186 /*============================================================================*/
1187 
1188 /**
1189  * ps3_mm_init - initialize the address space state variables
1190  */
1191 
1192 void __init ps3_mm_init(void)
1193 {
1194 	int result;
1195 
1196 	DBG(" -> %s:%d\n", __func__, __LINE__);
1197 
1198 	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1199 		&map.total);
1200 
1201 	if (result)
1202 		panic("ps3_repository_read_mm_info() failed");
1203 
1204 	map.rm.offset = map.rm.base;
1205 	map.vas_id = map.htab_size = 0;
1206 
1207 	/* this implementation assumes map.rm.base is zero */
1208 
1209 	BUG_ON(map.rm.base);
1210 	BUG_ON(!map.rm.size);
1211 
1212 
1213 	/* arrange to do this in ps3_mm_add_memory */
1214 	ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1215 
1216 	/* correct map.total for the real total amount of memory we use */
1217 	map.total = map.rm.size + map.r1.size;
1218 
1219 	DBG(" <- %s:%d\n", __func__, __LINE__);
1220 }
1221 
1222 /**
1223  * ps3_mm_shutdown - final cleanup of address space
1224  */
1225 
1226 void ps3_mm_shutdown(void)
1227 {
1228 	ps3_mm_region_destroy(&map.r1);
1229 }
1230