1 /*
2  * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #define pr_fmt(fmt)	"powernv: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/device.h>
16 #include <linux/gfp.h>
17 #include <linux/smp.h>
18 #include <linux/stop_machine.h>
19 
20 #include <asm/cputhreads.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/machdep.h>
23 #include <asm/opal.h>
24 #include <asm/smp.h>
25 
26 #include "subcore.h"
27 #include "powernv.h"
28 
29 
30 /*
31  * Split/unsplit procedure:
32  *
33  * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
34  *
35  * The mapping to subcores_per_core is simple:
36  *
37  *  State       | subcores_per_core
38  *  ------------|------------------
39  *  Unsplit     |        1
40  *  2-way split |        2
41  *  4-way split |        4
42  *
43  * The core is split along thread boundaries, the mapping between subcores and
44  * threads is as follows:
45  *
46  *  Unsplit:
47  *          ----------------------------
48  *  Subcore |            0             |
49  *          ----------------------------
50  *  Thread  |  0  1  2  3  4  5  6  7  |
51  *          ----------------------------
52  *
53  *  2-way split:
54  *          -------------------------------------
55  *  Subcore |        0        |        1        |
56  *          -------------------------------------
57  *  Thread  |  0   1   2   3  |  4   5   6   7  |
58  *          -------------------------------------
59  *
60  *  4-way split:
61  *          -----------------------------------------
62  *  Subcore |    0    |    1    |    2    |    3    |
63  *          -----------------------------------------
64  *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
65  *          -----------------------------------------
66  *
67  *
68  * Transitions
69  * -----------
70  *
71  * It is not possible to transition between either of the split states, the
72  * core must first be unsplit. The legal transitions are:
73  *
74  *  -----------          ---------------
75  *  |         |  <---->  | 2-way split |
76  *  |         |          ---------------
77  *  | Unsplit |
78  *  |         |          ---------------
79  *  |         |  <---->  | 4-way split |
80  *  -----------          ---------------
81  *
82  * Unsplitting
83  * -----------
84  *
85  * Unsplitting is the simpler procedure. It requires thread 0 to request the
86  * unsplit while all other threads NAP.
87  *
88  * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
89  * the hardware that if all threads except 0 are napping, the hardware should
90  * unsplit the core.
91  *
92  * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
93  * see the core unsplit.
94  *
95  * Core 0 spins waiting for the hardware to see all the other threads napping
96  * and perform the unsplit.
97  *
98  * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
99  * out of NAP. They will then see the core unsplit and exit the NAP loop.
100  *
101  * Splitting
102  * ---------
103  *
104  * The basic splitting procedure is fairly straight forward. However it is
105  * complicated by the fact that after the split occurs, the newly created
106  * subcores are not in a fully initialised state.
107  *
108  * Most notably the subcores do not have the correct value for SDR1, which
109  * means they must not be running in virtual mode when the split occurs. The
110  * subcores have separate timebases SPRs but these are pre-synchronised by
111  * opal.
112  *
113  * To begin with secondary threads are sent to an assembly routine. There they
114  * switch to real mode, so they are immune to the uninitialised SDR1 value.
115  * Once in real mode they indicate that they are in real mode, and spin waiting
116  * to see the core split.
117  *
118  * Thread 0 waits to see that all secondaries are in real mode, and then begins
119  * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
120  * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
121  * to request the split, and spins waiting to see that the split has happened.
122  *
123  * Concurrently the secondaries will notice the split. When they do they set up
124  * their SPRs, notably SDR1, and then they can return to virtual mode and exit
125  * the procedure.
126  */
127 
128 /* Initialised at boot by subcore_init() */
129 static int subcores_per_core;
130 
131 /*
132  * Used to communicate to offline cpus that we want them to pop out of the
133  * offline loop and do a split or unsplit.
134  *
135  * 0 - no split happening
136  * 1 - unsplit in progress
137  * 2 - split to 2 in progress
138  * 4 - split to 4 in progress
139  */
140 static int new_split_mode;
141 
142 static cpumask_var_t cpu_offline_mask;
143 
144 struct split_state {
145 	u8 step;
146 	u8 master;
147 };
148 
149 static DEFINE_PER_CPU(struct split_state, split_state);
150 
151 static void wait_for_sync_step(int step)
152 {
153 	int i, cpu = smp_processor_id();
154 
155 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
156 		while(per_cpu(split_state, i).step < step)
157 			barrier();
158 
159 	/* Order the wait loop vs any subsequent loads/stores. */
160 	mb();
161 }
162 
163 static void update_hid_in_slw(u64 hid0)
164 {
165 	u64 idle_states = pnv_get_supported_cpuidle_states();
166 
167 	if (idle_states & OPAL_PM_WINKLE_ENABLED) {
168 		/* OPAL call to patch slw with the new HID0 value */
169 		u64 cpu_pir = hard_smp_processor_id();
170 
171 		opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
172 	}
173 }
174 
175 static void unsplit_core(void)
176 {
177 	u64 hid0, mask;
178 	int i, cpu;
179 
180 	mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
181 
182 	cpu = smp_processor_id();
183 	if (cpu_thread_in_core(cpu) != 0) {
184 		while (mfspr(SPRN_HID0) & mask)
185 			power7_nap(0);
186 
187 		per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
188 		return;
189 	}
190 
191 	hid0 = mfspr(SPRN_HID0);
192 	hid0 &= ~HID0_POWER8_DYNLPARDIS;
193 	update_power8_hid0(hid0);
194 	update_hid_in_slw(hid0);
195 
196 	while (mfspr(SPRN_HID0) & mask)
197 		cpu_relax();
198 
199 	/* Wake secondaries out of NAP */
200 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
201 		smp_send_reschedule(i);
202 
203 	wait_for_sync_step(SYNC_STEP_UNSPLIT);
204 }
205 
206 static void split_core(int new_mode)
207 {
208 	struct {  u64 value; u64 mask; } split_parms[2] = {
209 		{ HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
210 		{ HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
211 	};
212 	int i, cpu;
213 	u64 hid0;
214 
215 	/* Convert new_mode (2 or 4) into an index into our parms array */
216 	i = (new_mode >> 1) - 1;
217 	BUG_ON(i < 0 || i > 1);
218 
219 	cpu = smp_processor_id();
220 	if (cpu_thread_in_core(cpu) != 0) {
221 		split_core_secondary_loop(&per_cpu(split_state, cpu).step);
222 		return;
223 	}
224 
225 	wait_for_sync_step(SYNC_STEP_REAL_MODE);
226 
227 	/* Write new mode */
228 	hid0  = mfspr(SPRN_HID0);
229 	hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
230 	update_power8_hid0(hid0);
231 	update_hid_in_slw(hid0);
232 
233 	/* Wait for it to happen */
234 	while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
235 		cpu_relax();
236 }
237 
238 static void cpu_do_split(int new_mode)
239 {
240 	/*
241 	 * At boot subcores_per_core will be 0, so we will always unsplit at
242 	 * boot. In the usual case where the core is already unsplit it's a
243 	 * nop, and this just ensures the kernel's notion of the mode is
244 	 * consistent with the hardware.
245 	 */
246 	if (subcores_per_core != 1)
247 		unsplit_core();
248 
249 	if (new_mode != 1)
250 		split_core(new_mode);
251 
252 	mb();
253 	per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
254 }
255 
256 bool cpu_core_split_required(void)
257 {
258 	smp_rmb();
259 
260 	if (!new_split_mode)
261 		return false;
262 
263 	cpu_do_split(new_split_mode);
264 
265 	return true;
266 }
267 
268 void update_subcore_sibling_mask(void)
269 {
270 	int cpu;
271 	/*
272 	 * sibling mask for the first cpu. Left shift this by required bits
273 	 * to get sibling mask for the rest of the cpus.
274 	 */
275 	int sibling_mask_first_cpu =  (1 << threads_per_subcore) - 1;
276 
277 	for_each_possible_cpu(cpu) {
278 		int tid = cpu_thread_in_core(cpu);
279 		int offset = (tid / threads_per_subcore) * threads_per_subcore;
280 		int mask = sibling_mask_first_cpu << offset;
281 
282 		paca[cpu].subcore_sibling_mask = mask;
283 
284 	}
285 }
286 
287 static int cpu_update_split_mode(void *data)
288 {
289 	int cpu, new_mode = *(int *)data;
290 
291 	if (this_cpu_ptr(&split_state)->master) {
292 		new_split_mode = new_mode;
293 		smp_wmb();
294 
295 		cpumask_andnot(cpu_offline_mask, cpu_present_mask,
296 			       cpu_online_mask);
297 
298 		/* This should work even though the cpu is offline */
299 		for_each_cpu(cpu, cpu_offline_mask)
300 			smp_send_reschedule(cpu);
301 	}
302 
303 	cpu_do_split(new_mode);
304 
305 	if (this_cpu_ptr(&split_state)->master) {
306 		/* Wait for all cpus to finish before we touch subcores_per_core */
307 		for_each_present_cpu(cpu) {
308 			if (cpu >= setup_max_cpus)
309 				break;
310 
311 			while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
312 				barrier();
313 		}
314 
315 		new_split_mode = 0;
316 
317 		/* Make the new mode public */
318 		subcores_per_core = new_mode;
319 		threads_per_subcore = threads_per_core / subcores_per_core;
320 		update_subcore_sibling_mask();
321 
322 		/* Make sure the new mode is written before we exit */
323 		mb();
324 	}
325 
326 	return 0;
327 }
328 
329 static int set_subcores_per_core(int new_mode)
330 {
331 	struct split_state *state;
332 	int cpu;
333 
334 	if (kvm_hv_mode_active()) {
335 		pr_err("Unable to change split core mode while KVM active.\n");
336 		return -EBUSY;
337 	}
338 
339 	/*
340 	 * We are only called at boot, or from the sysfs write. If that ever
341 	 * changes we'll need a lock here.
342 	 */
343 	BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
344 
345 	for_each_present_cpu(cpu) {
346 		state = &per_cpu(split_state, cpu);
347 		state->step = SYNC_STEP_INITIAL;
348 		state->master = 0;
349 	}
350 
351 	get_online_cpus();
352 
353 	/* This cpu will update the globals before exiting stop machine */
354 	this_cpu_ptr(&split_state)->master = 1;
355 
356 	/* Ensure state is consistent before we call the other cpus */
357 	mb();
358 
359 	stop_machine(cpu_update_split_mode, &new_mode, cpu_online_mask);
360 
361 	put_online_cpus();
362 
363 	return 0;
364 }
365 
366 static ssize_t __used store_subcores_per_core(struct device *dev,
367 		struct device_attribute *attr, const char *buf,
368 		size_t count)
369 {
370 	unsigned long val;
371 	int rc;
372 
373 	/* We are serialised by the attribute lock */
374 
375 	rc = sscanf(buf, "%lx", &val);
376 	if (rc != 1)
377 		return -EINVAL;
378 
379 	switch (val) {
380 	case 1:
381 	case 2:
382 	case 4:
383 		if (subcores_per_core == val)
384 			/* Nothing to do */
385 			goto out;
386 		break;
387 	default:
388 		return -EINVAL;
389 	}
390 
391 	rc = set_subcores_per_core(val);
392 	if (rc)
393 		return rc;
394 
395 out:
396 	return count;
397 }
398 
399 static ssize_t show_subcores_per_core(struct device *dev,
400 		struct device_attribute *attr, char *buf)
401 {
402 	return sprintf(buf, "%x\n", subcores_per_core);
403 }
404 
405 static DEVICE_ATTR(subcores_per_core, 0644,
406 		show_subcores_per_core, store_subcores_per_core);
407 
408 static int subcore_init(void)
409 {
410 	if (!cpu_has_feature(CPU_FTR_SUBCORE))
411 		return 0;
412 
413 	/*
414 	 * We need all threads in a core to be present to split/unsplit so
415          * continue only if max_cpus are aligned to threads_per_core.
416 	 */
417 	if (setup_max_cpus % threads_per_core)
418 		return 0;
419 
420 	BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
421 
422 	set_subcores_per_core(1);
423 
424 	return device_create_file(cpu_subsys.dev_root,
425 				  &dev_attr_subcores_per_core);
426 }
427 machine_device_initcall(powernv, subcore_init);
428