1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __POWERNV_PCI_H
3 #define __POWERNV_PCI_H
4 
5 #include <linux/compiler.h>		/* for __printf */
6 #include <linux/iommu.h>
7 #include <asm/iommu.h>
8 #include <asm/msi_bitmap.h>
9 
10 struct pci_dn;
11 
12 enum pnv_phb_type {
13 	PNV_PHB_IODA1,
14 	PNV_PHB_IODA2,
15 	PNV_PHB_NPU_OCAPI,
16 };
17 
18 /* Precise PHB model for error management */
19 enum pnv_phb_model {
20 	PNV_PHB_MODEL_UNKNOWN,
21 	PNV_PHB_MODEL_P7IOC,
22 	PNV_PHB_MODEL_PHB3,
23 };
24 
25 #define PNV_PCI_DIAG_BUF_SIZE	8192
26 #define PNV_IODA_PE_DEV		(1 << 0)	/* PE has single PCI device	*/
27 #define PNV_IODA_PE_BUS		(1 << 1)	/* PE has primary PCI bus	*/
28 #define PNV_IODA_PE_BUS_ALL	(1 << 2)	/* PE has subordinate buses	*/
29 #define PNV_IODA_PE_MASTER	(1 << 3)	/* Master PE in compound case	*/
30 #define PNV_IODA_PE_SLAVE	(1 << 4)	/* Slave PE in compound case	*/
31 #define PNV_IODA_PE_VF		(1 << 5)	/* PE for one VF 		*/
32 
33 /*
34  * A brief note on PNV_IODA_PE_BUS_ALL
35  *
36  * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
37  * the Requester ID field of the PCIe request header to determine the device
38  * (and PE) that initiated a DMA. In legacy PCI individual memory read/write
39  * requests aren't tagged with the RID. To work around this the PCIe-to-PCI
40  * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
41  *
42  * PCIe-to-X bridges have a similar issue even though PCI-X requests also have
43  * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
44  * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
45  * side of the bridge.
46  *
47  * To work around these problems we use the BUS_ALL flag since every subordinate
48  * bus of the bridge should go into the same PE.
49  */
50 
51 /* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
52 #define PNV_IODA_STOPPED_STATE	0x8000000000000000
53 
54 /* Data associated with a PE, including IOMMU tracking etc.. */
55 struct pnv_phb;
56 struct pnv_ioda_pe {
57 	unsigned long		flags;
58 	struct pnv_phb		*phb;
59 	int			device_count;
60 
61 	/* A PE can be associated with a single device or an
62 	 * entire bus (& children). In the former case, pdev
63 	 * is populated, in the later case, pbus is.
64 	 */
65 #ifdef CONFIG_PCI_IOV
66 	struct pci_dev          *parent_dev;
67 #endif
68 	struct pci_dev		*pdev;
69 	struct pci_bus		*pbus;
70 
71 	/* Effective RID (device RID for a device PE and base bus
72 	 * RID with devfn 0 for a bus PE)
73 	 */
74 	unsigned int		rid;
75 
76 	/* PE number */
77 	unsigned int		pe_number;
78 
79 	/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
80 	struct iommu_table_group table_group;
81 
82 	/* 64-bit TCE bypass region */
83 	bool			tce_bypass_enabled;
84 	uint64_t		tce_bypass_base;
85 
86 	/*
87 	 * Used to track whether we've done DMA setup for this PE or not. We
88 	 * want to defer allocating TCE tables, etc until we've added a
89 	 * non-bridge device to the PE.
90 	 */
91 	bool			dma_setup_done;
92 
93 	/* MSIs. MVE index is identical for 32 and 64 bit MSI
94 	 * and -1 if not supported. (It's actually identical to the
95 	 * PE number)
96 	 */
97 	int			mve_number;
98 
99 	/* PEs in compound case */
100 	struct pnv_ioda_pe	*master;
101 	struct list_head	slaves;
102 
103 	/* Link in list of PE#s */
104 	struct list_head	list;
105 };
106 
107 #define PNV_PHB_FLAG_EEH	(1 << 0)
108 
109 struct pnv_phb {
110 	struct pci_controller	*hose;
111 	enum pnv_phb_type	type;
112 	enum pnv_phb_model	model;
113 	u64			hub_id;
114 	u64			opal_id;
115 	int			flags;
116 	void __iomem		*regs;
117 	u64			regs_phys;
118 	spinlock_t		lock;
119 
120 #ifdef CONFIG_DEBUG_FS
121 	int			has_dbgfs;
122 	struct dentry		*dbgfs;
123 #endif
124 
125 	unsigned int		msi_base;
126 	struct msi_bitmap	msi_bmp;
127 	int (*init_m64)(struct pnv_phb *phb);
128 	int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
129 	void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
130 	int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
131 
132 	struct {
133 		/* Global bridge info */
134 		unsigned int		total_pe_num;
135 		unsigned int		reserved_pe_idx;
136 		unsigned int		root_pe_idx;
137 
138 		/* 32-bit MMIO window */
139 		unsigned int		m32_size;
140 		unsigned int		m32_segsize;
141 		unsigned int		m32_pci_base;
142 
143 		/* 64-bit MMIO window */
144 		unsigned int		m64_bar_idx;
145 		unsigned long		m64_size;
146 		unsigned long		m64_segsize;
147 		unsigned long		m64_base;
148 #define MAX_M64_BARS 64
149 		unsigned long		m64_bar_alloc;
150 
151 		/* IO ports */
152 		unsigned int		io_size;
153 		unsigned int		io_segsize;
154 		unsigned int		io_pci_base;
155 
156 		/* PE allocation */
157 		struct mutex		pe_alloc_mutex;
158 		unsigned long		*pe_alloc;
159 		struct pnv_ioda_pe	*pe_array;
160 
161 		/* M32 & IO segment maps */
162 		unsigned int		*m64_segmap;
163 		unsigned int		*m32_segmap;
164 		unsigned int		*io_segmap;
165 
166 		/* IRQ chip */
167 		int			irq_chip_init;
168 		struct irq_chip		irq_chip;
169 
170 		/* Sorted list of used PE's based
171 		 * on the sequence of creation
172 		 */
173 		struct list_head	pe_list;
174 		struct mutex            pe_list_mutex;
175 
176 		/* Reverse map of PEs, indexed by {bus, devfn} */
177 		unsigned int		pe_rmap[0x10000];
178 	} ioda;
179 
180 	/* PHB and hub diagnostics */
181 	unsigned int		diag_data_size;
182 	u8			*diag_data;
183 };
184 
185 
186 /* IODA PE management */
187 
188 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
189 {
190 	/*
191 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
192 	 * allocation code sometimes decides to put a 64-bit prefetchable
193 	 * BAR in the 32-bit window, so we have to compare the addresses.
194 	 *
195 	 * For simplicity we only test resource start.
196 	 */
197 	return (r->start >= phb->ioda.m64_base &&
198 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
199 }
200 
201 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
202 {
203 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
204 
205 	return (resource_flags & flags) == flags;
206 }
207 
208 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
209 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
210 
211 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
212 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
213 
214 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
215 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
216 
217 #ifdef CONFIG_PCI_IOV
218 /*
219  * For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
220  * This requires a bit of acrobatics with the MMIO -> PE configuration
221  * and this structure is used to keep track of it all.
222  */
223 struct pnv_iov_data {
224 	/* number of VFs enabled */
225 	u16     num_vfs;
226 
227 	/* pointer to the array of VF PEs. num_vfs long*/
228 	struct pnv_ioda_pe *vf_pe_arr;
229 
230 	/* Did we map the VF BAR with single-PE IODA BARs? */
231 	bool    m64_single_mode[PCI_SRIOV_NUM_BARS];
232 
233 	/*
234 	 * True if we're using any segmented windows. In that case we need
235 	 * shift the start of the IOV resource the segment corresponding to
236 	 * the allocated PE.
237 	 */
238 	bool    need_shift;
239 
240 	/*
241 	 * Bit mask used to track which m64 windows are used to map the
242 	 * SR-IOV BARs for this device.
243 	 */
244 	DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
245 
246 	/*
247 	 * If we map the SR-IOV BARs with a segmented window then
248 	 * parts of that window will be "claimed" by other PEs.
249 	 *
250 	 * "holes" here is used to reserve the leading portion
251 	 * of the window that is used by other (non VF) PEs.
252 	 */
253 	struct resource holes[PCI_SRIOV_NUM_BARS];
254 };
255 
256 static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
257 {
258 	return pdev->dev.archdata.iov_data;
259 }
260 
261 void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
262 resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
263 
264 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
265 int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
266 #endif /* CONFIG_PCI_IOV */
267 
268 extern struct pci_ops pnv_pci_ops;
269 
270 void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
271 				unsigned char *log_buff);
272 int pnv_pci_cfg_read(struct pci_dn *pdn,
273 		     int where, int size, u32 *val);
274 int pnv_pci_cfg_write(struct pci_dn *pdn,
275 		      int where, int size, u32 val);
276 extern struct iommu_table *pnv_pci_table_alloc(int nid);
277 
278 extern void pnv_pci_init_ioda_hub(struct device_node *np);
279 extern void pnv_pci_init_ioda2_phb(struct device_node *np);
280 extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
281 extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
282 extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
283 
284 extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
285 extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
286 extern void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq);
287 extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
288 		__u64 window_size, __u32 levels);
289 extern int pnv_eeh_post_init(void);
290 
291 __printf(3, 4)
292 extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
293 			    const char *fmt, ...);
294 #define pe_err(pe, fmt, ...)					\
295 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
296 #define pe_warn(pe, fmt, ...)					\
297 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
298 #define pe_info(pe, fmt, ...)					\
299 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
300 
301 /* pci-ioda-tce.c */
302 #define POWERNV_IOMMU_DEFAULT_LEVELS	2
303 #define POWERNV_IOMMU_MAX_LEVELS	5
304 
305 extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
306 		unsigned long uaddr, enum dma_data_direction direction,
307 		unsigned long attrs);
308 extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
309 extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
310 		unsigned long *hpa, enum dma_data_direction *direction);
311 extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
312 		bool alloc);
313 extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
314 
315 extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
316 		__u32 page_shift, __u64 window_size, __u32 levels,
317 		bool alloc_userspace_copy, struct iommu_table *tbl);
318 extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
319 
320 extern long pnv_pci_link_table_and_group(int node, int num,
321 		struct iommu_table *tbl,
322 		struct iommu_table_group *table_group);
323 extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
324 		struct iommu_table_group *table_group);
325 extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
326 		void *tce_mem, u64 tce_size,
327 		u64 dma_offset, unsigned int page_shift);
328 
329 extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
330 
331 static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
332 {
333 	struct pci_controller *hose = bus->sysdata;
334 
335 	if (hose)
336 		return hose->private_data;
337 
338 	return NULL;
339 }
340 
341 #endif /* __POWERNV_PCI_H */
342