xref: /openbmc/linux/arch/powerpc/platforms/ps3/mm.c (revision 1ab142d4)
1 /*
2  *  PS3 address space management.
3  *
4  *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5  *  Copyright 2006 Sony Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; version 2 of the License.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/export.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 
27 #include <asm/cell-regs.h>
28 #include <asm/firmware.h>
29 #include <asm/prom.h>
30 #include <asm/udbg.h>
31 #include <asm/lv1call.h>
32 
33 #include "platform.h"
34 
35 #if defined(DEBUG)
36 #define DBG udbg_printf
37 #else
38 #define DBG pr_devel
39 #endif
40 
41 enum {
42 #if defined(CONFIG_PS3_DYNAMIC_DMA)
43 	USE_DYNAMIC_DMA = 1,
44 #else
45 	USE_DYNAMIC_DMA = 0,
46 #endif
47 };
48 
49 enum {
50 	PAGE_SHIFT_4K = 12U,
51 	PAGE_SHIFT_64K = 16U,
52 	PAGE_SHIFT_16M = 24U,
53 };
54 
55 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
56 {
57 	return (a << 56) | (b << 48);
58 }
59 
60 enum {
61 	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
62 	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
63 };
64 
65 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
66 
67 enum {
68 	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
69 	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
70 };
71 
72 /*============================================================================*/
73 /* virtual address space routines                                             */
74 /*============================================================================*/
75 
76 /**
77  * struct mem_region - memory region structure
78  * @base: base address
79  * @size: size in bytes
80  * @offset: difference between base and rm.size
81  */
82 
83 struct mem_region {
84 	u64 base;
85 	u64 size;
86 	unsigned long offset;
87 };
88 
89 /**
90  * struct map - address space state variables holder
91  * @total: total memory available as reported by HV
92  * @vas_id - HV virtual address space id
93  * @htab_size: htab size in bytes
94  *
95  * The HV virtual address space (vas) allows for hotplug memory regions.
96  * Memory regions can be created and destroyed in the vas at runtime.
97  * @rm: real mode (bootmem) region
98  * @r1: hotplug memory region(s)
99  *
100  * ps3 addresses
101  * virt_addr: a cpu 'translated' effective address
102  * phys_addr: an address in what Linux thinks is the physical address space
103  * lpar_addr: an address in the HV virtual address space
104  * bus_addr: an io controller 'translated' address on a device bus
105  */
106 
107 struct map {
108 	u64 total;
109 	u64 vas_id;
110 	u64 htab_size;
111 	struct mem_region rm;
112 	struct mem_region r1;
113 };
114 
115 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
116 static void __maybe_unused _debug_dump_map(const struct map *m,
117 	const char *func, int line)
118 {
119 	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
120 	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
121 	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
122 	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
123 	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
124 	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
125 	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
126 }
127 
128 static struct map map;
129 
130 /**
131  * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
132  * @phys_addr: linux physical address
133  */
134 
135 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
136 {
137 	BUG_ON(is_kernel_addr(phys_addr));
138 	return (phys_addr < map.rm.size || phys_addr >= map.total)
139 		? phys_addr : phys_addr + map.r1.offset;
140 }
141 
142 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
143 
144 /**
145  * ps3_mm_vas_create - create the virtual address space
146  */
147 
148 void __init ps3_mm_vas_create(unsigned long* htab_size)
149 {
150 	int result;
151 	u64 start_address;
152 	u64 size;
153 	u64 access_right;
154 	u64 max_page_size;
155 	u64 flags;
156 
157 	result = lv1_query_logical_partition_address_region_info(0,
158 		&start_address, &size, &access_right, &max_page_size,
159 		&flags);
160 
161 	if (result) {
162 		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
163 			"failed: %s\n", __func__, __LINE__,
164 			ps3_result(result));
165 		goto fail;
166 	}
167 
168 	if (max_page_size < PAGE_SHIFT_16M) {
169 		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
170 			max_page_size);
171 		goto fail;
172 	}
173 
174 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
175 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
176 
177 	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
178 			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
179 			&map.vas_id, &map.htab_size);
180 
181 	if (result) {
182 		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
183 			__func__, __LINE__, ps3_result(result));
184 		goto fail;
185 	}
186 
187 	result = lv1_select_virtual_address_space(map.vas_id);
188 
189 	if (result) {
190 		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
191 			__func__, __LINE__, ps3_result(result));
192 		goto fail;
193 	}
194 
195 	*htab_size = map.htab_size;
196 
197 	debug_dump_map(&map);
198 
199 	return;
200 
201 fail:
202 	panic("ps3_mm_vas_create failed");
203 }
204 
205 /**
206  * ps3_mm_vas_destroy -
207  */
208 
209 void ps3_mm_vas_destroy(void)
210 {
211 	int result;
212 
213 	DBG("%s:%d: map.vas_id    = %llu\n", __func__, __LINE__, map.vas_id);
214 
215 	if (map.vas_id) {
216 		result = lv1_select_virtual_address_space(0);
217 		BUG_ON(result);
218 		result = lv1_destruct_virtual_address_space(map.vas_id);
219 		BUG_ON(result);
220 		map.vas_id = 0;
221 	}
222 }
223 
224 /*============================================================================*/
225 /* memory hotplug routines                                                    */
226 /*============================================================================*/
227 
228 /**
229  * ps3_mm_region_create - create a memory region in the vas
230  * @r: pointer to a struct mem_region to accept initialized values
231  * @size: requested region size
232  *
233  * This implementation creates the region with the vas large page size.
234  * @size is rounded down to a multiple of the vas large page size.
235  */
236 
237 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
238 {
239 	int result;
240 	u64 muid;
241 
242 	r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
243 
244 	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
245 	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
246 	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
247 		size - r->size, (size - r->size) / 1024 / 1024);
248 
249 	if (r->size == 0) {
250 		DBG("%s:%d: size == 0\n", __func__, __LINE__);
251 		result = -1;
252 		goto zero_region;
253 	}
254 
255 	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
256 		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
257 
258 	if (result || r->base < map.rm.size) {
259 		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
260 			__func__, __LINE__, ps3_result(result));
261 		goto zero_region;
262 	}
263 
264 	r->offset = r->base - map.rm.size;
265 	return result;
266 
267 zero_region:
268 	r->size = r->base = r->offset = 0;
269 	return result;
270 }
271 
272 /**
273  * ps3_mm_region_destroy - destroy a memory region
274  * @r: pointer to struct mem_region
275  */
276 
277 static void ps3_mm_region_destroy(struct mem_region *r)
278 {
279 	int result;
280 
281 	DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base);
282 	if (r->base) {
283 		result = lv1_release_memory(r->base);
284 		BUG_ON(result);
285 		r->size = r->base = r->offset = 0;
286 		map.total = map.rm.size;
287 	}
288 }
289 
290 /**
291  * ps3_mm_add_memory - hot add memory
292  */
293 
294 static int __init ps3_mm_add_memory(void)
295 {
296 	int result;
297 	unsigned long start_addr;
298 	unsigned long start_pfn;
299 	unsigned long nr_pages;
300 
301 	if (!firmware_has_feature(FW_FEATURE_PS3_LV1))
302 		return -ENODEV;
303 
304 	BUG_ON(!mem_init_done);
305 
306 	start_addr = map.rm.size;
307 	start_pfn = start_addr >> PAGE_SHIFT;
308 	nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309 
310 	DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n",
311 		__func__, __LINE__, start_addr, start_pfn, nr_pages);
312 
313 	result = add_memory(0, start_addr, map.r1.size);
314 
315 	if (result) {
316 		pr_err("%s:%d: add_memory failed: (%d)\n",
317 			__func__, __LINE__, result);
318 		return result;
319 	}
320 
321 	memblock_add(start_addr, map.r1.size);
322 
323 	result = online_pages(start_pfn, nr_pages);
324 
325 	if (result)
326 		pr_err("%s:%d: online_pages failed: (%d)\n",
327 			__func__, __LINE__, result);
328 
329 	return result;
330 }
331 
332 device_initcall(ps3_mm_add_memory);
333 
334 /*============================================================================*/
335 /* dma routines                                                               */
336 /*============================================================================*/
337 
338 /**
339  * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
340  * @r: pointer to dma region structure
341  * @lpar_addr: HV lpar address
342  */
343 
344 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
345 	unsigned long lpar_addr)
346 {
347 	if (lpar_addr >= map.rm.size)
348 		lpar_addr -= map.r1.offset;
349 	BUG_ON(lpar_addr < r->offset);
350 	BUG_ON(lpar_addr >= r->offset + r->len);
351 	return r->bus_addr + lpar_addr - r->offset;
352 }
353 
354 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
355 static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
356 	const char *func, int line)
357 {
358 	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
359 		r->dev->dev_id);
360 	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
361 	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
362 	DBG("%s:%d: len        %lxh\n", func, line, r->len);
363 	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
364 }
365 
366   /**
367  * dma_chunk - A chunk of dma pages mapped by the io controller.
368  * @region - The dma region that owns this chunk.
369  * @lpar_addr: Starting lpar address of the area to map.
370  * @bus_addr: Starting ioc bus address of the area to map.
371  * @len: Length in bytes of the area to map.
372  * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
373  * list of all chuncks owned by the region.
374  *
375  * This implementation uses a very simple dma page manager
376  * based on the dma_chunk structure.  This scheme assumes
377  * that all drivers use very well behaved dma ops.
378  */
379 
380 struct dma_chunk {
381 	struct ps3_dma_region *region;
382 	unsigned long lpar_addr;
383 	unsigned long bus_addr;
384 	unsigned long len;
385 	struct list_head link;
386 	unsigned int usage_count;
387 };
388 
389 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
390 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
391 	int line)
392 {
393 	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
394 		c->region->dev->bus_id, c->region->dev->dev_id);
395 	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
396 	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
397 	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
398 	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
399 	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
400 	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
401 	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
402 }
403 
404 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
405 	unsigned long bus_addr, unsigned long len)
406 {
407 	struct dma_chunk *c;
408 	unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
409 	unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
410 					      1 << r->page_size);
411 
412 	list_for_each_entry(c, &r->chunk_list.head, link) {
413 		/* intersection */
414 		if (aligned_bus >= c->bus_addr &&
415 		    aligned_bus + aligned_len <= c->bus_addr + c->len)
416 			return c;
417 
418 		/* below */
419 		if (aligned_bus + aligned_len <= c->bus_addr)
420 			continue;
421 
422 		/* above */
423 		if (aligned_bus >= c->bus_addr + c->len)
424 			continue;
425 
426 		/* we don't handle the multi-chunk case for now */
427 		dma_dump_chunk(c);
428 		BUG();
429 	}
430 	return NULL;
431 }
432 
433 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
434 	unsigned long lpar_addr, unsigned long len)
435 {
436 	struct dma_chunk *c;
437 	unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
438 	unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
439 					      1 << r->page_size);
440 
441 	list_for_each_entry(c, &r->chunk_list.head, link) {
442 		/* intersection */
443 		if (c->lpar_addr <= aligned_lpar &&
444 		    aligned_lpar < c->lpar_addr + c->len) {
445 			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
446 				return c;
447 			else {
448 				dma_dump_chunk(c);
449 				BUG();
450 			}
451 		}
452 		/* below */
453 		if (aligned_lpar + aligned_len <= c->lpar_addr) {
454 			continue;
455 		}
456 		/* above */
457 		if (c->lpar_addr + c->len <= aligned_lpar) {
458 			continue;
459 		}
460 	}
461 	return NULL;
462 }
463 
464 static int dma_sb_free_chunk(struct dma_chunk *c)
465 {
466 	int result = 0;
467 
468 	if (c->bus_addr) {
469 		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
470 			c->region->dev->dev_id, c->bus_addr, c->len);
471 		BUG_ON(result);
472 	}
473 
474 	kfree(c);
475 	return result;
476 }
477 
478 static int dma_ioc0_free_chunk(struct dma_chunk *c)
479 {
480 	int result = 0;
481 	int iopage;
482 	unsigned long offset;
483 	struct ps3_dma_region *r = c->region;
484 
485 	DBG("%s:start\n", __func__);
486 	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
487 		offset = (1 << r->page_size) * iopage;
488 		/* put INVALID entry */
489 		result = lv1_put_iopte(0,
490 				       c->bus_addr + offset,
491 				       c->lpar_addr + offset,
492 				       r->ioid,
493 				       0);
494 		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
495 		    c->bus_addr + offset,
496 		    c->lpar_addr + offset,
497 		    r->ioid);
498 
499 		if (result) {
500 			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
501 			    __LINE__, ps3_result(result));
502 		}
503 	}
504 	kfree(c);
505 	DBG("%s:end\n", __func__);
506 	return result;
507 }
508 
509 /**
510  * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
511  * @r: Pointer to a struct ps3_dma_region.
512  * @phys_addr: Starting physical address of the area to map.
513  * @len: Length in bytes of the area to map.
514  * c_out: A pointer to receive an allocated struct dma_chunk for this area.
515  *
516  * This is the lowest level dma mapping routine, and is the one that will
517  * make the HV call to add the pages into the io controller address space.
518  */
519 
520 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
521 	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
522 {
523 	int result;
524 	struct dma_chunk *c;
525 
526 	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
527 
528 	if (!c) {
529 		result = -ENOMEM;
530 		goto fail_alloc;
531 	}
532 
533 	c->region = r;
534 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
535 	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
536 	c->len = len;
537 
538 	BUG_ON(iopte_flag != 0xf800000000000000UL);
539 	result = lv1_map_device_dma_region(c->region->dev->bus_id,
540 					   c->region->dev->dev_id, c->lpar_addr,
541 					   c->bus_addr, c->len, iopte_flag);
542 	if (result) {
543 		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
544 			__func__, __LINE__, ps3_result(result));
545 		goto fail_map;
546 	}
547 
548 	list_add(&c->link, &r->chunk_list.head);
549 
550 	*c_out = c;
551 	return 0;
552 
553 fail_map:
554 	kfree(c);
555 fail_alloc:
556 	*c_out = NULL;
557 	DBG(" <- %s:%d\n", __func__, __LINE__);
558 	return result;
559 }
560 
561 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
562 			      unsigned long len, struct dma_chunk **c_out,
563 			      u64 iopte_flag)
564 {
565 	int result;
566 	struct dma_chunk *c, *last;
567 	int iopage, pages;
568 	unsigned long offset;
569 
570 	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
571 	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
572 	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
573 
574 	if (!c) {
575 		result = -ENOMEM;
576 		goto fail_alloc;
577 	}
578 
579 	c->region = r;
580 	c->len = len;
581 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
582 	/* allocate IO address */
583 	if (list_empty(&r->chunk_list.head)) {
584 		/* first one */
585 		c->bus_addr = r->bus_addr;
586 	} else {
587 		/* derive from last bus addr*/
588 		last  = list_entry(r->chunk_list.head.next,
589 				   struct dma_chunk, link);
590 		c->bus_addr = last->bus_addr + last->len;
591 		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
592 		    last->bus_addr, last->len);
593 	}
594 
595 	/* FIXME: check whether length exceeds region size */
596 
597 	/* build ioptes for the area */
598 	pages = len >> r->page_size;
599 	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
600 	    r->page_size, r->len, pages, iopte_flag);
601 	for (iopage = 0; iopage < pages; iopage++) {
602 		offset = (1 << r->page_size) * iopage;
603 		result = lv1_put_iopte(0,
604 				       c->bus_addr + offset,
605 				       c->lpar_addr + offset,
606 				       r->ioid,
607 				       iopte_flag);
608 		if (result) {
609 			pr_warning("%s:%d: lv1_put_iopte failed: %s\n",
610 				   __func__, __LINE__, ps3_result(result));
611 			goto fail_map;
612 		}
613 		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
614 		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
615 		    r->ioid);
616 	}
617 
618 	/* be sure that last allocated one is inserted at head */
619 	list_add(&c->link, &r->chunk_list.head);
620 
621 	*c_out = c;
622 	DBG("%s: end\n", __func__);
623 	return 0;
624 
625 fail_map:
626 	for (iopage--; 0 <= iopage; iopage--) {
627 		lv1_put_iopte(0,
628 			      c->bus_addr + offset,
629 			      c->lpar_addr + offset,
630 			      r->ioid,
631 			      0);
632 	}
633 	kfree(c);
634 fail_alloc:
635 	*c_out = NULL;
636 	return result;
637 }
638 
639 /**
640  * dma_sb_region_create - Create a device dma region.
641  * @r: Pointer to a struct ps3_dma_region.
642  *
643  * This is the lowest level dma region create routine, and is the one that
644  * will make the HV call to create the region.
645  */
646 
647 static int dma_sb_region_create(struct ps3_dma_region *r)
648 {
649 	int result;
650 	u64 bus_addr;
651 
652 	DBG(" -> %s:%d:\n", __func__, __LINE__);
653 
654 	BUG_ON(!r);
655 
656 	if (!r->dev->bus_id) {
657 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
658 			r->dev->bus_id, r->dev->dev_id);
659 		return 0;
660 	}
661 
662 	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
663 	    __LINE__, r->len, r->page_size, r->offset);
664 
665 	BUG_ON(!r->len);
666 	BUG_ON(!r->page_size);
667 	BUG_ON(!r->region_ops);
668 
669 	INIT_LIST_HEAD(&r->chunk_list.head);
670 	spin_lock_init(&r->chunk_list.lock);
671 
672 	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
673 		roundup_pow_of_two(r->len), r->page_size, r->region_type,
674 		&bus_addr);
675 	r->bus_addr = bus_addr;
676 
677 	if (result) {
678 		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
679 			__func__, __LINE__, ps3_result(result));
680 		r->len = r->bus_addr = 0;
681 	}
682 
683 	return result;
684 }
685 
686 static int dma_ioc0_region_create(struct ps3_dma_region *r)
687 {
688 	int result;
689 	u64 bus_addr;
690 
691 	INIT_LIST_HEAD(&r->chunk_list.head);
692 	spin_lock_init(&r->chunk_list.lock);
693 
694 	result = lv1_allocate_io_segment(0,
695 					 r->len,
696 					 r->page_size,
697 					 &bus_addr);
698 	r->bus_addr = bus_addr;
699 	if (result) {
700 		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
701 			__func__, __LINE__, ps3_result(result));
702 		r->len = r->bus_addr = 0;
703 	}
704 	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
705 	    r->len, r->page_size, r->bus_addr);
706 	return result;
707 }
708 
709 /**
710  * dma_region_free - Free a device dma region.
711  * @r: Pointer to a struct ps3_dma_region.
712  *
713  * This is the lowest level dma region free routine, and is the one that
714  * will make the HV call to free the region.
715  */
716 
717 static int dma_sb_region_free(struct ps3_dma_region *r)
718 {
719 	int result;
720 	struct dma_chunk *c;
721 	struct dma_chunk *tmp;
722 
723 	BUG_ON(!r);
724 
725 	if (!r->dev->bus_id) {
726 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
727 			r->dev->bus_id, r->dev->dev_id);
728 		return 0;
729 	}
730 
731 	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
732 		list_del(&c->link);
733 		dma_sb_free_chunk(c);
734 	}
735 
736 	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
737 		r->bus_addr);
738 
739 	if (result)
740 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
741 			__func__, __LINE__, ps3_result(result));
742 
743 	r->bus_addr = 0;
744 
745 	return result;
746 }
747 
748 static int dma_ioc0_region_free(struct ps3_dma_region *r)
749 {
750 	int result;
751 	struct dma_chunk *c, *n;
752 
753 	DBG("%s: start\n", __func__);
754 	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
755 		list_del(&c->link);
756 		dma_ioc0_free_chunk(c);
757 	}
758 
759 	result = lv1_release_io_segment(0, r->bus_addr);
760 
761 	if (result)
762 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
763 			__func__, __LINE__, ps3_result(result));
764 
765 	r->bus_addr = 0;
766 	DBG("%s: end\n", __func__);
767 
768 	return result;
769 }
770 
771 /**
772  * dma_sb_map_area - Map an area of memory into a device dma region.
773  * @r: Pointer to a struct ps3_dma_region.
774  * @virt_addr: Starting virtual address of the area to map.
775  * @len: Length in bytes of the area to map.
776  * @bus_addr: A pointer to return the starting ioc bus address of the area to
777  * map.
778  *
779  * This is the common dma mapping routine.
780  */
781 
782 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
783 	   unsigned long len, dma_addr_t *bus_addr,
784 	   u64 iopte_flag)
785 {
786 	int result;
787 	unsigned long flags;
788 	struct dma_chunk *c;
789 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
790 		: virt_addr;
791 	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
792 	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
793 					      1 << r->page_size);
794 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
795 
796 	if (!USE_DYNAMIC_DMA) {
797 		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
798 		DBG(" -> %s:%d\n", __func__, __LINE__);
799 		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
800 			virt_addr);
801 		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
802 			phys_addr);
803 		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
804 			lpar_addr);
805 		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
806 		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
807 		*bus_addr, len);
808 	}
809 
810 	spin_lock_irqsave(&r->chunk_list.lock, flags);
811 	c = dma_find_chunk(r, *bus_addr, len);
812 
813 	if (c) {
814 		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
815 		dma_dump_chunk(c);
816 		c->usage_count++;
817 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
818 		return 0;
819 	}
820 
821 	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
822 
823 	if (result) {
824 		*bus_addr = 0;
825 		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
826 			__func__, __LINE__, result);
827 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
828 		return result;
829 	}
830 
831 	c->usage_count = 1;
832 
833 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
834 	return result;
835 }
836 
837 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
838 	     unsigned long len, dma_addr_t *bus_addr,
839 	     u64 iopte_flag)
840 {
841 	int result;
842 	unsigned long flags;
843 	struct dma_chunk *c;
844 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
845 		: virt_addr;
846 	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
847 	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
848 					      1 << r->page_size);
849 
850 	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
851 	    virt_addr, len);
852 	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
853 	    phys_addr, aligned_phys, aligned_len);
854 
855 	spin_lock_irqsave(&r->chunk_list.lock, flags);
856 	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
857 
858 	if (c) {
859 		/* FIXME */
860 		BUG();
861 		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
862 		c->usage_count++;
863 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
864 		return 0;
865 	}
866 
867 	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
868 				    iopte_flag);
869 
870 	if (result) {
871 		*bus_addr = 0;
872 		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
873 			__func__, __LINE__, result);
874 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
875 		return result;
876 	}
877 	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
878 	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
879 	    virt_addr, phys_addr, aligned_phys, *bus_addr);
880 	c->usage_count = 1;
881 
882 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
883 	return result;
884 }
885 
886 /**
887  * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
888  * @r: Pointer to a struct ps3_dma_region.
889  * @bus_addr: The starting ioc bus address of the area to unmap.
890  * @len: Length in bytes of the area to unmap.
891  *
892  * This is the common dma unmap routine.
893  */
894 
895 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
896 	unsigned long len)
897 {
898 	unsigned long flags;
899 	struct dma_chunk *c;
900 
901 	spin_lock_irqsave(&r->chunk_list.lock, flags);
902 	c = dma_find_chunk(r, bus_addr, len);
903 
904 	if (!c) {
905 		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
906 			1 << r->page_size);
907 		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
908 			- aligned_bus, 1 << r->page_size);
909 		DBG("%s:%d: not found: bus_addr %llxh\n",
910 			__func__, __LINE__, bus_addr);
911 		DBG("%s:%d: not found: len %lxh\n",
912 			__func__, __LINE__, len);
913 		DBG("%s:%d: not found: aligned_bus %lxh\n",
914 			__func__, __LINE__, aligned_bus);
915 		DBG("%s:%d: not found: aligned_len %lxh\n",
916 			__func__, __LINE__, aligned_len);
917 		BUG();
918 	}
919 
920 	c->usage_count--;
921 
922 	if (!c->usage_count) {
923 		list_del(&c->link);
924 		dma_sb_free_chunk(c);
925 	}
926 
927 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
928 	return 0;
929 }
930 
931 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
932 			dma_addr_t bus_addr, unsigned long len)
933 {
934 	unsigned long flags;
935 	struct dma_chunk *c;
936 
937 	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
938 	spin_lock_irqsave(&r->chunk_list.lock, flags);
939 	c = dma_find_chunk(r, bus_addr, len);
940 
941 	if (!c) {
942 		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
943 							1 << r->page_size);
944 		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
945 						      - aligned_bus,
946 						      1 << r->page_size);
947 		DBG("%s:%d: not found: bus_addr %llxh\n",
948 		    __func__, __LINE__, bus_addr);
949 		DBG("%s:%d: not found: len %lxh\n",
950 		    __func__, __LINE__, len);
951 		DBG("%s:%d: not found: aligned_bus %lxh\n",
952 		    __func__, __LINE__, aligned_bus);
953 		DBG("%s:%d: not found: aligned_len %lxh\n",
954 		    __func__, __LINE__, aligned_len);
955 		BUG();
956 	}
957 
958 	c->usage_count--;
959 
960 	if (!c->usage_count) {
961 		list_del(&c->link);
962 		dma_ioc0_free_chunk(c);
963 	}
964 
965 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
966 	DBG("%s: end\n", __func__);
967 	return 0;
968 }
969 
970 /**
971  * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
972  * @r: Pointer to a struct ps3_dma_region.
973  *
974  * This routine creates an HV dma region for the device and maps all available
975  * ram into the io controller bus address space.
976  */
977 
978 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
979 {
980 	int result;
981 	unsigned long virt_addr, len;
982 	dma_addr_t tmp;
983 
984 	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
985 		/* force 16M dma pages for linear mapping */
986 		if (r->page_size != PS3_DMA_16M) {
987 			pr_info("%s:%d: forcing 16M pages for linear map\n",
988 				__func__, __LINE__);
989 			r->page_size = PS3_DMA_16M;
990 			r->len = _ALIGN_UP(r->len, 1 << r->page_size);
991 		}
992 	}
993 
994 	result = dma_sb_region_create(r);
995 	BUG_ON(result);
996 
997 	if (r->offset < map.rm.size) {
998 		/* Map (part of) 1st RAM chunk */
999 		virt_addr = map.rm.base + r->offset;
1000 		len = map.rm.size - r->offset;
1001 		if (len > r->len)
1002 			len = r->len;
1003 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1004 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1005 			CBE_IOPTE_M);
1006 		BUG_ON(result);
1007 	}
1008 
1009 	if (r->offset + r->len > map.rm.size) {
1010 		/* Map (part of) 2nd RAM chunk */
1011 		virt_addr = map.rm.size;
1012 		len = r->len;
1013 		if (r->offset >= map.rm.size)
1014 			virt_addr += r->offset - map.rm.size;
1015 		else
1016 			len -= map.rm.size - r->offset;
1017 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1018 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1019 			CBE_IOPTE_M);
1020 		BUG_ON(result);
1021 	}
1022 
1023 	return result;
1024 }
1025 
1026 /**
1027  * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1028  * @r: Pointer to a struct ps3_dma_region.
1029  *
1030  * This routine will unmap all mapped areas and free the HV dma region.
1031  */
1032 
1033 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1034 {
1035 	int result;
1036 	dma_addr_t bus_addr;
1037 	unsigned long len, lpar_addr;
1038 
1039 	if (r->offset < map.rm.size) {
1040 		/* Unmap (part of) 1st RAM chunk */
1041 		lpar_addr = map.rm.base + r->offset;
1042 		len = map.rm.size - r->offset;
1043 		if (len > r->len)
1044 			len = r->len;
1045 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1046 		result = dma_sb_unmap_area(r, bus_addr, len);
1047 		BUG_ON(result);
1048 	}
1049 
1050 	if (r->offset + r->len > map.rm.size) {
1051 		/* Unmap (part of) 2nd RAM chunk */
1052 		lpar_addr = map.r1.base;
1053 		len = r->len;
1054 		if (r->offset >= map.rm.size)
1055 			lpar_addr += r->offset - map.rm.size;
1056 		else
1057 			len -= map.rm.size - r->offset;
1058 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1059 		result = dma_sb_unmap_area(r, bus_addr, len);
1060 		BUG_ON(result);
1061 	}
1062 
1063 	result = dma_sb_region_free(r);
1064 	BUG_ON(result);
1065 
1066 	return result;
1067 }
1068 
1069 /**
1070  * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1071  * @r: Pointer to a struct ps3_dma_region.
1072  * @virt_addr: Starting virtual address of the area to map.
1073  * @len: Length in bytes of the area to map.
1074  * @bus_addr: A pointer to return the starting ioc bus address of the area to
1075  * map.
1076  *
1077  * This routine just returns the corresponding bus address.  Actual mapping
1078  * occurs in dma_region_create_linear().
1079  */
1080 
1081 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1082 	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1083 	u64 iopte_flag)
1084 {
1085 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1086 		: virt_addr;
1087 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1088 	return 0;
1089 }
1090 
1091 /**
1092  * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1093  * @r: Pointer to a struct ps3_dma_region.
1094  * @bus_addr: The starting ioc bus address of the area to unmap.
1095  * @len: Length in bytes of the area to unmap.
1096  *
1097  * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1098  */
1099 
1100 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1101 	dma_addr_t bus_addr, unsigned long len)
1102 {
1103 	return 0;
1104 };
1105 
1106 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1107 	.create = dma_sb_region_create,
1108 	.free = dma_sb_region_free,
1109 	.map = dma_sb_map_area,
1110 	.unmap = dma_sb_unmap_area
1111 };
1112 
1113 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1114 	.create = dma_sb_region_create_linear,
1115 	.free = dma_sb_region_free_linear,
1116 	.map = dma_sb_map_area_linear,
1117 	.unmap = dma_sb_unmap_area_linear
1118 };
1119 
1120 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1121 	.create = dma_ioc0_region_create,
1122 	.free = dma_ioc0_region_free,
1123 	.map = dma_ioc0_map_area,
1124 	.unmap = dma_ioc0_unmap_area
1125 };
1126 
1127 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1128 	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1129 	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1130 {
1131 	unsigned long lpar_addr;
1132 
1133 	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1134 
1135 	r->dev = dev;
1136 	r->page_size = page_size;
1137 	r->region_type = region_type;
1138 	r->offset = lpar_addr;
1139 	if (r->offset >= map.rm.size)
1140 		r->offset -= map.r1.offset;
1141 	r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
1142 
1143 	switch (dev->dev_type) {
1144 	case PS3_DEVICE_TYPE_SB:
1145 		r->region_ops =  (USE_DYNAMIC_DMA)
1146 			? &ps3_dma_sb_region_ops
1147 			: &ps3_dma_sb_region_linear_ops;
1148 		break;
1149 	case PS3_DEVICE_TYPE_IOC0:
1150 		r->region_ops = &ps3_dma_ioc0_region_ops;
1151 		break;
1152 	default:
1153 		BUG();
1154 		return -EINVAL;
1155 	}
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL(ps3_dma_region_init);
1159 
1160 int ps3_dma_region_create(struct ps3_dma_region *r)
1161 {
1162 	BUG_ON(!r);
1163 	BUG_ON(!r->region_ops);
1164 	BUG_ON(!r->region_ops->create);
1165 	return r->region_ops->create(r);
1166 }
1167 EXPORT_SYMBOL(ps3_dma_region_create);
1168 
1169 int ps3_dma_region_free(struct ps3_dma_region *r)
1170 {
1171 	BUG_ON(!r);
1172 	BUG_ON(!r->region_ops);
1173 	BUG_ON(!r->region_ops->free);
1174 	return r->region_ops->free(r);
1175 }
1176 EXPORT_SYMBOL(ps3_dma_region_free);
1177 
1178 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1179 	unsigned long len, dma_addr_t *bus_addr,
1180 	u64 iopte_flag)
1181 {
1182 	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1183 }
1184 
1185 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1186 	unsigned long len)
1187 {
1188 	return r->region_ops->unmap(r, bus_addr, len);
1189 }
1190 
1191 /*============================================================================*/
1192 /* system startup routines                                                    */
1193 /*============================================================================*/
1194 
1195 /**
1196  * ps3_mm_init - initialize the address space state variables
1197  */
1198 
1199 void __init ps3_mm_init(void)
1200 {
1201 	int result;
1202 
1203 	DBG(" -> %s:%d\n", __func__, __LINE__);
1204 
1205 	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1206 		&map.total);
1207 
1208 	if (result)
1209 		panic("ps3_repository_read_mm_info() failed");
1210 
1211 	map.rm.offset = map.rm.base;
1212 	map.vas_id = map.htab_size = 0;
1213 
1214 	/* this implementation assumes map.rm.base is zero */
1215 
1216 	BUG_ON(map.rm.base);
1217 	BUG_ON(!map.rm.size);
1218 
1219 
1220 	/* arrange to do this in ps3_mm_add_memory */
1221 	ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1222 
1223 	/* correct map.total for the real total amount of memory we use */
1224 	map.total = map.rm.size + map.r1.size;
1225 
1226 	DBG(" <- %s:%d\n", __func__, __LINE__);
1227 }
1228 
1229 /**
1230  * ps3_mm_shutdown - final cleanup of address space
1231  */
1232 
1233 void ps3_mm_shutdown(void)
1234 {
1235 	ps3_mm_region_destroy(&map.r1);
1236 }
1237