xref: /openbmc/linux/arch/powerpc/platforms/ps3/mm.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  *  PS3 address space management.
3  *
4  *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5  *  Copyright 2006 Sony Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; version 2 of the License.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/export.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 
26 #include <asm/cell-regs.h>
27 #include <asm/firmware.h>
28 #include <asm/prom.h>
29 #include <asm/udbg.h>
30 #include <asm/lv1call.h>
31 #include <asm/setup.h>
32 
33 #include "platform.h"
34 
35 #if defined(DEBUG)
36 #define DBG udbg_printf
37 #else
38 #define DBG pr_devel
39 #endif
40 
41 enum {
42 #if defined(CONFIG_PS3_DYNAMIC_DMA)
43 	USE_DYNAMIC_DMA = 1,
44 #else
45 	USE_DYNAMIC_DMA = 0,
46 #endif
47 };
48 
49 enum {
50 	PAGE_SHIFT_4K = 12U,
51 	PAGE_SHIFT_64K = 16U,
52 	PAGE_SHIFT_16M = 24U,
53 };
54 
55 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
56 {
57 	return (a << 56) | (b << 48);
58 }
59 
60 enum {
61 	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
62 	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
63 };
64 
65 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
66 
67 enum {
68 	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
69 	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
70 };
71 
72 /*============================================================================*/
73 /* virtual address space routines                                             */
74 /*============================================================================*/
75 
76 /**
77  * struct mem_region - memory region structure
78  * @base: base address
79  * @size: size in bytes
80  * @offset: difference between base and rm.size
81  * @destroy: flag if region should be destroyed upon shutdown
82  */
83 
84 struct mem_region {
85 	u64 base;
86 	u64 size;
87 	unsigned long offset;
88 	int destroy;
89 };
90 
91 /**
92  * struct map - address space state variables holder
93  * @total: total memory available as reported by HV
94  * @vas_id - HV virtual address space id
95  * @htab_size: htab size in bytes
96  *
97  * The HV virtual address space (vas) allows for hotplug memory regions.
98  * Memory regions can be created and destroyed in the vas at runtime.
99  * @rm: real mode (bootmem) region
100  * @r1: highmem region(s)
101  *
102  * ps3 addresses
103  * virt_addr: a cpu 'translated' effective address
104  * phys_addr: an address in what Linux thinks is the physical address space
105  * lpar_addr: an address in the HV virtual address space
106  * bus_addr: an io controller 'translated' address on a device bus
107  */
108 
109 struct map {
110 	u64 total;
111 	u64 vas_id;
112 	u64 htab_size;
113 	struct mem_region rm;
114 	struct mem_region r1;
115 };
116 
117 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
118 static void __maybe_unused _debug_dump_map(const struct map *m,
119 	const char *func, int line)
120 {
121 	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
122 	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
123 	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
124 	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
125 	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
126 	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
127 	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
128 }
129 
130 static struct map map;
131 
132 /**
133  * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
134  * @phys_addr: linux physical address
135  */
136 
137 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
138 {
139 	BUG_ON(is_kernel_addr(phys_addr));
140 	return (phys_addr < map.rm.size || phys_addr >= map.total)
141 		? phys_addr : phys_addr + map.r1.offset;
142 }
143 
144 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
145 
146 /**
147  * ps3_mm_vas_create - create the virtual address space
148  */
149 
150 void __init ps3_mm_vas_create(unsigned long* htab_size)
151 {
152 	int result;
153 	u64 start_address;
154 	u64 size;
155 	u64 access_right;
156 	u64 max_page_size;
157 	u64 flags;
158 
159 	result = lv1_query_logical_partition_address_region_info(0,
160 		&start_address, &size, &access_right, &max_page_size,
161 		&flags);
162 
163 	if (result) {
164 		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
165 			"failed: %s\n", __func__, __LINE__,
166 			ps3_result(result));
167 		goto fail;
168 	}
169 
170 	if (max_page_size < PAGE_SHIFT_16M) {
171 		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
172 			max_page_size);
173 		goto fail;
174 	}
175 
176 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
177 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
178 
179 	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
180 			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
181 			&map.vas_id, &map.htab_size);
182 
183 	if (result) {
184 		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
185 			__func__, __LINE__, ps3_result(result));
186 		goto fail;
187 	}
188 
189 	result = lv1_select_virtual_address_space(map.vas_id);
190 
191 	if (result) {
192 		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
193 			__func__, __LINE__, ps3_result(result));
194 		goto fail;
195 	}
196 
197 	*htab_size = map.htab_size;
198 
199 	debug_dump_map(&map);
200 
201 	return;
202 
203 fail:
204 	panic("ps3_mm_vas_create failed");
205 }
206 
207 /**
208  * ps3_mm_vas_destroy -
209  */
210 
211 void ps3_mm_vas_destroy(void)
212 {
213 	int result;
214 
215 	DBG("%s:%d: map.vas_id    = %llu\n", __func__, __LINE__, map.vas_id);
216 
217 	if (map.vas_id) {
218 		result = lv1_select_virtual_address_space(0);
219 		BUG_ON(result);
220 		result = lv1_destruct_virtual_address_space(map.vas_id);
221 		BUG_ON(result);
222 		map.vas_id = 0;
223 	}
224 }
225 
226 static int ps3_mm_get_repository_highmem(struct mem_region *r)
227 {
228 	int result;
229 
230 	/* Assume a single highmem region. */
231 
232 	result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
233 
234 	if (result)
235 		goto zero_region;
236 
237 	if (!r->base || !r->size) {
238 		result = -1;
239 		goto zero_region;
240 	}
241 
242 	r->offset = r->base - map.rm.size;
243 
244 	DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
245 	    __func__, __LINE__, r->base, r->size);
246 
247 	return 0;
248 
249 zero_region:
250 	DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
251 
252 	r->size = r->base = r->offset = 0;
253 	return result;
254 }
255 
256 static int ps3_mm_set_repository_highmem(const struct mem_region *r)
257 {
258 	/* Assume a single highmem region. */
259 
260 	return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
261 		ps3_repository_write_highmem_info(0, 0, 0);
262 }
263 
264 /**
265  * ps3_mm_region_create - create a memory region in the vas
266  * @r: pointer to a struct mem_region to accept initialized values
267  * @size: requested region size
268  *
269  * This implementation creates the region with the vas large page size.
270  * @size is rounded down to a multiple of the vas large page size.
271  */
272 
273 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
274 {
275 	int result;
276 	u64 muid;
277 
278 	r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
279 
280 	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
281 	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
282 	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
283 		size - r->size, (size - r->size) / 1024 / 1024);
284 
285 	if (r->size == 0) {
286 		DBG("%s:%d: size == 0\n", __func__, __LINE__);
287 		result = -1;
288 		goto zero_region;
289 	}
290 
291 	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
292 		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
293 
294 	if (result || r->base < map.rm.size) {
295 		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
296 			__func__, __LINE__, ps3_result(result));
297 		goto zero_region;
298 	}
299 
300 	r->destroy = 1;
301 	r->offset = r->base - map.rm.size;
302 	return result;
303 
304 zero_region:
305 	r->size = r->base = r->offset = 0;
306 	return result;
307 }
308 
309 /**
310  * ps3_mm_region_destroy - destroy a memory region
311  * @r: pointer to struct mem_region
312  */
313 
314 static void ps3_mm_region_destroy(struct mem_region *r)
315 {
316 	int result;
317 
318 	if (!r->destroy) {
319 		pr_info("%s:%d: Not destroying high region: %llxh %llxh\n",
320 			__func__, __LINE__, r->base, r->size);
321 		return;
322 	}
323 
324 	DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base);
325 
326 	if (r->base) {
327 		result = lv1_release_memory(r->base);
328 		BUG_ON(result);
329 		r->size = r->base = r->offset = 0;
330 		map.total = map.rm.size;
331 	}
332 	ps3_mm_set_repository_highmem(NULL);
333 }
334 
335 /*============================================================================*/
336 /* dma routines                                                               */
337 /*============================================================================*/
338 
339 /**
340  * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
341  * @r: pointer to dma region structure
342  * @lpar_addr: HV lpar address
343  */
344 
345 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
346 	unsigned long lpar_addr)
347 {
348 	if (lpar_addr >= map.rm.size)
349 		lpar_addr -= map.r1.offset;
350 	BUG_ON(lpar_addr < r->offset);
351 	BUG_ON(lpar_addr >= r->offset + r->len);
352 	return r->bus_addr + lpar_addr - r->offset;
353 }
354 
355 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
356 static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
357 	const char *func, int line)
358 {
359 	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
360 		r->dev->dev_id);
361 	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
362 	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
363 	DBG("%s:%d: len        %lxh\n", func, line, r->len);
364 	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
365 }
366 
367   /**
368  * dma_chunk - A chunk of dma pages mapped by the io controller.
369  * @region - The dma region that owns this chunk.
370  * @lpar_addr: Starting lpar address of the area to map.
371  * @bus_addr: Starting ioc bus address of the area to map.
372  * @len: Length in bytes of the area to map.
373  * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
374  * list of all chuncks owned by the region.
375  *
376  * This implementation uses a very simple dma page manager
377  * based on the dma_chunk structure.  This scheme assumes
378  * that all drivers use very well behaved dma ops.
379  */
380 
381 struct dma_chunk {
382 	struct ps3_dma_region *region;
383 	unsigned long lpar_addr;
384 	unsigned long bus_addr;
385 	unsigned long len;
386 	struct list_head link;
387 	unsigned int usage_count;
388 };
389 
390 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
391 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
392 	int line)
393 {
394 	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
395 		c->region->dev->bus_id, c->region->dev->dev_id);
396 	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
397 	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
398 	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
399 	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
400 	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
401 	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
402 	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
403 }
404 
405 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
406 	unsigned long bus_addr, unsigned long len)
407 {
408 	struct dma_chunk *c;
409 	unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
410 	unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
411 					      1 << r->page_size);
412 
413 	list_for_each_entry(c, &r->chunk_list.head, link) {
414 		/* intersection */
415 		if (aligned_bus >= c->bus_addr &&
416 		    aligned_bus + aligned_len <= c->bus_addr + c->len)
417 			return c;
418 
419 		/* below */
420 		if (aligned_bus + aligned_len <= c->bus_addr)
421 			continue;
422 
423 		/* above */
424 		if (aligned_bus >= c->bus_addr + c->len)
425 			continue;
426 
427 		/* we don't handle the multi-chunk case for now */
428 		dma_dump_chunk(c);
429 		BUG();
430 	}
431 	return NULL;
432 }
433 
434 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
435 	unsigned long lpar_addr, unsigned long len)
436 {
437 	struct dma_chunk *c;
438 	unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
439 	unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
440 					      1 << r->page_size);
441 
442 	list_for_each_entry(c, &r->chunk_list.head, link) {
443 		/* intersection */
444 		if (c->lpar_addr <= aligned_lpar &&
445 		    aligned_lpar < c->lpar_addr + c->len) {
446 			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
447 				return c;
448 			else {
449 				dma_dump_chunk(c);
450 				BUG();
451 			}
452 		}
453 		/* below */
454 		if (aligned_lpar + aligned_len <= c->lpar_addr) {
455 			continue;
456 		}
457 		/* above */
458 		if (c->lpar_addr + c->len <= aligned_lpar) {
459 			continue;
460 		}
461 	}
462 	return NULL;
463 }
464 
465 static int dma_sb_free_chunk(struct dma_chunk *c)
466 {
467 	int result = 0;
468 
469 	if (c->bus_addr) {
470 		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
471 			c->region->dev->dev_id, c->bus_addr, c->len);
472 		BUG_ON(result);
473 	}
474 
475 	kfree(c);
476 	return result;
477 }
478 
479 static int dma_ioc0_free_chunk(struct dma_chunk *c)
480 {
481 	int result = 0;
482 	int iopage;
483 	unsigned long offset;
484 	struct ps3_dma_region *r = c->region;
485 
486 	DBG("%s:start\n", __func__);
487 	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
488 		offset = (1 << r->page_size) * iopage;
489 		/* put INVALID entry */
490 		result = lv1_put_iopte(0,
491 				       c->bus_addr + offset,
492 				       c->lpar_addr + offset,
493 				       r->ioid,
494 				       0);
495 		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
496 		    c->bus_addr + offset,
497 		    c->lpar_addr + offset,
498 		    r->ioid);
499 
500 		if (result) {
501 			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
502 			    __LINE__, ps3_result(result));
503 		}
504 	}
505 	kfree(c);
506 	DBG("%s:end\n", __func__);
507 	return result;
508 }
509 
510 /**
511  * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
512  * @r: Pointer to a struct ps3_dma_region.
513  * @phys_addr: Starting physical address of the area to map.
514  * @len: Length in bytes of the area to map.
515  * c_out: A pointer to receive an allocated struct dma_chunk for this area.
516  *
517  * This is the lowest level dma mapping routine, and is the one that will
518  * make the HV call to add the pages into the io controller address space.
519  */
520 
521 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
522 	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
523 {
524 	int result;
525 	struct dma_chunk *c;
526 
527 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
528 	if (!c) {
529 		result = -ENOMEM;
530 		goto fail_alloc;
531 	}
532 
533 	c->region = r;
534 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
535 	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
536 	c->len = len;
537 
538 	BUG_ON(iopte_flag != 0xf800000000000000UL);
539 	result = lv1_map_device_dma_region(c->region->dev->bus_id,
540 					   c->region->dev->dev_id, c->lpar_addr,
541 					   c->bus_addr, c->len, iopte_flag);
542 	if (result) {
543 		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
544 			__func__, __LINE__, ps3_result(result));
545 		goto fail_map;
546 	}
547 
548 	list_add(&c->link, &r->chunk_list.head);
549 
550 	*c_out = c;
551 	return 0;
552 
553 fail_map:
554 	kfree(c);
555 fail_alloc:
556 	*c_out = NULL;
557 	DBG(" <- %s:%d\n", __func__, __LINE__);
558 	return result;
559 }
560 
561 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
562 			      unsigned long len, struct dma_chunk **c_out,
563 			      u64 iopte_flag)
564 {
565 	int result;
566 	struct dma_chunk *c, *last;
567 	int iopage, pages;
568 	unsigned long offset;
569 
570 	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
571 	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
572 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
573 	if (!c) {
574 		result = -ENOMEM;
575 		goto fail_alloc;
576 	}
577 
578 	c->region = r;
579 	c->len = len;
580 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
581 	/* allocate IO address */
582 	if (list_empty(&r->chunk_list.head)) {
583 		/* first one */
584 		c->bus_addr = r->bus_addr;
585 	} else {
586 		/* derive from last bus addr*/
587 		last  = list_entry(r->chunk_list.head.next,
588 				   struct dma_chunk, link);
589 		c->bus_addr = last->bus_addr + last->len;
590 		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
591 		    last->bus_addr, last->len);
592 	}
593 
594 	/* FIXME: check whether length exceeds region size */
595 
596 	/* build ioptes for the area */
597 	pages = len >> r->page_size;
598 	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
599 	    r->page_size, r->len, pages, iopte_flag);
600 	for (iopage = 0; iopage < pages; iopage++) {
601 		offset = (1 << r->page_size) * iopage;
602 		result = lv1_put_iopte(0,
603 				       c->bus_addr + offset,
604 				       c->lpar_addr + offset,
605 				       r->ioid,
606 				       iopte_flag);
607 		if (result) {
608 			pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
609 				__func__, __LINE__, ps3_result(result));
610 			goto fail_map;
611 		}
612 		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
613 		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
614 		    r->ioid);
615 	}
616 
617 	/* be sure that last allocated one is inserted at head */
618 	list_add(&c->link, &r->chunk_list.head);
619 
620 	*c_out = c;
621 	DBG("%s: end\n", __func__);
622 	return 0;
623 
624 fail_map:
625 	for (iopage--; 0 <= iopage; iopage--) {
626 		lv1_put_iopte(0,
627 			      c->bus_addr + offset,
628 			      c->lpar_addr + offset,
629 			      r->ioid,
630 			      0);
631 	}
632 	kfree(c);
633 fail_alloc:
634 	*c_out = NULL;
635 	return result;
636 }
637 
638 /**
639  * dma_sb_region_create - Create a device dma region.
640  * @r: Pointer to a struct ps3_dma_region.
641  *
642  * This is the lowest level dma region create routine, and is the one that
643  * will make the HV call to create the region.
644  */
645 
646 static int dma_sb_region_create(struct ps3_dma_region *r)
647 {
648 	int result;
649 	u64 bus_addr;
650 
651 	DBG(" -> %s:%d:\n", __func__, __LINE__);
652 
653 	BUG_ON(!r);
654 
655 	if (!r->dev->bus_id) {
656 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
657 			r->dev->bus_id, r->dev->dev_id);
658 		return 0;
659 	}
660 
661 	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
662 	    __LINE__, r->len, r->page_size, r->offset);
663 
664 	BUG_ON(!r->len);
665 	BUG_ON(!r->page_size);
666 	BUG_ON(!r->region_ops);
667 
668 	INIT_LIST_HEAD(&r->chunk_list.head);
669 	spin_lock_init(&r->chunk_list.lock);
670 
671 	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
672 		roundup_pow_of_two(r->len), r->page_size, r->region_type,
673 		&bus_addr);
674 	r->bus_addr = bus_addr;
675 
676 	if (result) {
677 		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
678 			__func__, __LINE__, ps3_result(result));
679 		r->len = r->bus_addr = 0;
680 	}
681 
682 	return result;
683 }
684 
685 static int dma_ioc0_region_create(struct ps3_dma_region *r)
686 {
687 	int result;
688 	u64 bus_addr;
689 
690 	INIT_LIST_HEAD(&r->chunk_list.head);
691 	spin_lock_init(&r->chunk_list.lock);
692 
693 	result = lv1_allocate_io_segment(0,
694 					 r->len,
695 					 r->page_size,
696 					 &bus_addr);
697 	r->bus_addr = bus_addr;
698 	if (result) {
699 		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
700 			__func__, __LINE__, ps3_result(result));
701 		r->len = r->bus_addr = 0;
702 	}
703 	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
704 	    r->len, r->page_size, r->bus_addr);
705 	return result;
706 }
707 
708 /**
709  * dma_region_free - Free a device dma region.
710  * @r: Pointer to a struct ps3_dma_region.
711  *
712  * This is the lowest level dma region free routine, and is the one that
713  * will make the HV call to free the region.
714  */
715 
716 static int dma_sb_region_free(struct ps3_dma_region *r)
717 {
718 	int result;
719 	struct dma_chunk *c;
720 	struct dma_chunk *tmp;
721 
722 	BUG_ON(!r);
723 
724 	if (!r->dev->bus_id) {
725 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
726 			r->dev->bus_id, r->dev->dev_id);
727 		return 0;
728 	}
729 
730 	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
731 		list_del(&c->link);
732 		dma_sb_free_chunk(c);
733 	}
734 
735 	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
736 		r->bus_addr);
737 
738 	if (result)
739 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
740 			__func__, __LINE__, ps3_result(result));
741 
742 	r->bus_addr = 0;
743 
744 	return result;
745 }
746 
747 static int dma_ioc0_region_free(struct ps3_dma_region *r)
748 {
749 	int result;
750 	struct dma_chunk *c, *n;
751 
752 	DBG("%s: start\n", __func__);
753 	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
754 		list_del(&c->link);
755 		dma_ioc0_free_chunk(c);
756 	}
757 
758 	result = lv1_release_io_segment(0, r->bus_addr);
759 
760 	if (result)
761 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
762 			__func__, __LINE__, ps3_result(result));
763 
764 	r->bus_addr = 0;
765 	DBG("%s: end\n", __func__);
766 
767 	return result;
768 }
769 
770 /**
771  * dma_sb_map_area - Map an area of memory into a device dma region.
772  * @r: Pointer to a struct ps3_dma_region.
773  * @virt_addr: Starting virtual address of the area to map.
774  * @len: Length in bytes of the area to map.
775  * @bus_addr: A pointer to return the starting ioc bus address of the area to
776  * map.
777  *
778  * This is the common dma mapping routine.
779  */
780 
781 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
782 	   unsigned long len, dma_addr_t *bus_addr,
783 	   u64 iopte_flag)
784 {
785 	int result;
786 	unsigned long flags;
787 	struct dma_chunk *c;
788 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
789 		: virt_addr;
790 	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
791 	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
792 					      1 << r->page_size);
793 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
794 
795 	if (!USE_DYNAMIC_DMA) {
796 		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
797 		DBG(" -> %s:%d\n", __func__, __LINE__);
798 		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
799 			virt_addr);
800 		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
801 			phys_addr);
802 		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
803 			lpar_addr);
804 		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
805 		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
806 		*bus_addr, len);
807 	}
808 
809 	spin_lock_irqsave(&r->chunk_list.lock, flags);
810 	c = dma_find_chunk(r, *bus_addr, len);
811 
812 	if (c) {
813 		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
814 		dma_dump_chunk(c);
815 		c->usage_count++;
816 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
817 		return 0;
818 	}
819 
820 	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
821 
822 	if (result) {
823 		*bus_addr = 0;
824 		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
825 			__func__, __LINE__, result);
826 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
827 		return result;
828 	}
829 
830 	c->usage_count = 1;
831 
832 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
833 	return result;
834 }
835 
836 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
837 	     unsigned long len, dma_addr_t *bus_addr,
838 	     u64 iopte_flag)
839 {
840 	int result;
841 	unsigned long flags;
842 	struct dma_chunk *c;
843 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
844 		: virt_addr;
845 	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
846 	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
847 					      1 << r->page_size);
848 
849 	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
850 	    virt_addr, len);
851 	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
852 	    phys_addr, aligned_phys, aligned_len);
853 
854 	spin_lock_irqsave(&r->chunk_list.lock, flags);
855 	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
856 
857 	if (c) {
858 		/* FIXME */
859 		BUG();
860 		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
861 		c->usage_count++;
862 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
863 		return 0;
864 	}
865 
866 	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
867 				    iopte_flag);
868 
869 	if (result) {
870 		*bus_addr = 0;
871 		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
872 			__func__, __LINE__, result);
873 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
874 		return result;
875 	}
876 	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
877 	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
878 	    virt_addr, phys_addr, aligned_phys, *bus_addr);
879 	c->usage_count = 1;
880 
881 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
882 	return result;
883 }
884 
885 /**
886  * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
887  * @r: Pointer to a struct ps3_dma_region.
888  * @bus_addr: The starting ioc bus address of the area to unmap.
889  * @len: Length in bytes of the area to unmap.
890  *
891  * This is the common dma unmap routine.
892  */
893 
894 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
895 	unsigned long len)
896 {
897 	unsigned long flags;
898 	struct dma_chunk *c;
899 
900 	spin_lock_irqsave(&r->chunk_list.lock, flags);
901 	c = dma_find_chunk(r, bus_addr, len);
902 
903 	if (!c) {
904 		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
905 			1 << r->page_size);
906 		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
907 			- aligned_bus, 1 << r->page_size);
908 		DBG("%s:%d: not found: bus_addr %llxh\n",
909 			__func__, __LINE__, bus_addr);
910 		DBG("%s:%d: not found: len %lxh\n",
911 			__func__, __LINE__, len);
912 		DBG("%s:%d: not found: aligned_bus %lxh\n",
913 			__func__, __LINE__, aligned_bus);
914 		DBG("%s:%d: not found: aligned_len %lxh\n",
915 			__func__, __LINE__, aligned_len);
916 		BUG();
917 	}
918 
919 	c->usage_count--;
920 
921 	if (!c->usage_count) {
922 		list_del(&c->link);
923 		dma_sb_free_chunk(c);
924 	}
925 
926 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
927 	return 0;
928 }
929 
930 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
931 			dma_addr_t bus_addr, unsigned long len)
932 {
933 	unsigned long flags;
934 	struct dma_chunk *c;
935 
936 	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
937 	spin_lock_irqsave(&r->chunk_list.lock, flags);
938 	c = dma_find_chunk(r, bus_addr, len);
939 
940 	if (!c) {
941 		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
942 							1 << r->page_size);
943 		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
944 						      - aligned_bus,
945 						      1 << r->page_size);
946 		DBG("%s:%d: not found: bus_addr %llxh\n",
947 		    __func__, __LINE__, bus_addr);
948 		DBG("%s:%d: not found: len %lxh\n",
949 		    __func__, __LINE__, len);
950 		DBG("%s:%d: not found: aligned_bus %lxh\n",
951 		    __func__, __LINE__, aligned_bus);
952 		DBG("%s:%d: not found: aligned_len %lxh\n",
953 		    __func__, __LINE__, aligned_len);
954 		BUG();
955 	}
956 
957 	c->usage_count--;
958 
959 	if (!c->usage_count) {
960 		list_del(&c->link);
961 		dma_ioc0_free_chunk(c);
962 	}
963 
964 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
965 	DBG("%s: end\n", __func__);
966 	return 0;
967 }
968 
969 /**
970  * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
971  * @r: Pointer to a struct ps3_dma_region.
972  *
973  * This routine creates an HV dma region for the device and maps all available
974  * ram into the io controller bus address space.
975  */
976 
977 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
978 {
979 	int result;
980 	unsigned long virt_addr, len;
981 	dma_addr_t tmp;
982 
983 	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
984 		/* force 16M dma pages for linear mapping */
985 		if (r->page_size != PS3_DMA_16M) {
986 			pr_info("%s:%d: forcing 16M pages for linear map\n",
987 				__func__, __LINE__);
988 			r->page_size = PS3_DMA_16M;
989 			r->len = _ALIGN_UP(r->len, 1 << r->page_size);
990 		}
991 	}
992 
993 	result = dma_sb_region_create(r);
994 	BUG_ON(result);
995 
996 	if (r->offset < map.rm.size) {
997 		/* Map (part of) 1st RAM chunk */
998 		virt_addr = map.rm.base + r->offset;
999 		len = map.rm.size - r->offset;
1000 		if (len > r->len)
1001 			len = r->len;
1002 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1003 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1004 			CBE_IOPTE_M);
1005 		BUG_ON(result);
1006 	}
1007 
1008 	if (r->offset + r->len > map.rm.size) {
1009 		/* Map (part of) 2nd RAM chunk */
1010 		virt_addr = map.rm.size;
1011 		len = r->len;
1012 		if (r->offset >= map.rm.size)
1013 			virt_addr += r->offset - map.rm.size;
1014 		else
1015 			len -= map.rm.size - r->offset;
1016 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1017 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1018 			CBE_IOPTE_M);
1019 		BUG_ON(result);
1020 	}
1021 
1022 	return result;
1023 }
1024 
1025 /**
1026  * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1027  * @r: Pointer to a struct ps3_dma_region.
1028  *
1029  * This routine will unmap all mapped areas and free the HV dma region.
1030  */
1031 
1032 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1033 {
1034 	int result;
1035 	dma_addr_t bus_addr;
1036 	unsigned long len, lpar_addr;
1037 
1038 	if (r->offset < map.rm.size) {
1039 		/* Unmap (part of) 1st RAM chunk */
1040 		lpar_addr = map.rm.base + r->offset;
1041 		len = map.rm.size - r->offset;
1042 		if (len > r->len)
1043 			len = r->len;
1044 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1045 		result = dma_sb_unmap_area(r, bus_addr, len);
1046 		BUG_ON(result);
1047 	}
1048 
1049 	if (r->offset + r->len > map.rm.size) {
1050 		/* Unmap (part of) 2nd RAM chunk */
1051 		lpar_addr = map.r1.base;
1052 		len = r->len;
1053 		if (r->offset >= map.rm.size)
1054 			lpar_addr += r->offset - map.rm.size;
1055 		else
1056 			len -= map.rm.size - r->offset;
1057 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1058 		result = dma_sb_unmap_area(r, bus_addr, len);
1059 		BUG_ON(result);
1060 	}
1061 
1062 	result = dma_sb_region_free(r);
1063 	BUG_ON(result);
1064 
1065 	return result;
1066 }
1067 
1068 /**
1069  * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1070  * @r: Pointer to a struct ps3_dma_region.
1071  * @virt_addr: Starting virtual address of the area to map.
1072  * @len: Length in bytes of the area to map.
1073  * @bus_addr: A pointer to return the starting ioc bus address of the area to
1074  * map.
1075  *
1076  * This routine just returns the corresponding bus address.  Actual mapping
1077  * occurs in dma_region_create_linear().
1078  */
1079 
1080 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1081 	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1082 	u64 iopte_flag)
1083 {
1084 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1085 		: virt_addr;
1086 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1087 	return 0;
1088 }
1089 
1090 /**
1091  * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1092  * @r: Pointer to a struct ps3_dma_region.
1093  * @bus_addr: The starting ioc bus address of the area to unmap.
1094  * @len: Length in bytes of the area to unmap.
1095  *
1096  * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1097  */
1098 
1099 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1100 	dma_addr_t bus_addr, unsigned long len)
1101 {
1102 	return 0;
1103 };
1104 
1105 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1106 	.create = dma_sb_region_create,
1107 	.free = dma_sb_region_free,
1108 	.map = dma_sb_map_area,
1109 	.unmap = dma_sb_unmap_area
1110 };
1111 
1112 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1113 	.create = dma_sb_region_create_linear,
1114 	.free = dma_sb_region_free_linear,
1115 	.map = dma_sb_map_area_linear,
1116 	.unmap = dma_sb_unmap_area_linear
1117 };
1118 
1119 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1120 	.create = dma_ioc0_region_create,
1121 	.free = dma_ioc0_region_free,
1122 	.map = dma_ioc0_map_area,
1123 	.unmap = dma_ioc0_unmap_area
1124 };
1125 
1126 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1127 	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1128 	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1129 {
1130 	unsigned long lpar_addr;
1131 
1132 	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1133 
1134 	r->dev = dev;
1135 	r->page_size = page_size;
1136 	r->region_type = region_type;
1137 	r->offset = lpar_addr;
1138 	if (r->offset >= map.rm.size)
1139 		r->offset -= map.r1.offset;
1140 	r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
1141 
1142 	switch (dev->dev_type) {
1143 	case PS3_DEVICE_TYPE_SB:
1144 		r->region_ops =  (USE_DYNAMIC_DMA)
1145 			? &ps3_dma_sb_region_ops
1146 			: &ps3_dma_sb_region_linear_ops;
1147 		break;
1148 	case PS3_DEVICE_TYPE_IOC0:
1149 		r->region_ops = &ps3_dma_ioc0_region_ops;
1150 		break;
1151 	default:
1152 		BUG();
1153 		return -EINVAL;
1154 	}
1155 	return 0;
1156 }
1157 EXPORT_SYMBOL(ps3_dma_region_init);
1158 
1159 int ps3_dma_region_create(struct ps3_dma_region *r)
1160 {
1161 	BUG_ON(!r);
1162 	BUG_ON(!r->region_ops);
1163 	BUG_ON(!r->region_ops->create);
1164 	return r->region_ops->create(r);
1165 }
1166 EXPORT_SYMBOL(ps3_dma_region_create);
1167 
1168 int ps3_dma_region_free(struct ps3_dma_region *r)
1169 {
1170 	BUG_ON(!r);
1171 	BUG_ON(!r->region_ops);
1172 	BUG_ON(!r->region_ops->free);
1173 	return r->region_ops->free(r);
1174 }
1175 EXPORT_SYMBOL(ps3_dma_region_free);
1176 
1177 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1178 	unsigned long len, dma_addr_t *bus_addr,
1179 	u64 iopte_flag)
1180 {
1181 	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1182 }
1183 
1184 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1185 	unsigned long len)
1186 {
1187 	return r->region_ops->unmap(r, bus_addr, len);
1188 }
1189 
1190 /*============================================================================*/
1191 /* system startup routines                                                    */
1192 /*============================================================================*/
1193 
1194 /**
1195  * ps3_mm_init - initialize the address space state variables
1196  */
1197 
1198 void __init ps3_mm_init(void)
1199 {
1200 	int result;
1201 
1202 	DBG(" -> %s:%d\n", __func__, __LINE__);
1203 
1204 	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1205 		&map.total);
1206 
1207 	if (result)
1208 		panic("ps3_repository_read_mm_info() failed");
1209 
1210 	map.rm.offset = map.rm.base;
1211 	map.vas_id = map.htab_size = 0;
1212 
1213 	/* this implementation assumes map.rm.base is zero */
1214 
1215 	BUG_ON(map.rm.base);
1216 	BUG_ON(!map.rm.size);
1217 
1218 	/* Check if we got the highmem region from an earlier boot step */
1219 
1220 	if (ps3_mm_get_repository_highmem(&map.r1)) {
1221 		result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1222 
1223 		if (!result)
1224 			ps3_mm_set_repository_highmem(&map.r1);
1225 	}
1226 
1227 	/* correct map.total for the real total amount of memory we use */
1228 	map.total = map.rm.size + map.r1.size;
1229 
1230 	if (!map.r1.size) {
1231 		DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1232 	} else {
1233 		DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1234 			__func__, __LINE__, map.rm.size,
1235 			map.total - map.rm.size);
1236 		memblock_add(map.rm.size, map.total - map.rm.size);
1237 	}
1238 
1239 	DBG(" <- %s:%d\n", __func__, __LINE__);
1240 }
1241 
1242 /**
1243  * ps3_mm_shutdown - final cleanup of address space
1244  */
1245 
1246 void ps3_mm_shutdown(void)
1247 {
1248 	ps3_mm_region_destroy(&map.r1);
1249 }
1250