xref: /openbmc/linux/arch/powerpc/platforms/ps3/mm.c (revision 4a6a676f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  PS3 address space management.
4  *
5  *  Copyright (C) 2006 Sony Computer Entertainment Inc.
6  *  Copyright 2006 Sony Corp.
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/export.h>
12 #include <linux/memblock.h>
13 #include <linux/slab.h>
14 
15 #include <asm/cell-regs.h>
16 #include <asm/firmware.h>
17 #include <asm/udbg.h>
18 #include <asm/lv1call.h>
19 #include <asm/setup.h>
20 
21 #include "platform.h"
22 
23 #if defined(DEBUG)
24 #define DBG udbg_printf
25 #else
26 #define DBG pr_devel
27 #endif
28 
29 enum {
30 #if defined(CONFIG_PS3_DYNAMIC_DMA)
31 	USE_DYNAMIC_DMA = 1,
32 #else
33 	USE_DYNAMIC_DMA = 0,
34 #endif
35 };
36 
37 enum {
38 	PAGE_SHIFT_4K = 12U,
39 	PAGE_SHIFT_64K = 16U,
40 	PAGE_SHIFT_16M = 24U,
41 };
42 
43 static unsigned long __init make_page_sizes(unsigned long a, unsigned long b)
44 {
45 	return (a << 56) | (b << 48);
46 }
47 
48 enum {
49 	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
50 	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
51 };
52 
53 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
54 
55 enum {
56 	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
57 	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
58 };
59 
60 /*============================================================================*/
61 /* virtual address space routines                                             */
62 /*============================================================================*/
63 
64 /**
65  * struct mem_region - memory region structure
66  * @base: base address
67  * @size: size in bytes
68  * @offset: difference between base and rm.size
69  * @destroy: flag if region should be destroyed upon shutdown
70  */
71 
72 struct mem_region {
73 	u64 base;
74 	u64 size;
75 	unsigned long offset;
76 	int destroy;
77 };
78 
79 /**
80  * struct map - address space state variables holder
81  * @total: total memory available as reported by HV
82  * @vas_id - HV virtual address space id
83  * @htab_size: htab size in bytes
84  *
85  * The HV virtual address space (vas) allows for hotplug memory regions.
86  * Memory regions can be created and destroyed in the vas at runtime.
87  * @rm: real mode (bootmem) region
88  * @r1: highmem region(s)
89  *
90  * ps3 addresses
91  * virt_addr: a cpu 'translated' effective address
92  * phys_addr: an address in what Linux thinks is the physical address space
93  * lpar_addr: an address in the HV virtual address space
94  * bus_addr: an io controller 'translated' address on a device bus
95  */
96 
97 struct map {
98 	u64 total;
99 	u64 vas_id;
100 	u64 htab_size;
101 	struct mem_region rm;
102 	struct mem_region r1;
103 };
104 
105 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
106 static void __maybe_unused _debug_dump_map(const struct map *m,
107 	const char *func, int line)
108 {
109 	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
110 	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
111 	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
112 	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
113 	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
114 	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
115 	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
116 }
117 
118 static struct map map;
119 
120 /**
121  * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
122  * @phys_addr: linux physical address
123  */
124 
125 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
126 {
127 	BUG_ON(is_kernel_addr(phys_addr));
128 	return (phys_addr < map.rm.size || phys_addr >= map.total)
129 		? phys_addr : phys_addr + map.r1.offset;
130 }
131 
132 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
133 
134 /**
135  * ps3_mm_vas_create - create the virtual address space
136  */
137 
138 void __init ps3_mm_vas_create(unsigned long* htab_size)
139 {
140 	int result;
141 	u64 start_address;
142 	u64 size;
143 	u64 access_right;
144 	u64 max_page_size;
145 	u64 flags;
146 
147 	result = lv1_query_logical_partition_address_region_info(0,
148 		&start_address, &size, &access_right, &max_page_size,
149 		&flags);
150 
151 	if (result) {
152 		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
153 			"failed: %s\n", __func__, __LINE__,
154 			ps3_result(result));
155 		goto fail;
156 	}
157 
158 	if (max_page_size < PAGE_SHIFT_16M) {
159 		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
160 			max_page_size);
161 		goto fail;
162 	}
163 
164 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
165 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
166 
167 	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
168 			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
169 			&map.vas_id, &map.htab_size);
170 
171 	if (result) {
172 		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
173 			__func__, __LINE__, ps3_result(result));
174 		goto fail;
175 	}
176 
177 	result = lv1_select_virtual_address_space(map.vas_id);
178 
179 	if (result) {
180 		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
181 			__func__, __LINE__, ps3_result(result));
182 		goto fail;
183 	}
184 
185 	*htab_size = map.htab_size;
186 
187 	debug_dump_map(&map);
188 
189 	return;
190 
191 fail:
192 	panic("ps3_mm_vas_create failed");
193 }
194 
195 /**
196  * ps3_mm_vas_destroy -
197  *
198  * called during kexec sequence with MMU off.
199  */
200 
201 notrace void ps3_mm_vas_destroy(void)
202 {
203 	int result;
204 
205 	if (map.vas_id) {
206 		result = lv1_select_virtual_address_space(0);
207 		result += lv1_destruct_virtual_address_space(map.vas_id);
208 
209 		if (result) {
210 			lv1_panic(0);
211 		}
212 
213 		map.vas_id = 0;
214 	}
215 }
216 
217 static int __init ps3_mm_get_repository_highmem(struct mem_region *r)
218 {
219 	int result;
220 
221 	/* Assume a single highmem region. */
222 
223 	result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
224 
225 	if (result)
226 		goto zero_region;
227 
228 	if (!r->base || !r->size) {
229 		result = -1;
230 		goto zero_region;
231 	}
232 
233 	r->offset = r->base - map.rm.size;
234 
235 	DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
236 	    __func__, __LINE__, r->base, r->size);
237 
238 	return 0;
239 
240 zero_region:
241 	DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
242 
243 	r->size = r->base = r->offset = 0;
244 	return result;
245 }
246 
247 static int ps3_mm_set_repository_highmem(const struct mem_region *r)
248 {
249 	/* Assume a single highmem region. */
250 
251 	return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
252 		ps3_repository_write_highmem_info(0, 0, 0);
253 }
254 
255 /**
256  * ps3_mm_region_create - create a memory region in the vas
257  * @r: pointer to a struct mem_region to accept initialized values
258  * @size: requested region size
259  *
260  * This implementation creates the region with the vas large page size.
261  * @size is rounded down to a multiple of the vas large page size.
262  */
263 
264 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
265 {
266 	int result;
267 	u64 muid;
268 
269 	r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
270 
271 	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
272 	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
273 	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
274 		size - r->size, (size - r->size) / 1024 / 1024);
275 
276 	if (r->size == 0) {
277 		DBG("%s:%d: size == 0\n", __func__, __LINE__);
278 		result = -1;
279 		goto zero_region;
280 	}
281 
282 	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
283 		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
284 
285 	if (result || r->base < map.rm.size) {
286 		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
287 			__func__, __LINE__, ps3_result(result));
288 		goto zero_region;
289 	}
290 
291 	r->destroy = 1;
292 	r->offset = r->base - map.rm.size;
293 	return result;
294 
295 zero_region:
296 	r->size = r->base = r->offset = 0;
297 	return result;
298 }
299 
300 /**
301  * ps3_mm_region_destroy - destroy a memory region
302  * @r: pointer to struct mem_region
303  */
304 
305 static void ps3_mm_region_destroy(struct mem_region *r)
306 {
307 	int result;
308 
309 	if (!r->destroy) {
310 		return;
311 	}
312 
313 	if (r->base) {
314 		result = lv1_release_memory(r->base);
315 
316 		if (result) {
317 			lv1_panic(0);
318 		}
319 
320 		r->size = r->base = r->offset = 0;
321 		map.total = map.rm.size;
322 	}
323 
324 	ps3_mm_set_repository_highmem(NULL);
325 }
326 
327 /*============================================================================*/
328 /* dma routines                                                               */
329 /*============================================================================*/
330 
331 /**
332  * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
333  * @r: pointer to dma region structure
334  * @lpar_addr: HV lpar address
335  */
336 
337 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
338 	unsigned long lpar_addr)
339 {
340 	if (lpar_addr >= map.rm.size)
341 		lpar_addr -= map.r1.offset;
342 	BUG_ON(lpar_addr < r->offset);
343 	BUG_ON(lpar_addr >= r->offset + r->len);
344 	return r->bus_addr + lpar_addr - r->offset;
345 }
346 
347 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
348 static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
349 	const char *func, int line)
350 {
351 	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
352 		r->dev->dev_id);
353 	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
354 	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
355 	DBG("%s:%d: len        %lxh\n", func, line, r->len);
356 	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
357 }
358 
359   /**
360  * dma_chunk - A chunk of dma pages mapped by the io controller.
361  * @region - The dma region that owns this chunk.
362  * @lpar_addr: Starting lpar address of the area to map.
363  * @bus_addr: Starting ioc bus address of the area to map.
364  * @len: Length in bytes of the area to map.
365  * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
366  * list of all chunks owned by the region.
367  *
368  * This implementation uses a very simple dma page manager
369  * based on the dma_chunk structure.  This scheme assumes
370  * that all drivers use very well behaved dma ops.
371  */
372 
373 struct dma_chunk {
374 	struct ps3_dma_region *region;
375 	unsigned long lpar_addr;
376 	unsigned long bus_addr;
377 	unsigned long len;
378 	struct list_head link;
379 	unsigned int usage_count;
380 };
381 
382 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
383 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
384 	int line)
385 {
386 	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
387 		c->region->dev->bus_id, c->region->dev->dev_id);
388 	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
389 	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
390 	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
391 	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
392 	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
393 	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
394 	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
395 }
396 
397 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
398 	unsigned long bus_addr, unsigned long len)
399 {
400 	struct dma_chunk *c;
401 	unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
402 	unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
403 					      1 << r->page_size);
404 
405 	list_for_each_entry(c, &r->chunk_list.head, link) {
406 		/* intersection */
407 		if (aligned_bus >= c->bus_addr &&
408 		    aligned_bus + aligned_len <= c->bus_addr + c->len)
409 			return c;
410 
411 		/* below */
412 		if (aligned_bus + aligned_len <= c->bus_addr)
413 			continue;
414 
415 		/* above */
416 		if (aligned_bus >= c->bus_addr + c->len)
417 			continue;
418 
419 		/* we don't handle the multi-chunk case for now */
420 		dma_dump_chunk(c);
421 		BUG();
422 	}
423 	return NULL;
424 }
425 
426 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
427 	unsigned long lpar_addr, unsigned long len)
428 {
429 	struct dma_chunk *c;
430 	unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
431 	unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
432 					      1 << r->page_size);
433 
434 	list_for_each_entry(c, &r->chunk_list.head, link) {
435 		/* intersection */
436 		if (c->lpar_addr <= aligned_lpar &&
437 		    aligned_lpar < c->lpar_addr + c->len) {
438 			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
439 				return c;
440 			else {
441 				dma_dump_chunk(c);
442 				BUG();
443 			}
444 		}
445 		/* below */
446 		if (aligned_lpar + aligned_len <= c->lpar_addr) {
447 			continue;
448 		}
449 		/* above */
450 		if (c->lpar_addr + c->len <= aligned_lpar) {
451 			continue;
452 		}
453 	}
454 	return NULL;
455 }
456 
457 static int dma_sb_free_chunk(struct dma_chunk *c)
458 {
459 	int result = 0;
460 
461 	if (c->bus_addr) {
462 		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
463 			c->region->dev->dev_id, c->bus_addr, c->len);
464 		BUG_ON(result);
465 	}
466 
467 	kfree(c);
468 	return result;
469 }
470 
471 static int dma_ioc0_free_chunk(struct dma_chunk *c)
472 {
473 	int result = 0;
474 	int iopage;
475 	unsigned long offset;
476 	struct ps3_dma_region *r = c->region;
477 
478 	DBG("%s:start\n", __func__);
479 	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
480 		offset = (1 << r->page_size) * iopage;
481 		/* put INVALID entry */
482 		result = lv1_put_iopte(0,
483 				       c->bus_addr + offset,
484 				       c->lpar_addr + offset,
485 				       r->ioid,
486 				       0);
487 		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
488 		    c->bus_addr + offset,
489 		    c->lpar_addr + offset,
490 		    r->ioid);
491 
492 		if (result) {
493 			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
494 			    __LINE__, ps3_result(result));
495 		}
496 	}
497 	kfree(c);
498 	DBG("%s:end\n", __func__);
499 	return result;
500 }
501 
502 /**
503  * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
504  * @r: Pointer to a struct ps3_dma_region.
505  * @phys_addr: Starting physical address of the area to map.
506  * @len: Length in bytes of the area to map.
507  * c_out: A pointer to receive an allocated struct dma_chunk for this area.
508  *
509  * This is the lowest level dma mapping routine, and is the one that will
510  * make the HV call to add the pages into the io controller address space.
511  */
512 
513 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
514 	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
515 {
516 	int result;
517 	struct dma_chunk *c;
518 
519 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
520 	if (!c) {
521 		result = -ENOMEM;
522 		goto fail_alloc;
523 	}
524 
525 	c->region = r;
526 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
527 	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
528 	c->len = len;
529 
530 	BUG_ON(iopte_flag != 0xf800000000000000UL);
531 	result = lv1_map_device_dma_region(c->region->dev->bus_id,
532 					   c->region->dev->dev_id, c->lpar_addr,
533 					   c->bus_addr, c->len, iopte_flag);
534 	if (result) {
535 		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
536 			__func__, __LINE__, ps3_result(result));
537 		goto fail_map;
538 	}
539 
540 	list_add(&c->link, &r->chunk_list.head);
541 
542 	*c_out = c;
543 	return 0;
544 
545 fail_map:
546 	kfree(c);
547 fail_alloc:
548 	*c_out = NULL;
549 	DBG(" <- %s:%d\n", __func__, __LINE__);
550 	return result;
551 }
552 
553 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
554 			      unsigned long len, struct dma_chunk **c_out,
555 			      u64 iopte_flag)
556 {
557 	int result;
558 	struct dma_chunk *c, *last;
559 	int iopage, pages;
560 	unsigned long offset;
561 
562 	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
563 	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
564 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
565 	if (!c) {
566 		result = -ENOMEM;
567 		goto fail_alloc;
568 	}
569 
570 	c->region = r;
571 	c->len = len;
572 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
573 	/* allocate IO address */
574 	if (list_empty(&r->chunk_list.head)) {
575 		/* first one */
576 		c->bus_addr = r->bus_addr;
577 	} else {
578 		/* derive from last bus addr*/
579 		last  = list_entry(r->chunk_list.head.next,
580 				   struct dma_chunk, link);
581 		c->bus_addr = last->bus_addr + last->len;
582 		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
583 		    last->bus_addr, last->len);
584 	}
585 
586 	/* FIXME: check whether length exceeds region size */
587 
588 	/* build ioptes for the area */
589 	pages = len >> r->page_size;
590 	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
591 	    r->page_size, r->len, pages, iopte_flag);
592 	for (iopage = 0; iopage < pages; iopage++) {
593 		offset = (1 << r->page_size) * iopage;
594 		result = lv1_put_iopte(0,
595 				       c->bus_addr + offset,
596 				       c->lpar_addr + offset,
597 				       r->ioid,
598 				       iopte_flag);
599 		if (result) {
600 			pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
601 				__func__, __LINE__, ps3_result(result));
602 			goto fail_map;
603 		}
604 		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
605 		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
606 		    r->ioid);
607 	}
608 
609 	/* be sure that last allocated one is inserted at head */
610 	list_add(&c->link, &r->chunk_list.head);
611 
612 	*c_out = c;
613 	DBG("%s: end\n", __func__);
614 	return 0;
615 
616 fail_map:
617 	for (iopage--; 0 <= iopage; iopage--) {
618 		lv1_put_iopte(0,
619 			      c->bus_addr + offset,
620 			      c->lpar_addr + offset,
621 			      r->ioid,
622 			      0);
623 	}
624 	kfree(c);
625 fail_alloc:
626 	*c_out = NULL;
627 	return result;
628 }
629 
630 /**
631  * dma_sb_region_create - Create a device dma region.
632  * @r: Pointer to a struct ps3_dma_region.
633  *
634  * This is the lowest level dma region create routine, and is the one that
635  * will make the HV call to create the region.
636  */
637 
638 static int dma_sb_region_create(struct ps3_dma_region *r)
639 {
640 	int result;
641 	u64 bus_addr;
642 
643 	DBG(" -> %s:%d:\n", __func__, __LINE__);
644 
645 	BUG_ON(!r);
646 
647 	if (!r->dev->bus_id) {
648 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
649 			r->dev->bus_id, r->dev->dev_id);
650 		return 0;
651 	}
652 
653 	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
654 	    __LINE__, r->len, r->page_size, r->offset);
655 
656 	BUG_ON(!r->len);
657 	BUG_ON(!r->page_size);
658 	BUG_ON(!r->region_ops);
659 
660 	INIT_LIST_HEAD(&r->chunk_list.head);
661 	spin_lock_init(&r->chunk_list.lock);
662 
663 	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
664 		roundup_pow_of_two(r->len), r->page_size, r->region_type,
665 		&bus_addr);
666 	r->bus_addr = bus_addr;
667 
668 	if (result) {
669 		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
670 			__func__, __LINE__, ps3_result(result));
671 		r->len = r->bus_addr = 0;
672 	}
673 
674 	return result;
675 }
676 
677 static int dma_ioc0_region_create(struct ps3_dma_region *r)
678 {
679 	int result;
680 	u64 bus_addr;
681 
682 	INIT_LIST_HEAD(&r->chunk_list.head);
683 	spin_lock_init(&r->chunk_list.lock);
684 
685 	result = lv1_allocate_io_segment(0,
686 					 r->len,
687 					 r->page_size,
688 					 &bus_addr);
689 	r->bus_addr = bus_addr;
690 	if (result) {
691 		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
692 			__func__, __LINE__, ps3_result(result));
693 		r->len = r->bus_addr = 0;
694 	}
695 	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
696 	    r->len, r->page_size, r->bus_addr);
697 	return result;
698 }
699 
700 /**
701  * dma_region_free - Free a device dma region.
702  * @r: Pointer to a struct ps3_dma_region.
703  *
704  * This is the lowest level dma region free routine, and is the one that
705  * will make the HV call to free the region.
706  */
707 
708 static int dma_sb_region_free(struct ps3_dma_region *r)
709 {
710 	int result;
711 	struct dma_chunk *c;
712 	struct dma_chunk *tmp;
713 
714 	BUG_ON(!r);
715 
716 	if (!r->dev->bus_id) {
717 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
718 			r->dev->bus_id, r->dev->dev_id);
719 		return 0;
720 	}
721 
722 	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
723 		list_del(&c->link);
724 		dma_sb_free_chunk(c);
725 	}
726 
727 	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
728 		r->bus_addr);
729 
730 	if (result)
731 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
732 			__func__, __LINE__, ps3_result(result));
733 
734 	r->bus_addr = 0;
735 
736 	return result;
737 }
738 
739 static int dma_ioc0_region_free(struct ps3_dma_region *r)
740 {
741 	int result;
742 	struct dma_chunk *c, *n;
743 
744 	DBG("%s: start\n", __func__);
745 	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
746 		list_del(&c->link);
747 		dma_ioc0_free_chunk(c);
748 	}
749 
750 	result = lv1_release_io_segment(0, r->bus_addr);
751 
752 	if (result)
753 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
754 			__func__, __LINE__, ps3_result(result));
755 
756 	r->bus_addr = 0;
757 	DBG("%s: end\n", __func__);
758 
759 	return result;
760 }
761 
762 /**
763  * dma_sb_map_area - Map an area of memory into a device dma region.
764  * @r: Pointer to a struct ps3_dma_region.
765  * @virt_addr: Starting virtual address of the area to map.
766  * @len: Length in bytes of the area to map.
767  * @bus_addr: A pointer to return the starting ioc bus address of the area to
768  * map.
769  *
770  * This is the common dma mapping routine.
771  */
772 
773 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
774 	   unsigned long len, dma_addr_t *bus_addr,
775 	   u64 iopte_flag)
776 {
777 	int result;
778 	unsigned long flags;
779 	struct dma_chunk *c;
780 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
781 		: virt_addr;
782 	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
783 	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
784 					      1 << r->page_size);
785 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
786 
787 	if (!USE_DYNAMIC_DMA) {
788 		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
789 		DBG(" -> %s:%d\n", __func__, __LINE__);
790 		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
791 			virt_addr);
792 		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
793 			phys_addr);
794 		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
795 			lpar_addr);
796 		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
797 		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
798 		*bus_addr, len);
799 	}
800 
801 	spin_lock_irqsave(&r->chunk_list.lock, flags);
802 	c = dma_find_chunk(r, *bus_addr, len);
803 
804 	if (c) {
805 		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
806 		dma_dump_chunk(c);
807 		c->usage_count++;
808 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
809 		return 0;
810 	}
811 
812 	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
813 
814 	if (result) {
815 		*bus_addr = 0;
816 		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
817 			__func__, __LINE__, result);
818 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
819 		return result;
820 	}
821 
822 	c->usage_count = 1;
823 
824 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
825 	return result;
826 }
827 
828 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
829 	     unsigned long len, dma_addr_t *bus_addr,
830 	     u64 iopte_flag)
831 {
832 	int result;
833 	unsigned long flags;
834 	struct dma_chunk *c;
835 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
836 		: virt_addr;
837 	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
838 	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
839 					      1 << r->page_size);
840 
841 	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
842 	    virt_addr, len);
843 	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
844 	    phys_addr, aligned_phys, aligned_len);
845 
846 	spin_lock_irqsave(&r->chunk_list.lock, flags);
847 	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
848 
849 	if (c) {
850 		/* FIXME */
851 		BUG();
852 		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
853 		c->usage_count++;
854 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
855 		return 0;
856 	}
857 
858 	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
859 				    iopte_flag);
860 
861 	if (result) {
862 		*bus_addr = 0;
863 		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
864 			__func__, __LINE__, result);
865 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
866 		return result;
867 	}
868 	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
869 	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
870 	    virt_addr, phys_addr, aligned_phys, *bus_addr);
871 	c->usage_count = 1;
872 
873 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
874 	return result;
875 }
876 
877 /**
878  * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
879  * @r: Pointer to a struct ps3_dma_region.
880  * @bus_addr: The starting ioc bus address of the area to unmap.
881  * @len: Length in bytes of the area to unmap.
882  *
883  * This is the common dma unmap routine.
884  */
885 
886 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
887 	unsigned long len)
888 {
889 	unsigned long flags;
890 	struct dma_chunk *c;
891 
892 	spin_lock_irqsave(&r->chunk_list.lock, flags);
893 	c = dma_find_chunk(r, bus_addr, len);
894 
895 	if (!c) {
896 		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
897 			1 << r->page_size);
898 		unsigned long aligned_len = ALIGN(len + bus_addr
899 			- aligned_bus, 1 << r->page_size);
900 		DBG("%s:%d: not found: bus_addr %llxh\n",
901 			__func__, __LINE__, bus_addr);
902 		DBG("%s:%d: not found: len %lxh\n",
903 			__func__, __LINE__, len);
904 		DBG("%s:%d: not found: aligned_bus %lxh\n",
905 			__func__, __LINE__, aligned_bus);
906 		DBG("%s:%d: not found: aligned_len %lxh\n",
907 			__func__, __LINE__, aligned_len);
908 		BUG();
909 	}
910 
911 	c->usage_count--;
912 
913 	if (!c->usage_count) {
914 		list_del(&c->link);
915 		dma_sb_free_chunk(c);
916 	}
917 
918 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
919 	return 0;
920 }
921 
922 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
923 			dma_addr_t bus_addr, unsigned long len)
924 {
925 	unsigned long flags;
926 	struct dma_chunk *c;
927 
928 	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
929 	spin_lock_irqsave(&r->chunk_list.lock, flags);
930 	c = dma_find_chunk(r, bus_addr, len);
931 
932 	if (!c) {
933 		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
934 							1 << r->page_size);
935 		unsigned long aligned_len = ALIGN(len + bus_addr
936 						      - aligned_bus,
937 						      1 << r->page_size);
938 		DBG("%s:%d: not found: bus_addr %llxh\n",
939 		    __func__, __LINE__, bus_addr);
940 		DBG("%s:%d: not found: len %lxh\n",
941 		    __func__, __LINE__, len);
942 		DBG("%s:%d: not found: aligned_bus %lxh\n",
943 		    __func__, __LINE__, aligned_bus);
944 		DBG("%s:%d: not found: aligned_len %lxh\n",
945 		    __func__, __LINE__, aligned_len);
946 		BUG();
947 	}
948 
949 	c->usage_count--;
950 
951 	if (!c->usage_count) {
952 		list_del(&c->link);
953 		dma_ioc0_free_chunk(c);
954 	}
955 
956 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
957 	DBG("%s: end\n", __func__);
958 	return 0;
959 }
960 
961 /**
962  * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
963  * @r: Pointer to a struct ps3_dma_region.
964  *
965  * This routine creates an HV dma region for the device and maps all available
966  * ram into the io controller bus address space.
967  */
968 
969 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
970 {
971 	int result;
972 	unsigned long virt_addr, len;
973 	dma_addr_t tmp;
974 
975 	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
976 		/* force 16M dma pages for linear mapping */
977 		if (r->page_size != PS3_DMA_16M) {
978 			pr_info("%s:%d: forcing 16M pages for linear map\n",
979 				__func__, __LINE__);
980 			r->page_size = PS3_DMA_16M;
981 			r->len = ALIGN(r->len, 1 << r->page_size);
982 		}
983 	}
984 
985 	result = dma_sb_region_create(r);
986 	BUG_ON(result);
987 
988 	if (r->offset < map.rm.size) {
989 		/* Map (part of) 1st RAM chunk */
990 		virt_addr = map.rm.base + r->offset;
991 		len = map.rm.size - r->offset;
992 		if (len > r->len)
993 			len = r->len;
994 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
995 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
996 			CBE_IOPTE_M);
997 		BUG_ON(result);
998 	}
999 
1000 	if (r->offset + r->len > map.rm.size) {
1001 		/* Map (part of) 2nd RAM chunk */
1002 		virt_addr = map.rm.size;
1003 		len = r->len;
1004 		if (r->offset >= map.rm.size)
1005 			virt_addr += r->offset - map.rm.size;
1006 		else
1007 			len -= map.rm.size - r->offset;
1008 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1009 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1010 			CBE_IOPTE_M);
1011 		BUG_ON(result);
1012 	}
1013 
1014 	return result;
1015 }
1016 
1017 /**
1018  * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1019  * @r: Pointer to a struct ps3_dma_region.
1020  *
1021  * This routine will unmap all mapped areas and free the HV dma region.
1022  */
1023 
1024 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1025 {
1026 	int result;
1027 	dma_addr_t bus_addr;
1028 	unsigned long len, lpar_addr;
1029 
1030 	if (r->offset < map.rm.size) {
1031 		/* Unmap (part of) 1st RAM chunk */
1032 		lpar_addr = map.rm.base + r->offset;
1033 		len = map.rm.size - r->offset;
1034 		if (len > r->len)
1035 			len = r->len;
1036 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1037 		result = dma_sb_unmap_area(r, bus_addr, len);
1038 		BUG_ON(result);
1039 	}
1040 
1041 	if (r->offset + r->len > map.rm.size) {
1042 		/* Unmap (part of) 2nd RAM chunk */
1043 		lpar_addr = map.r1.base;
1044 		len = r->len;
1045 		if (r->offset >= map.rm.size)
1046 			lpar_addr += r->offset - map.rm.size;
1047 		else
1048 			len -= map.rm.size - r->offset;
1049 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1050 		result = dma_sb_unmap_area(r, bus_addr, len);
1051 		BUG_ON(result);
1052 	}
1053 
1054 	result = dma_sb_region_free(r);
1055 	BUG_ON(result);
1056 
1057 	return result;
1058 }
1059 
1060 /**
1061  * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1062  * @r: Pointer to a struct ps3_dma_region.
1063  * @virt_addr: Starting virtual address of the area to map.
1064  * @len: Length in bytes of the area to map.
1065  * @bus_addr: A pointer to return the starting ioc bus address of the area to
1066  * map.
1067  *
1068  * This routine just returns the corresponding bus address.  Actual mapping
1069  * occurs in dma_region_create_linear().
1070  */
1071 
1072 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1073 	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1074 	u64 iopte_flag)
1075 {
1076 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1077 		: virt_addr;
1078 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1079 	return 0;
1080 }
1081 
1082 /**
1083  * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1084  * @r: Pointer to a struct ps3_dma_region.
1085  * @bus_addr: The starting ioc bus address of the area to unmap.
1086  * @len: Length in bytes of the area to unmap.
1087  *
1088  * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1089  */
1090 
1091 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1092 	dma_addr_t bus_addr, unsigned long len)
1093 {
1094 	return 0;
1095 };
1096 
1097 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1098 	.create = dma_sb_region_create,
1099 	.free = dma_sb_region_free,
1100 	.map = dma_sb_map_area,
1101 	.unmap = dma_sb_unmap_area
1102 };
1103 
1104 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1105 	.create = dma_sb_region_create_linear,
1106 	.free = dma_sb_region_free_linear,
1107 	.map = dma_sb_map_area_linear,
1108 	.unmap = dma_sb_unmap_area_linear
1109 };
1110 
1111 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1112 	.create = dma_ioc0_region_create,
1113 	.free = dma_ioc0_region_free,
1114 	.map = dma_ioc0_map_area,
1115 	.unmap = dma_ioc0_unmap_area
1116 };
1117 
1118 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1119 	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1120 	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1121 {
1122 	unsigned long lpar_addr;
1123 	int result;
1124 
1125 	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1126 
1127 	r->dev = dev;
1128 	r->page_size = page_size;
1129 	r->region_type = region_type;
1130 	r->offset = lpar_addr;
1131 	if (r->offset >= map.rm.size)
1132 		r->offset -= map.r1.offset;
1133 	r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1134 
1135 	dev->core.dma_mask = &r->dma_mask;
1136 
1137 	result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32));
1138 
1139 	if (result < 0) {
1140 		dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n",
1141 			__func__, __LINE__, result);
1142 		return result;
1143 	}
1144 
1145 	switch (dev->dev_type) {
1146 	case PS3_DEVICE_TYPE_SB:
1147 		r->region_ops =  (USE_DYNAMIC_DMA)
1148 			? &ps3_dma_sb_region_ops
1149 			: &ps3_dma_sb_region_linear_ops;
1150 		break;
1151 	case PS3_DEVICE_TYPE_IOC0:
1152 		r->region_ops = &ps3_dma_ioc0_region_ops;
1153 		break;
1154 	default:
1155 		BUG();
1156 		return -EINVAL;
1157 	}
1158 	return 0;
1159 }
1160 EXPORT_SYMBOL(ps3_dma_region_init);
1161 
1162 int ps3_dma_region_create(struct ps3_dma_region *r)
1163 {
1164 	BUG_ON(!r);
1165 	BUG_ON(!r->region_ops);
1166 	BUG_ON(!r->region_ops->create);
1167 	return r->region_ops->create(r);
1168 }
1169 EXPORT_SYMBOL(ps3_dma_region_create);
1170 
1171 int ps3_dma_region_free(struct ps3_dma_region *r)
1172 {
1173 	BUG_ON(!r);
1174 	BUG_ON(!r->region_ops);
1175 	BUG_ON(!r->region_ops->free);
1176 	return r->region_ops->free(r);
1177 }
1178 EXPORT_SYMBOL(ps3_dma_region_free);
1179 
1180 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1181 	unsigned long len, dma_addr_t *bus_addr,
1182 	u64 iopte_flag)
1183 {
1184 	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1185 }
1186 
1187 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1188 	unsigned long len)
1189 {
1190 	return r->region_ops->unmap(r, bus_addr, len);
1191 }
1192 
1193 /*============================================================================*/
1194 /* system startup routines                                                    */
1195 /*============================================================================*/
1196 
1197 /**
1198  * ps3_mm_init - initialize the address space state variables
1199  */
1200 
1201 void __init ps3_mm_init(void)
1202 {
1203 	int result;
1204 
1205 	DBG(" -> %s:%d\n", __func__, __LINE__);
1206 
1207 	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1208 		&map.total);
1209 
1210 	if (result)
1211 		panic("ps3_repository_read_mm_info() failed");
1212 
1213 	map.rm.offset = map.rm.base;
1214 	map.vas_id = map.htab_size = 0;
1215 
1216 	/* this implementation assumes map.rm.base is zero */
1217 
1218 	BUG_ON(map.rm.base);
1219 	BUG_ON(!map.rm.size);
1220 
1221 	/* Check if we got the highmem region from an earlier boot step */
1222 
1223 	if (ps3_mm_get_repository_highmem(&map.r1)) {
1224 		result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1225 
1226 		if (!result)
1227 			ps3_mm_set_repository_highmem(&map.r1);
1228 	}
1229 
1230 	/* correct map.total for the real total amount of memory we use */
1231 	map.total = map.rm.size + map.r1.size;
1232 
1233 	if (!map.r1.size) {
1234 		DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1235 	} else {
1236 		DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1237 			__func__, __LINE__, map.rm.size,
1238 			map.total - map.rm.size);
1239 		memblock_add(map.rm.size, map.total - map.rm.size);
1240 	}
1241 
1242 	DBG(" <- %s:%d\n", __func__, __LINE__);
1243 }
1244 
1245 /**
1246  * ps3_mm_shutdown - final cleanup of address space
1247  *
1248  * called during kexec sequence with MMU off.
1249  */
1250 
1251 notrace void ps3_mm_shutdown(void)
1252 {
1253 	ps3_mm_region_destroy(&map.r1);
1254 }
1255