1 /*
2  * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #define pr_fmt(fmt)	"powernv: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/device.h>
16 #include <linux/gfp.h>
17 #include <linux/smp.h>
18 #include <linux/stop_machine.h>
19 
20 #include <asm/cputhreads.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/machdep.h>
23 #include <asm/opal.h>
24 #include <asm/smp.h>
25 
26 #include "subcore.h"
27 
28 
29 /*
30  * Split/unsplit procedure:
31  *
32  * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
33  *
34  * The mapping to subcores_per_core is simple:
35  *
36  *  State       | subcores_per_core
37  *  ------------|------------------
38  *  Unsplit     |        1
39  *  2-way split |        2
40  *  4-way split |        4
41  *
42  * The core is split along thread boundaries, the mapping between subcores and
43  * threads is as follows:
44  *
45  *  Unsplit:
46  *          ----------------------------
47  *  Subcore |            0             |
48  *          ----------------------------
49  *  Thread  |  0  1  2  3  4  5  6  7  |
50  *          ----------------------------
51  *
52  *  2-way split:
53  *          -------------------------------------
54  *  Subcore |        0        |        1        |
55  *          -------------------------------------
56  *  Thread  |  0   1   2   3  |  4   5   6   7  |
57  *          -------------------------------------
58  *
59  *  4-way split:
60  *          -----------------------------------------
61  *  Subcore |    0    |    1    |    2    |    3    |
62  *          -----------------------------------------
63  *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
64  *          -----------------------------------------
65  *
66  *
67  * Transitions
68  * -----------
69  *
70  * It is not possible to transition between either of the split states, the
71  * core must first be unsplit. The legal transitions are:
72  *
73  *  -----------          ---------------
74  *  |         |  <---->  | 2-way split |
75  *  |         |          ---------------
76  *  | Unsplit |
77  *  |         |          ---------------
78  *  |         |  <---->  | 4-way split |
79  *  -----------          ---------------
80  *
81  * Unsplitting
82  * -----------
83  *
84  * Unsplitting is the simpler procedure. It requires thread 0 to request the
85  * unsplit while all other threads NAP.
86  *
87  * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
88  * the hardware that if all threads except 0 are napping, the hardware should
89  * unsplit the core.
90  *
91  * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
92  * see the core unsplit.
93  *
94  * Core 0 spins waiting for the hardware to see all the other threads napping
95  * and perform the unsplit.
96  *
97  * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
98  * out of NAP. They will then see the core unsplit and exit the NAP loop.
99  *
100  * Splitting
101  * ---------
102  *
103  * The basic splitting procedure is fairly straight forward. However it is
104  * complicated by the fact that after the split occurs, the newly created
105  * subcores are not in a fully initialised state.
106  *
107  * Most notably the subcores do not have the correct value for SDR1, which
108  * means they must not be running in virtual mode when the split occurs. The
109  * subcores have separate timebases SPRs but these are pre-synchronised by
110  * opal.
111  *
112  * To begin with secondary threads are sent to an assembly routine. There they
113  * switch to real mode, so they are immune to the uninitialised SDR1 value.
114  * Once in real mode they indicate that they are in real mode, and spin waiting
115  * to see the core split.
116  *
117  * Thread 0 waits to see that all secondaries are in real mode, and then begins
118  * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
119  * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
120  * to request the split, and spins waiting to see that the split has happened.
121  *
122  * Concurrently the secondaries will notice the split. When they do they set up
123  * their SPRs, notably SDR1, and then they can return to virtual mode and exit
124  * the procedure.
125  */
126 
127 /* Initialised at boot by subcore_init() */
128 static int subcores_per_core;
129 
130 /*
131  * Used to communicate to offline cpus that we want them to pop out of the
132  * offline loop and do a split or unsplit.
133  *
134  * 0 - no split happening
135  * 1 - unsplit in progress
136  * 2 - split to 2 in progress
137  * 4 - split to 4 in progress
138  */
139 static int new_split_mode;
140 
141 static cpumask_var_t cpu_offline_mask;
142 
143 struct split_state {
144 	u8 step;
145 	u8 master;
146 };
147 
148 static DEFINE_PER_CPU(struct split_state, split_state);
149 
150 static void wait_for_sync_step(int step)
151 {
152 	int i, cpu = smp_processor_id();
153 
154 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
155 		while(per_cpu(split_state, i).step < step)
156 			barrier();
157 
158 	/* Order the wait loop vs any subsequent loads/stores. */
159 	mb();
160 }
161 
162 static void unsplit_core(void)
163 {
164 	u64 hid0, mask;
165 	int i, cpu;
166 
167 	mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
168 
169 	cpu = smp_processor_id();
170 	if (cpu_thread_in_core(cpu) != 0) {
171 		while (mfspr(SPRN_HID0) & mask)
172 			power7_nap(0);
173 
174 		per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
175 		return;
176 	}
177 
178 	hid0 = mfspr(SPRN_HID0);
179 	hid0 &= ~HID0_POWER8_DYNLPARDIS;
180 	mtspr(SPRN_HID0, hid0);
181 
182 	while (mfspr(SPRN_HID0) & mask)
183 		cpu_relax();
184 
185 	/* Wake secondaries out of NAP */
186 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
187 		smp_send_reschedule(i);
188 
189 	wait_for_sync_step(SYNC_STEP_UNSPLIT);
190 }
191 
192 static void split_core(int new_mode)
193 {
194 	struct {  u64 value; u64 mask; } split_parms[2] = {
195 		{ HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
196 		{ HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
197 	};
198 	int i, cpu;
199 	u64 hid0;
200 
201 	/* Convert new_mode (2 or 4) into an index into our parms array */
202 	i = (new_mode >> 1) - 1;
203 	BUG_ON(i < 0 || i > 1);
204 
205 	cpu = smp_processor_id();
206 	if (cpu_thread_in_core(cpu) != 0) {
207 		split_core_secondary_loop(&per_cpu(split_state, cpu).step);
208 		return;
209 	}
210 
211 	wait_for_sync_step(SYNC_STEP_REAL_MODE);
212 
213 	/* Write new mode */
214 	hid0  = mfspr(SPRN_HID0);
215 	hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
216 	mtspr(SPRN_HID0, hid0);
217 
218 	/* Wait for it to happen */
219 	while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
220 		cpu_relax();
221 }
222 
223 static void cpu_do_split(int new_mode)
224 {
225 	/*
226 	 * At boot subcores_per_core will be 0, so we will always unsplit at
227 	 * boot. In the usual case where the core is already unsplit it's a
228 	 * nop, and this just ensures the kernel's notion of the mode is
229 	 * consistent with the hardware.
230 	 */
231 	if (subcores_per_core != 1)
232 		unsplit_core();
233 
234 	if (new_mode != 1)
235 		split_core(new_mode);
236 
237 	mb();
238 	per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
239 }
240 
241 bool cpu_core_split_required(void)
242 {
243 	smp_rmb();
244 
245 	if (!new_split_mode)
246 		return false;
247 
248 	cpu_do_split(new_split_mode);
249 
250 	return true;
251 }
252 
253 static int cpu_update_split_mode(void *data)
254 {
255 	int cpu, new_mode = *(int *)data;
256 
257 	if (this_cpu_ptr(&split_state)->master) {
258 		new_split_mode = new_mode;
259 		smp_wmb();
260 
261 		cpumask_andnot(cpu_offline_mask, cpu_present_mask,
262 			       cpu_online_mask);
263 
264 		/* This should work even though the cpu is offline */
265 		for_each_cpu(cpu, cpu_offline_mask)
266 			smp_send_reschedule(cpu);
267 	}
268 
269 	cpu_do_split(new_mode);
270 
271 	if (this_cpu_ptr(&split_state)->master) {
272 		/* Wait for all cpus to finish before we touch subcores_per_core */
273 		for_each_present_cpu(cpu) {
274 			if (cpu >= setup_max_cpus)
275 				break;
276 
277 			while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
278 				barrier();
279 		}
280 
281 		new_split_mode = 0;
282 
283 		/* Make the new mode public */
284 		subcores_per_core = new_mode;
285 		threads_per_subcore = threads_per_core / subcores_per_core;
286 
287 		/* Make sure the new mode is written before we exit */
288 		mb();
289 	}
290 
291 	return 0;
292 }
293 
294 static int set_subcores_per_core(int new_mode)
295 {
296 	struct split_state *state;
297 	int cpu;
298 
299 	if (kvm_hv_mode_active()) {
300 		pr_err("Unable to change split core mode while KVM active.\n");
301 		return -EBUSY;
302 	}
303 
304 	/*
305 	 * We are only called at boot, or from the sysfs write. If that ever
306 	 * changes we'll need a lock here.
307 	 */
308 	BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
309 
310 	for_each_present_cpu(cpu) {
311 		state = &per_cpu(split_state, cpu);
312 		state->step = SYNC_STEP_INITIAL;
313 		state->master = 0;
314 	}
315 
316 	get_online_cpus();
317 
318 	/* This cpu will update the globals before exiting stop machine */
319 	this_cpu_ptr(&split_state)->master = 1;
320 
321 	/* Ensure state is consistent before we call the other cpus */
322 	mb();
323 
324 	stop_machine(cpu_update_split_mode, &new_mode, cpu_online_mask);
325 
326 	put_online_cpus();
327 
328 	return 0;
329 }
330 
331 static ssize_t __used store_subcores_per_core(struct device *dev,
332 		struct device_attribute *attr, const char *buf,
333 		size_t count)
334 {
335 	unsigned long val;
336 	int rc;
337 
338 	/* We are serialised by the attribute lock */
339 
340 	rc = sscanf(buf, "%lx", &val);
341 	if (rc != 1)
342 		return -EINVAL;
343 
344 	switch (val) {
345 	case 1:
346 	case 2:
347 	case 4:
348 		if (subcores_per_core == val)
349 			/* Nothing to do */
350 			goto out;
351 		break;
352 	default:
353 		return -EINVAL;
354 	}
355 
356 	rc = set_subcores_per_core(val);
357 	if (rc)
358 		return rc;
359 
360 out:
361 	return count;
362 }
363 
364 static ssize_t show_subcores_per_core(struct device *dev,
365 		struct device_attribute *attr, char *buf)
366 {
367 	return sprintf(buf, "%x\n", subcores_per_core);
368 }
369 
370 static DEVICE_ATTR(subcores_per_core, 0644,
371 		show_subcores_per_core, store_subcores_per_core);
372 
373 static int subcore_init(void)
374 {
375 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
376 		return 0;
377 
378 	/*
379 	 * We need all threads in a core to be present to split/unsplit so
380          * continue only if max_cpus are aligned to threads_per_core.
381 	 */
382 	if (setup_max_cpus % threads_per_core)
383 		return 0;
384 
385 	BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
386 
387 	set_subcores_per_core(1);
388 
389 	return device_create_file(cpu_subsys.dev_root,
390 				  &dev_attr_subcores_per_core);
391 }
392 machine_device_initcall(powernv, subcore_init);
393