1 /*
2  * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #define pr_fmt(fmt)	"powernv: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/device.h>
16 #include <linux/gfp.h>
17 #include <linux/smp.h>
18 #include <linux/stop_machine.h>
19 
20 #include <asm/cputhreads.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/machdep.h>
23 #include <asm/opal.h>
24 #include <asm/smp.h>
25 
26 #include "subcore.h"
27 #include "powernv.h"
28 
29 
30 /*
31  * Split/unsplit procedure:
32  *
33  * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
34  *
35  * The mapping to subcores_per_core is simple:
36  *
37  *  State       | subcores_per_core
38  *  ------------|------------------
39  *  Unsplit     |        1
40  *  2-way split |        2
41  *  4-way split |        4
42  *
43  * The core is split along thread boundaries, the mapping between subcores and
44  * threads is as follows:
45  *
46  *  Unsplit:
47  *          ----------------------------
48  *  Subcore |            0             |
49  *          ----------------------------
50  *  Thread  |  0  1  2  3  4  5  6  7  |
51  *          ----------------------------
52  *
53  *  2-way split:
54  *          -------------------------------------
55  *  Subcore |        0        |        1        |
56  *          -------------------------------------
57  *  Thread  |  0   1   2   3  |  4   5   6   7  |
58  *          -------------------------------------
59  *
60  *  4-way split:
61  *          -----------------------------------------
62  *  Subcore |    0    |    1    |    2    |    3    |
63  *          -----------------------------------------
64  *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
65  *          -----------------------------------------
66  *
67  *
68  * Transitions
69  * -----------
70  *
71  * It is not possible to transition between either of the split states, the
72  * core must first be unsplit. The legal transitions are:
73  *
74  *  -----------          ---------------
75  *  |         |  <---->  | 2-way split |
76  *  |         |          ---------------
77  *  | Unsplit |
78  *  |         |          ---------------
79  *  |         |  <---->  | 4-way split |
80  *  -----------          ---------------
81  *
82  * Unsplitting
83  * -----------
84  *
85  * Unsplitting is the simpler procedure. It requires thread 0 to request the
86  * unsplit while all other threads NAP.
87  *
88  * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
89  * the hardware that if all threads except 0 are napping, the hardware should
90  * unsplit the core.
91  *
92  * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
93  * see the core unsplit.
94  *
95  * Core 0 spins waiting for the hardware to see all the other threads napping
96  * and perform the unsplit.
97  *
98  * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
99  * out of NAP. They will then see the core unsplit and exit the NAP loop.
100  *
101  * Splitting
102  * ---------
103  *
104  * The basic splitting procedure is fairly straight forward. However it is
105  * complicated by the fact that after the split occurs, the newly created
106  * subcores are not in a fully initialised state.
107  *
108  * Most notably the subcores do not have the correct value for SDR1, which
109  * means they must not be running in virtual mode when the split occurs. The
110  * subcores have separate timebases SPRs but these are pre-synchronised by
111  * opal.
112  *
113  * To begin with secondary threads are sent to an assembly routine. There they
114  * switch to real mode, so they are immune to the uninitialised SDR1 value.
115  * Once in real mode they indicate that they are in real mode, and spin waiting
116  * to see the core split.
117  *
118  * Thread 0 waits to see that all secondaries are in real mode, and then begins
119  * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
120  * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
121  * to request the split, and spins waiting to see that the split has happened.
122  *
123  * Concurrently the secondaries will notice the split. When they do they set up
124  * their SPRs, notably SDR1, and then they can return to virtual mode and exit
125  * the procedure.
126  */
127 
128 /* Initialised at boot by subcore_init() */
129 static int subcores_per_core;
130 
131 /*
132  * Used to communicate to offline cpus that we want them to pop out of the
133  * offline loop and do a split or unsplit.
134  *
135  * 0 - no split happening
136  * 1 - unsplit in progress
137  * 2 - split to 2 in progress
138  * 4 - split to 4 in progress
139  */
140 static int new_split_mode;
141 
142 static cpumask_var_t cpu_offline_mask;
143 
144 struct split_state {
145 	u8 step;
146 	u8 master;
147 };
148 
149 static DEFINE_PER_CPU(struct split_state, split_state);
150 
151 static void wait_for_sync_step(int step)
152 {
153 	int i, cpu = smp_processor_id();
154 
155 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
156 		while(per_cpu(split_state, i).step < step)
157 			barrier();
158 
159 	/* Order the wait loop vs any subsequent loads/stores. */
160 	mb();
161 }
162 
163 static void unsplit_core(void)
164 {
165 	u64 hid0, mask;
166 	int i, cpu;
167 
168 	mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
169 
170 	cpu = smp_processor_id();
171 	if (cpu_thread_in_core(cpu) != 0) {
172 		while (mfspr(SPRN_HID0) & mask)
173 			power7_nap(0);
174 
175 		per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
176 		return;
177 	}
178 
179 	hid0 = mfspr(SPRN_HID0);
180 	hid0 &= ~HID0_POWER8_DYNLPARDIS;
181 	mtspr(SPRN_HID0, hid0);
182 
183 	while (mfspr(SPRN_HID0) & mask)
184 		cpu_relax();
185 
186 	/* Wake secondaries out of NAP */
187 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
188 		smp_send_reschedule(i);
189 
190 	wait_for_sync_step(SYNC_STEP_UNSPLIT);
191 }
192 
193 static void split_core(int new_mode)
194 {
195 	struct {  u64 value; u64 mask; } split_parms[2] = {
196 		{ HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
197 		{ HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
198 	};
199 	int i, cpu;
200 	u64 hid0;
201 
202 	/* Convert new_mode (2 or 4) into an index into our parms array */
203 	i = (new_mode >> 1) - 1;
204 	BUG_ON(i < 0 || i > 1);
205 
206 	cpu = smp_processor_id();
207 	if (cpu_thread_in_core(cpu) != 0) {
208 		split_core_secondary_loop(&per_cpu(split_state, cpu).step);
209 		return;
210 	}
211 
212 	wait_for_sync_step(SYNC_STEP_REAL_MODE);
213 
214 	/* Write new mode */
215 	hid0  = mfspr(SPRN_HID0);
216 	hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
217 	mtspr(SPRN_HID0, hid0);
218 
219 	/* Wait for it to happen */
220 	while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
221 		cpu_relax();
222 }
223 
224 static void cpu_do_split(int new_mode)
225 {
226 	/*
227 	 * At boot subcores_per_core will be 0, so we will always unsplit at
228 	 * boot. In the usual case where the core is already unsplit it's a
229 	 * nop, and this just ensures the kernel's notion of the mode is
230 	 * consistent with the hardware.
231 	 */
232 	if (subcores_per_core != 1)
233 		unsplit_core();
234 
235 	if (new_mode != 1)
236 		split_core(new_mode);
237 
238 	mb();
239 	per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
240 }
241 
242 bool cpu_core_split_required(void)
243 {
244 	smp_rmb();
245 
246 	if (!new_split_mode)
247 		return false;
248 
249 	cpu_do_split(new_split_mode);
250 
251 	return true;
252 }
253 
254 static int cpu_update_split_mode(void *data)
255 {
256 	int cpu, new_mode = *(int *)data;
257 
258 	if (this_cpu_ptr(&split_state)->master) {
259 		new_split_mode = new_mode;
260 		smp_wmb();
261 
262 		cpumask_andnot(cpu_offline_mask, cpu_present_mask,
263 			       cpu_online_mask);
264 
265 		/* This should work even though the cpu is offline */
266 		for_each_cpu(cpu, cpu_offline_mask)
267 			smp_send_reschedule(cpu);
268 	}
269 
270 	cpu_do_split(new_mode);
271 
272 	if (this_cpu_ptr(&split_state)->master) {
273 		/* Wait for all cpus to finish before we touch subcores_per_core */
274 		for_each_present_cpu(cpu) {
275 			if (cpu >= setup_max_cpus)
276 				break;
277 
278 			while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
279 				barrier();
280 		}
281 
282 		new_split_mode = 0;
283 
284 		/* Make the new mode public */
285 		subcores_per_core = new_mode;
286 		threads_per_subcore = threads_per_core / subcores_per_core;
287 
288 		/* Make sure the new mode is written before we exit */
289 		mb();
290 	}
291 
292 	return 0;
293 }
294 
295 static int set_subcores_per_core(int new_mode)
296 {
297 	struct split_state *state;
298 	int cpu;
299 
300 	if (kvm_hv_mode_active()) {
301 		pr_err("Unable to change split core mode while KVM active.\n");
302 		return -EBUSY;
303 	}
304 
305 	/*
306 	 * We are only called at boot, or from the sysfs write. If that ever
307 	 * changes we'll need a lock here.
308 	 */
309 	BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
310 
311 	for_each_present_cpu(cpu) {
312 		state = &per_cpu(split_state, cpu);
313 		state->step = SYNC_STEP_INITIAL;
314 		state->master = 0;
315 	}
316 
317 	get_online_cpus();
318 
319 	/* This cpu will update the globals before exiting stop machine */
320 	this_cpu_ptr(&split_state)->master = 1;
321 
322 	/* Ensure state is consistent before we call the other cpus */
323 	mb();
324 
325 	stop_machine(cpu_update_split_mode, &new_mode, cpu_online_mask);
326 
327 	put_online_cpus();
328 
329 	return 0;
330 }
331 
332 static ssize_t __used store_subcores_per_core(struct device *dev,
333 		struct device_attribute *attr, const char *buf,
334 		size_t count)
335 {
336 	unsigned long val;
337 	int rc;
338 
339 	/* We are serialised by the attribute lock */
340 
341 	rc = sscanf(buf, "%lx", &val);
342 	if (rc != 1)
343 		return -EINVAL;
344 
345 	switch (val) {
346 	case 1:
347 	case 2:
348 	case 4:
349 		if (subcores_per_core == val)
350 			/* Nothing to do */
351 			goto out;
352 		break;
353 	default:
354 		return -EINVAL;
355 	}
356 
357 	rc = set_subcores_per_core(val);
358 	if (rc)
359 		return rc;
360 
361 out:
362 	return count;
363 }
364 
365 static ssize_t show_subcores_per_core(struct device *dev,
366 		struct device_attribute *attr, char *buf)
367 {
368 	return sprintf(buf, "%x\n", subcores_per_core);
369 }
370 
371 static DEVICE_ATTR(subcores_per_core, 0644,
372 		show_subcores_per_core, store_subcores_per_core);
373 
374 static int subcore_init(void)
375 {
376 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
377 		return 0;
378 
379 	/*
380 	 * We need all threads in a core to be present to split/unsplit so
381          * continue only if max_cpus are aligned to threads_per_core.
382 	 */
383 	if (setup_max_cpus % threads_per_core)
384 		return 0;
385 
386 	BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
387 
388 	set_subcores_per_core(1);
389 
390 	return device_create_file(cpu_subsys.dev_root,
391 				  &dev_attr_subcores_per_core);
392 }
393 machine_device_initcall(powernv, subcore_init);
394