1 /* 2 * PS3 address space management. 3 * 4 * Copyright (C) 2006 Sony Computer Entertainment Inc. 5 * Copyright 2006 Sony Corp. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; version 2 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/lmb.h> 25 26 #include <asm/cell-regs.h> 27 #include <asm/firmware.h> 28 #include <asm/prom.h> 29 #include <asm/udbg.h> 30 #include <asm/lv1call.h> 31 32 #include "platform.h" 33 34 #if defined(DEBUG) 35 #define DBG udbg_printf 36 #else 37 #define DBG pr_devel 38 #endif 39 40 enum { 41 #if defined(CONFIG_PS3_DYNAMIC_DMA) 42 USE_DYNAMIC_DMA = 1, 43 #else 44 USE_DYNAMIC_DMA = 0, 45 #endif 46 }; 47 48 enum { 49 PAGE_SHIFT_4K = 12U, 50 PAGE_SHIFT_64K = 16U, 51 PAGE_SHIFT_16M = 24U, 52 }; 53 54 static unsigned long make_page_sizes(unsigned long a, unsigned long b) 55 { 56 return (a << 56) | (b << 48); 57 } 58 59 enum { 60 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04, 61 ALLOCATE_MEMORY_ADDR_ZERO = 0X08, 62 }; 63 64 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */ 65 66 enum { 67 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */ 68 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */ 69 }; 70 71 /*============================================================================*/ 72 /* virtual address space routines */ 73 /*============================================================================*/ 74 75 /** 76 * struct mem_region - memory region structure 77 * @base: base address 78 * @size: size in bytes 79 * @offset: difference between base and rm.size 80 */ 81 82 struct mem_region { 83 u64 base; 84 u64 size; 85 unsigned long offset; 86 }; 87 88 /** 89 * struct map - address space state variables holder 90 * @total: total memory available as reported by HV 91 * @vas_id - HV virtual address space id 92 * @htab_size: htab size in bytes 93 * 94 * The HV virtual address space (vas) allows for hotplug memory regions. 95 * Memory regions can be created and destroyed in the vas at runtime. 96 * @rm: real mode (bootmem) region 97 * @r1: hotplug memory region(s) 98 * 99 * ps3 addresses 100 * virt_addr: a cpu 'translated' effective address 101 * phys_addr: an address in what Linux thinks is the physical address space 102 * lpar_addr: an address in the HV virtual address space 103 * bus_addr: an io controller 'translated' address on a device bus 104 */ 105 106 struct map { 107 u64 total; 108 u64 vas_id; 109 u64 htab_size; 110 struct mem_region rm; 111 struct mem_region r1; 112 }; 113 114 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__) 115 static void __maybe_unused _debug_dump_map(const struct map *m, 116 const char *func, int line) 117 { 118 DBG("%s:%d: map.total = %llxh\n", func, line, m->total); 119 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size); 120 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id); 121 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size); 122 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base); 123 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset); 124 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size); 125 } 126 127 static struct map map; 128 129 /** 130 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address 131 * @phys_addr: linux physical address 132 */ 133 134 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr) 135 { 136 BUG_ON(is_kernel_addr(phys_addr)); 137 return (phys_addr < map.rm.size || phys_addr >= map.total) 138 ? phys_addr : phys_addr + map.r1.offset; 139 } 140 141 EXPORT_SYMBOL(ps3_mm_phys_to_lpar); 142 143 /** 144 * ps3_mm_vas_create - create the virtual address space 145 */ 146 147 void __init ps3_mm_vas_create(unsigned long* htab_size) 148 { 149 int result; 150 u64 start_address; 151 u64 size; 152 u64 access_right; 153 u64 max_page_size; 154 u64 flags; 155 156 result = lv1_query_logical_partition_address_region_info(0, 157 &start_address, &size, &access_right, &max_page_size, 158 &flags); 159 160 if (result) { 161 DBG("%s:%d: lv1_query_logical_partition_address_region_info " 162 "failed: %s\n", __func__, __LINE__, 163 ps3_result(result)); 164 goto fail; 165 } 166 167 if (max_page_size < PAGE_SHIFT_16M) { 168 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__, 169 max_page_size); 170 goto fail; 171 } 172 173 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX); 174 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN); 175 176 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE, 177 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K), 178 &map.vas_id, &map.htab_size); 179 180 if (result) { 181 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n", 182 __func__, __LINE__, ps3_result(result)); 183 goto fail; 184 } 185 186 result = lv1_select_virtual_address_space(map.vas_id); 187 188 if (result) { 189 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n", 190 __func__, __LINE__, ps3_result(result)); 191 goto fail; 192 } 193 194 *htab_size = map.htab_size; 195 196 debug_dump_map(&map); 197 198 return; 199 200 fail: 201 panic("ps3_mm_vas_create failed"); 202 } 203 204 /** 205 * ps3_mm_vas_destroy - 206 */ 207 208 void ps3_mm_vas_destroy(void) 209 { 210 int result; 211 212 DBG("%s:%d: map.vas_id = %llu\n", __func__, __LINE__, map.vas_id); 213 214 if (map.vas_id) { 215 result = lv1_select_virtual_address_space(0); 216 BUG_ON(result); 217 result = lv1_destruct_virtual_address_space(map.vas_id); 218 BUG_ON(result); 219 map.vas_id = 0; 220 } 221 } 222 223 /*============================================================================*/ 224 /* memory hotplug routines */ 225 /*============================================================================*/ 226 227 /** 228 * ps3_mm_region_create - create a memory region in the vas 229 * @r: pointer to a struct mem_region to accept initialized values 230 * @size: requested region size 231 * 232 * This implementation creates the region with the vas large page size. 233 * @size is rounded down to a multiple of the vas large page size. 234 */ 235 236 static int ps3_mm_region_create(struct mem_region *r, unsigned long size) 237 { 238 int result; 239 u64 muid; 240 241 r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M); 242 243 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size); 244 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size); 245 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__, 246 size - r->size, (size - r->size) / 1024 / 1024); 247 248 if (r->size == 0) { 249 DBG("%s:%d: size == 0\n", __func__, __LINE__); 250 result = -1; 251 goto zero_region; 252 } 253 254 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0, 255 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid); 256 257 if (result || r->base < map.rm.size) { 258 DBG("%s:%d: lv1_allocate_memory failed: %s\n", 259 __func__, __LINE__, ps3_result(result)); 260 goto zero_region; 261 } 262 263 r->offset = r->base - map.rm.size; 264 return result; 265 266 zero_region: 267 r->size = r->base = r->offset = 0; 268 return result; 269 } 270 271 /** 272 * ps3_mm_region_destroy - destroy a memory region 273 * @r: pointer to struct mem_region 274 */ 275 276 static void ps3_mm_region_destroy(struct mem_region *r) 277 { 278 int result; 279 280 DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base); 281 if (r->base) { 282 result = lv1_release_memory(r->base); 283 BUG_ON(result); 284 r->size = r->base = r->offset = 0; 285 map.total = map.rm.size; 286 } 287 } 288 289 /** 290 * ps3_mm_add_memory - hot add memory 291 */ 292 293 static int __init ps3_mm_add_memory(void) 294 { 295 int result; 296 unsigned long start_addr; 297 unsigned long start_pfn; 298 unsigned long nr_pages; 299 300 if (!firmware_has_feature(FW_FEATURE_PS3_LV1)) 301 return -ENODEV; 302 303 BUG_ON(!mem_init_done); 304 305 start_addr = map.rm.size; 306 start_pfn = start_addr >> PAGE_SHIFT; 307 nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT; 308 309 DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n", 310 __func__, __LINE__, start_addr, start_pfn, nr_pages); 311 312 result = add_memory(0, start_addr, map.r1.size); 313 314 if (result) { 315 pr_err("%s:%d: add_memory failed: (%d)\n", 316 __func__, __LINE__, result); 317 return result; 318 } 319 320 lmb_add(start_addr, map.r1.size); 321 lmb_analyze(); 322 323 result = online_pages(start_pfn, nr_pages); 324 325 if (result) 326 pr_err("%s:%d: online_pages failed: (%d)\n", 327 __func__, __LINE__, result); 328 329 return result; 330 } 331 332 device_initcall(ps3_mm_add_memory); 333 334 /*============================================================================*/ 335 /* dma routines */ 336 /*============================================================================*/ 337 338 /** 339 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address. 340 * @r: pointer to dma region structure 341 * @lpar_addr: HV lpar address 342 */ 343 344 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r, 345 unsigned long lpar_addr) 346 { 347 if (lpar_addr >= map.rm.size) 348 lpar_addr -= map.r1.offset; 349 BUG_ON(lpar_addr < r->offset); 350 BUG_ON(lpar_addr >= r->offset + r->len); 351 return r->bus_addr + lpar_addr - r->offset; 352 } 353 354 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__) 355 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r, 356 const char *func, int line) 357 { 358 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id, 359 r->dev->dev_id); 360 DBG("%s:%d: page_size %u\n", func, line, r->page_size); 361 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr); 362 DBG("%s:%d: len %lxh\n", func, line, r->len); 363 DBG("%s:%d: offset %lxh\n", func, line, r->offset); 364 } 365 366 /** 367 * dma_chunk - A chunk of dma pages mapped by the io controller. 368 * @region - The dma region that owns this chunk. 369 * @lpar_addr: Starting lpar address of the area to map. 370 * @bus_addr: Starting ioc bus address of the area to map. 371 * @len: Length in bytes of the area to map. 372 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the 373 * list of all chuncks owned by the region. 374 * 375 * This implementation uses a very simple dma page manager 376 * based on the dma_chunk structure. This scheme assumes 377 * that all drivers use very well behaved dma ops. 378 */ 379 380 struct dma_chunk { 381 struct ps3_dma_region *region; 382 unsigned long lpar_addr; 383 unsigned long bus_addr; 384 unsigned long len; 385 struct list_head link; 386 unsigned int usage_count; 387 }; 388 389 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__) 390 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func, 391 int line) 392 { 393 DBG("%s:%d: r.dev %llu:%llu\n", func, line, 394 c->region->dev->bus_id, c->region->dev->dev_id); 395 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr); 396 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size); 397 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len); 398 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset); 399 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr); 400 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr); 401 DBG("%s:%d: c.len %lxh\n", func, line, c->len); 402 } 403 404 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r, 405 unsigned long bus_addr, unsigned long len) 406 { 407 struct dma_chunk *c; 408 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size); 409 unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus, 410 1 << r->page_size); 411 412 list_for_each_entry(c, &r->chunk_list.head, link) { 413 /* intersection */ 414 if (aligned_bus >= c->bus_addr && 415 aligned_bus + aligned_len <= c->bus_addr + c->len) 416 return c; 417 418 /* below */ 419 if (aligned_bus + aligned_len <= c->bus_addr) 420 continue; 421 422 /* above */ 423 if (aligned_bus >= c->bus_addr + c->len) 424 continue; 425 426 /* we don't handle the multi-chunk case for now */ 427 dma_dump_chunk(c); 428 BUG(); 429 } 430 return NULL; 431 } 432 433 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r, 434 unsigned long lpar_addr, unsigned long len) 435 { 436 struct dma_chunk *c; 437 unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size); 438 unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar, 439 1 << r->page_size); 440 441 list_for_each_entry(c, &r->chunk_list.head, link) { 442 /* intersection */ 443 if (c->lpar_addr <= aligned_lpar && 444 aligned_lpar < c->lpar_addr + c->len) { 445 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len) 446 return c; 447 else { 448 dma_dump_chunk(c); 449 BUG(); 450 } 451 } 452 /* below */ 453 if (aligned_lpar + aligned_len <= c->lpar_addr) { 454 continue; 455 } 456 /* above */ 457 if (c->lpar_addr + c->len <= aligned_lpar) { 458 continue; 459 } 460 } 461 return NULL; 462 } 463 464 static int dma_sb_free_chunk(struct dma_chunk *c) 465 { 466 int result = 0; 467 468 if (c->bus_addr) { 469 result = lv1_unmap_device_dma_region(c->region->dev->bus_id, 470 c->region->dev->dev_id, c->bus_addr, c->len); 471 BUG_ON(result); 472 } 473 474 kfree(c); 475 return result; 476 } 477 478 static int dma_ioc0_free_chunk(struct dma_chunk *c) 479 { 480 int result = 0; 481 int iopage; 482 unsigned long offset; 483 struct ps3_dma_region *r = c->region; 484 485 DBG("%s:start\n", __func__); 486 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) { 487 offset = (1 << r->page_size) * iopage; 488 /* put INVALID entry */ 489 result = lv1_put_iopte(0, 490 c->bus_addr + offset, 491 c->lpar_addr + offset, 492 r->ioid, 493 0); 494 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__, 495 c->bus_addr + offset, 496 c->lpar_addr + offset, 497 r->ioid); 498 499 if (result) { 500 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__, 501 __LINE__, ps3_result(result)); 502 } 503 } 504 kfree(c); 505 DBG("%s:end\n", __func__); 506 return result; 507 } 508 509 /** 510 * dma_sb_map_pages - Maps dma pages into the io controller bus address space. 511 * @r: Pointer to a struct ps3_dma_region. 512 * @phys_addr: Starting physical address of the area to map. 513 * @len: Length in bytes of the area to map. 514 * c_out: A pointer to receive an allocated struct dma_chunk for this area. 515 * 516 * This is the lowest level dma mapping routine, and is the one that will 517 * make the HV call to add the pages into the io controller address space. 518 */ 519 520 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 521 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag) 522 { 523 int result; 524 struct dma_chunk *c; 525 526 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 527 528 if (!c) { 529 result = -ENOMEM; 530 goto fail_alloc; 531 } 532 533 c->region = r; 534 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 535 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr); 536 c->len = len; 537 538 BUG_ON(iopte_flag != 0xf800000000000000UL); 539 result = lv1_map_device_dma_region(c->region->dev->bus_id, 540 c->region->dev->dev_id, c->lpar_addr, 541 c->bus_addr, c->len, iopte_flag); 542 if (result) { 543 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n", 544 __func__, __LINE__, ps3_result(result)); 545 goto fail_map; 546 } 547 548 list_add(&c->link, &r->chunk_list.head); 549 550 *c_out = c; 551 return 0; 552 553 fail_map: 554 kfree(c); 555 fail_alloc: 556 *c_out = NULL; 557 DBG(" <- %s:%d\n", __func__, __LINE__); 558 return result; 559 } 560 561 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 562 unsigned long len, struct dma_chunk **c_out, 563 u64 iopte_flag) 564 { 565 int result; 566 struct dma_chunk *c, *last; 567 int iopage, pages; 568 unsigned long offset; 569 570 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__, 571 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len); 572 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 573 574 if (!c) { 575 result = -ENOMEM; 576 goto fail_alloc; 577 } 578 579 c->region = r; 580 c->len = len; 581 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 582 /* allocate IO address */ 583 if (list_empty(&r->chunk_list.head)) { 584 /* first one */ 585 c->bus_addr = r->bus_addr; 586 } else { 587 /* derive from last bus addr*/ 588 last = list_entry(r->chunk_list.head.next, 589 struct dma_chunk, link); 590 c->bus_addr = last->bus_addr + last->len; 591 DBG("%s: last bus=%#lx, len=%#lx\n", __func__, 592 last->bus_addr, last->len); 593 } 594 595 /* FIXME: check whether length exceeds region size */ 596 597 /* build ioptes for the area */ 598 pages = len >> r->page_size; 599 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__, 600 r->page_size, r->len, pages, iopte_flag); 601 for (iopage = 0; iopage < pages; iopage++) { 602 offset = (1 << r->page_size) * iopage; 603 result = lv1_put_iopte(0, 604 c->bus_addr + offset, 605 c->lpar_addr + offset, 606 r->ioid, 607 iopte_flag); 608 if (result) { 609 pr_warning("%s:%d: lv1_put_iopte failed: %s\n", 610 __func__, __LINE__, ps3_result(result)); 611 goto fail_map; 612 } 613 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__, 614 iopage, c->bus_addr + offset, c->lpar_addr + offset, 615 r->ioid); 616 } 617 618 /* be sure that last allocated one is inserted at head */ 619 list_add(&c->link, &r->chunk_list.head); 620 621 *c_out = c; 622 DBG("%s: end\n", __func__); 623 return 0; 624 625 fail_map: 626 for (iopage--; 0 <= iopage; iopage--) { 627 lv1_put_iopte(0, 628 c->bus_addr + offset, 629 c->lpar_addr + offset, 630 r->ioid, 631 0); 632 } 633 kfree(c); 634 fail_alloc: 635 *c_out = NULL; 636 return result; 637 } 638 639 /** 640 * dma_sb_region_create - Create a device dma region. 641 * @r: Pointer to a struct ps3_dma_region. 642 * 643 * This is the lowest level dma region create routine, and is the one that 644 * will make the HV call to create the region. 645 */ 646 647 static int dma_sb_region_create(struct ps3_dma_region *r) 648 { 649 int result; 650 u64 bus_addr; 651 652 DBG(" -> %s:%d:\n", __func__, __LINE__); 653 654 BUG_ON(!r); 655 656 if (!r->dev->bus_id) { 657 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, 658 r->dev->bus_id, r->dev->dev_id); 659 return 0; 660 } 661 662 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__, 663 __LINE__, r->len, r->page_size, r->offset); 664 665 BUG_ON(!r->len); 666 BUG_ON(!r->page_size); 667 BUG_ON(!r->region_ops); 668 669 INIT_LIST_HEAD(&r->chunk_list.head); 670 spin_lock_init(&r->chunk_list.lock); 671 672 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id, 673 roundup_pow_of_two(r->len), r->page_size, r->region_type, 674 &bus_addr); 675 r->bus_addr = bus_addr; 676 677 if (result) { 678 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n", 679 __func__, __LINE__, ps3_result(result)); 680 r->len = r->bus_addr = 0; 681 } 682 683 return result; 684 } 685 686 static int dma_ioc0_region_create(struct ps3_dma_region *r) 687 { 688 int result; 689 u64 bus_addr; 690 691 INIT_LIST_HEAD(&r->chunk_list.head); 692 spin_lock_init(&r->chunk_list.lock); 693 694 result = lv1_allocate_io_segment(0, 695 r->len, 696 r->page_size, 697 &bus_addr); 698 r->bus_addr = bus_addr; 699 if (result) { 700 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n", 701 __func__, __LINE__, ps3_result(result)); 702 r->len = r->bus_addr = 0; 703 } 704 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__, 705 r->len, r->page_size, r->bus_addr); 706 return result; 707 } 708 709 /** 710 * dma_region_free - Free a device dma region. 711 * @r: Pointer to a struct ps3_dma_region. 712 * 713 * This is the lowest level dma region free routine, and is the one that 714 * will make the HV call to free the region. 715 */ 716 717 static int dma_sb_region_free(struct ps3_dma_region *r) 718 { 719 int result; 720 struct dma_chunk *c; 721 struct dma_chunk *tmp; 722 723 BUG_ON(!r); 724 725 if (!r->dev->bus_id) { 726 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, 727 r->dev->bus_id, r->dev->dev_id); 728 return 0; 729 } 730 731 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) { 732 list_del(&c->link); 733 dma_sb_free_chunk(c); 734 } 735 736 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id, 737 r->bus_addr); 738 739 if (result) 740 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 741 __func__, __LINE__, ps3_result(result)); 742 743 r->bus_addr = 0; 744 745 return result; 746 } 747 748 static int dma_ioc0_region_free(struct ps3_dma_region *r) 749 { 750 int result; 751 struct dma_chunk *c, *n; 752 753 DBG("%s: start\n", __func__); 754 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) { 755 list_del(&c->link); 756 dma_ioc0_free_chunk(c); 757 } 758 759 result = lv1_release_io_segment(0, r->bus_addr); 760 761 if (result) 762 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 763 __func__, __LINE__, ps3_result(result)); 764 765 r->bus_addr = 0; 766 DBG("%s: end\n", __func__); 767 768 return result; 769 } 770 771 /** 772 * dma_sb_map_area - Map an area of memory into a device dma region. 773 * @r: Pointer to a struct ps3_dma_region. 774 * @virt_addr: Starting virtual address of the area to map. 775 * @len: Length in bytes of the area to map. 776 * @bus_addr: A pointer to return the starting ioc bus address of the area to 777 * map. 778 * 779 * This is the common dma mapping routine. 780 */ 781 782 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 783 unsigned long len, dma_addr_t *bus_addr, 784 u64 iopte_flag) 785 { 786 int result; 787 unsigned long flags; 788 struct dma_chunk *c; 789 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 790 : virt_addr; 791 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 792 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 793 1 << r->page_size); 794 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 795 796 if (!USE_DYNAMIC_DMA) { 797 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 798 DBG(" -> %s:%d\n", __func__, __LINE__); 799 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__, 800 virt_addr); 801 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__, 802 phys_addr); 803 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__, 804 lpar_addr); 805 DBG("%s:%d len %lxh\n", __func__, __LINE__, len); 806 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__, 807 *bus_addr, len); 808 } 809 810 spin_lock_irqsave(&r->chunk_list.lock, flags); 811 c = dma_find_chunk(r, *bus_addr, len); 812 813 if (c) { 814 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__); 815 dma_dump_chunk(c); 816 c->usage_count++; 817 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 818 return 0; 819 } 820 821 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag); 822 823 if (result) { 824 *bus_addr = 0; 825 DBG("%s:%d: dma_sb_map_pages failed (%d)\n", 826 __func__, __LINE__, result); 827 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 828 return result; 829 } 830 831 c->usage_count = 1; 832 833 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 834 return result; 835 } 836 837 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 838 unsigned long len, dma_addr_t *bus_addr, 839 u64 iopte_flag) 840 { 841 int result; 842 unsigned long flags; 843 struct dma_chunk *c; 844 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 845 : virt_addr; 846 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 847 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 848 1 << r->page_size); 849 850 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__, 851 virt_addr, len); 852 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__, 853 phys_addr, aligned_phys, aligned_len); 854 855 spin_lock_irqsave(&r->chunk_list.lock, flags); 856 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len); 857 858 if (c) { 859 /* FIXME */ 860 BUG(); 861 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 862 c->usage_count++; 863 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 864 return 0; 865 } 866 867 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c, 868 iopte_flag); 869 870 if (result) { 871 *bus_addr = 0; 872 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n", 873 __func__, __LINE__, result); 874 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 875 return result; 876 } 877 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 878 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__, 879 virt_addr, phys_addr, aligned_phys, *bus_addr); 880 c->usage_count = 1; 881 882 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 883 return result; 884 } 885 886 /** 887 * dma_sb_unmap_area - Unmap an area of memory from a device dma region. 888 * @r: Pointer to a struct ps3_dma_region. 889 * @bus_addr: The starting ioc bus address of the area to unmap. 890 * @len: Length in bytes of the area to unmap. 891 * 892 * This is the common dma unmap routine. 893 */ 894 895 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr, 896 unsigned long len) 897 { 898 unsigned long flags; 899 struct dma_chunk *c; 900 901 spin_lock_irqsave(&r->chunk_list.lock, flags); 902 c = dma_find_chunk(r, bus_addr, len); 903 904 if (!c) { 905 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 906 1 << r->page_size); 907 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 908 - aligned_bus, 1 << r->page_size); 909 DBG("%s:%d: not found: bus_addr %llxh\n", 910 __func__, __LINE__, bus_addr); 911 DBG("%s:%d: not found: len %lxh\n", 912 __func__, __LINE__, len); 913 DBG("%s:%d: not found: aligned_bus %lxh\n", 914 __func__, __LINE__, aligned_bus); 915 DBG("%s:%d: not found: aligned_len %lxh\n", 916 __func__, __LINE__, aligned_len); 917 BUG(); 918 } 919 920 c->usage_count--; 921 922 if (!c->usage_count) { 923 list_del(&c->link); 924 dma_sb_free_chunk(c); 925 } 926 927 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 928 return 0; 929 } 930 931 static int dma_ioc0_unmap_area(struct ps3_dma_region *r, 932 dma_addr_t bus_addr, unsigned long len) 933 { 934 unsigned long flags; 935 struct dma_chunk *c; 936 937 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len); 938 spin_lock_irqsave(&r->chunk_list.lock, flags); 939 c = dma_find_chunk(r, bus_addr, len); 940 941 if (!c) { 942 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 943 1 << r->page_size); 944 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 945 - aligned_bus, 946 1 << r->page_size); 947 DBG("%s:%d: not found: bus_addr %llxh\n", 948 __func__, __LINE__, bus_addr); 949 DBG("%s:%d: not found: len %lxh\n", 950 __func__, __LINE__, len); 951 DBG("%s:%d: not found: aligned_bus %lxh\n", 952 __func__, __LINE__, aligned_bus); 953 DBG("%s:%d: not found: aligned_len %lxh\n", 954 __func__, __LINE__, aligned_len); 955 BUG(); 956 } 957 958 c->usage_count--; 959 960 if (!c->usage_count) { 961 list_del(&c->link); 962 dma_ioc0_free_chunk(c); 963 } 964 965 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 966 DBG("%s: end\n", __func__); 967 return 0; 968 } 969 970 /** 971 * dma_sb_region_create_linear - Setup a linear dma mapping for a device. 972 * @r: Pointer to a struct ps3_dma_region. 973 * 974 * This routine creates an HV dma region for the device and maps all available 975 * ram into the io controller bus address space. 976 */ 977 978 static int dma_sb_region_create_linear(struct ps3_dma_region *r) 979 { 980 int result; 981 unsigned long virt_addr, len; 982 dma_addr_t tmp; 983 984 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */ 985 /* force 16M dma pages for linear mapping */ 986 if (r->page_size != PS3_DMA_16M) { 987 pr_info("%s:%d: forcing 16M pages for linear map\n", 988 __func__, __LINE__); 989 r->page_size = PS3_DMA_16M; 990 r->len = _ALIGN_UP(r->len, 1 << r->page_size); 991 } 992 } 993 994 result = dma_sb_region_create(r); 995 BUG_ON(result); 996 997 if (r->offset < map.rm.size) { 998 /* Map (part of) 1st RAM chunk */ 999 virt_addr = map.rm.base + r->offset; 1000 len = map.rm.size - r->offset; 1001 if (len > r->len) 1002 len = r->len; 1003 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1004 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW | 1005 CBE_IOPTE_M); 1006 BUG_ON(result); 1007 } 1008 1009 if (r->offset + r->len > map.rm.size) { 1010 /* Map (part of) 2nd RAM chunk */ 1011 virt_addr = map.rm.size; 1012 len = r->len; 1013 if (r->offset >= map.rm.size) 1014 virt_addr += r->offset - map.rm.size; 1015 else 1016 len -= map.rm.size - r->offset; 1017 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1018 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW | 1019 CBE_IOPTE_M); 1020 BUG_ON(result); 1021 } 1022 1023 return result; 1024 } 1025 1026 /** 1027 * dma_sb_region_free_linear - Free a linear dma mapping for a device. 1028 * @r: Pointer to a struct ps3_dma_region. 1029 * 1030 * This routine will unmap all mapped areas and free the HV dma region. 1031 */ 1032 1033 static int dma_sb_region_free_linear(struct ps3_dma_region *r) 1034 { 1035 int result; 1036 dma_addr_t bus_addr; 1037 unsigned long len, lpar_addr; 1038 1039 if (r->offset < map.rm.size) { 1040 /* Unmap (part of) 1st RAM chunk */ 1041 lpar_addr = map.rm.base + r->offset; 1042 len = map.rm.size - r->offset; 1043 if (len > r->len) 1044 len = r->len; 1045 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1046 result = dma_sb_unmap_area(r, bus_addr, len); 1047 BUG_ON(result); 1048 } 1049 1050 if (r->offset + r->len > map.rm.size) { 1051 /* Unmap (part of) 2nd RAM chunk */ 1052 lpar_addr = map.r1.base; 1053 len = r->len; 1054 if (r->offset >= map.rm.size) 1055 lpar_addr += r->offset - map.rm.size; 1056 else 1057 len -= map.rm.size - r->offset; 1058 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1059 result = dma_sb_unmap_area(r, bus_addr, len); 1060 BUG_ON(result); 1061 } 1062 1063 result = dma_sb_region_free(r); 1064 BUG_ON(result); 1065 1066 return result; 1067 } 1068 1069 /** 1070 * dma_sb_map_area_linear - Map an area of memory into a device dma region. 1071 * @r: Pointer to a struct ps3_dma_region. 1072 * @virt_addr: Starting virtual address of the area to map. 1073 * @len: Length in bytes of the area to map. 1074 * @bus_addr: A pointer to return the starting ioc bus address of the area to 1075 * map. 1076 * 1077 * This routine just returns the corresponding bus address. Actual mapping 1078 * occurs in dma_region_create_linear(). 1079 */ 1080 1081 static int dma_sb_map_area_linear(struct ps3_dma_region *r, 1082 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr, 1083 u64 iopte_flag) 1084 { 1085 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 1086 : virt_addr; 1087 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 1088 return 0; 1089 } 1090 1091 /** 1092 * dma_unmap_area_linear - Unmap an area of memory from a device dma region. 1093 * @r: Pointer to a struct ps3_dma_region. 1094 * @bus_addr: The starting ioc bus address of the area to unmap. 1095 * @len: Length in bytes of the area to unmap. 1096 * 1097 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear(). 1098 */ 1099 1100 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r, 1101 dma_addr_t bus_addr, unsigned long len) 1102 { 1103 return 0; 1104 }; 1105 1106 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = { 1107 .create = dma_sb_region_create, 1108 .free = dma_sb_region_free, 1109 .map = dma_sb_map_area, 1110 .unmap = dma_sb_unmap_area 1111 }; 1112 1113 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = { 1114 .create = dma_sb_region_create_linear, 1115 .free = dma_sb_region_free_linear, 1116 .map = dma_sb_map_area_linear, 1117 .unmap = dma_sb_unmap_area_linear 1118 }; 1119 1120 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = { 1121 .create = dma_ioc0_region_create, 1122 .free = dma_ioc0_region_free, 1123 .map = dma_ioc0_map_area, 1124 .unmap = dma_ioc0_unmap_area 1125 }; 1126 1127 int ps3_dma_region_init(struct ps3_system_bus_device *dev, 1128 struct ps3_dma_region *r, enum ps3_dma_page_size page_size, 1129 enum ps3_dma_region_type region_type, void *addr, unsigned long len) 1130 { 1131 unsigned long lpar_addr; 1132 1133 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0; 1134 1135 r->dev = dev; 1136 r->page_size = page_size; 1137 r->region_type = region_type; 1138 r->offset = lpar_addr; 1139 if (r->offset >= map.rm.size) 1140 r->offset -= map.r1.offset; 1141 r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size); 1142 1143 switch (dev->dev_type) { 1144 case PS3_DEVICE_TYPE_SB: 1145 r->region_ops = (USE_DYNAMIC_DMA) 1146 ? &ps3_dma_sb_region_ops 1147 : &ps3_dma_sb_region_linear_ops; 1148 break; 1149 case PS3_DEVICE_TYPE_IOC0: 1150 r->region_ops = &ps3_dma_ioc0_region_ops; 1151 break; 1152 default: 1153 BUG(); 1154 return -EINVAL; 1155 } 1156 return 0; 1157 } 1158 EXPORT_SYMBOL(ps3_dma_region_init); 1159 1160 int ps3_dma_region_create(struct ps3_dma_region *r) 1161 { 1162 BUG_ON(!r); 1163 BUG_ON(!r->region_ops); 1164 BUG_ON(!r->region_ops->create); 1165 return r->region_ops->create(r); 1166 } 1167 EXPORT_SYMBOL(ps3_dma_region_create); 1168 1169 int ps3_dma_region_free(struct ps3_dma_region *r) 1170 { 1171 BUG_ON(!r); 1172 BUG_ON(!r->region_ops); 1173 BUG_ON(!r->region_ops->free); 1174 return r->region_ops->free(r); 1175 } 1176 EXPORT_SYMBOL(ps3_dma_region_free); 1177 1178 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr, 1179 unsigned long len, dma_addr_t *bus_addr, 1180 u64 iopte_flag) 1181 { 1182 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag); 1183 } 1184 1185 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr, 1186 unsigned long len) 1187 { 1188 return r->region_ops->unmap(r, bus_addr, len); 1189 } 1190 1191 /*============================================================================*/ 1192 /* system startup routines */ 1193 /*============================================================================*/ 1194 1195 /** 1196 * ps3_mm_init - initialize the address space state variables 1197 */ 1198 1199 void __init ps3_mm_init(void) 1200 { 1201 int result; 1202 1203 DBG(" -> %s:%d\n", __func__, __LINE__); 1204 1205 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size, 1206 &map.total); 1207 1208 if (result) 1209 panic("ps3_repository_read_mm_info() failed"); 1210 1211 map.rm.offset = map.rm.base; 1212 map.vas_id = map.htab_size = 0; 1213 1214 /* this implementation assumes map.rm.base is zero */ 1215 1216 BUG_ON(map.rm.base); 1217 BUG_ON(!map.rm.size); 1218 1219 1220 /* arrange to do this in ps3_mm_add_memory */ 1221 ps3_mm_region_create(&map.r1, map.total - map.rm.size); 1222 1223 /* correct map.total for the real total amount of memory we use */ 1224 map.total = map.rm.size + map.r1.size; 1225 1226 DBG(" <- %s:%d\n", __func__, __LINE__); 1227 } 1228 1229 /** 1230 * ps3_mm_shutdown - final cleanup of address space 1231 */ 1232 1233 void ps3_mm_shutdown(void) 1234 { 1235 ps3_mm_region_destroy(&map.r1); 1236 } 1237